nerf_plus_plus/colmap_runner/format_dataset.py

95 lines
3.2 KiB
Python
Raw Normal View History

2021-06-10 16:31:31 +02:00
"""Given the output of the run_colmap.py script, create a usable dataset
compatible with the NeRF++ format. Made for Unix-like (posix style path), has
not been tested for Windows."""
import os
import json
import numpy as np
import shutil
input_path = "./lupo_output_dir_4"
output_path = "./lupo_output_data_npp_3"
# Read the JSON file containing all the data
cam_dict_norm_path = os.path.join(input_path, "posed_images/kai_cameras_normalized.json")
with open(cam_dict_norm_path) as fd:
cam_dict_norm = json.load(fd)
# Make the train directories
train_path = os.path.join(output_path, "train")
train_int_path = os.path.join(train_path, "intrinsics")
train_pose_path = os.path.join(train_path, "pose")
train_rgb_path = os.path.join(train_path, "rgb")
os.makedirs(train_path, exist_ok=True)
os.makedirs(train_int_path, exist_ok=True)
os.makedirs(train_pose_path, exist_ok=True)
os.makedirs(train_rgb_path, exist_ok=True)
# Make the train directories
test_path = os.path.join(output_path, "test")
test_int_path = os.path.join(test_path, "intrinsics")
test_pose_path = os.path.join(test_path, "pose")
test_rgb_path = os.path.join(test_path, "rgb")
os.makedirs(test_path, exist_ok=True)
os.makedirs(test_int_path, exist_ok=True)
os.makedirs(test_pose_path, exist_ok=True)
os.makedirs(test_rgb_path, exist_ok=True)
# Sample images for the test set
N = 10
image_list = sorted(cam_dict_norm.keys())
sampled = np.random.choice(image_list, N, replace=False)
# Write the files with the corresponding data
for img_name in sorted(cam_dict_norm.keys()):
# Retrieve the data
K = np.array(cam_dict_norm[img_name]['K'])
W2C = np.array(cam_dict_norm[img_name]['W2C'])
img_name_path = os.path.splitext(img_name)[0] # properly espace the extension
# training set
if img_name not in sampled:
# Create the paths
train_int_img_path = os.path.join(train_int_path, img_name_path + ".txt")
train_pose_img_path = os.path.join(train_pose_path, img_name_path + ".txt")
train_rgb_img_path = os.path.join(train_rgb_path, img_name)
# Write intrinsics
with open(train_int_img_path, "w") as fd:
fd.write(" ".join(map(str, K)))
# Write poses
with open(train_pose_img_path, "w") as fd:
fd.write(" ".join(map(str, W2C)))
# Copy image
source_image_path = os.path.join(input_path, "posed_images/images", img_name)
shutil.copy(source_image_path, train_rgb_img_path)
# testing set
else:
# Create the paths
test_int_img_path = os.path.join(test_int_path, img_name_path + ".txt")
test_pose_img_path = os.path.join(test_pose_path, img_name_path + ".txt")
test_rgb_img_path = os.path.join(test_rgb_path, img_name)
# Write intrinsics
with open(test_int_img_path, "w") as fd:
fd.write(" ".join(map(str, K)))
# Write poses
with open(test_pose_img_path, "w") as fd:
fd.write(" ".join(map(str, W2C)))
# Copy image
source_image_path = os.path.join(input_path, "posed_images/images", img_name)
shutil.copy(source_image_path, test_rgb_img_path)
# Create the validation dataset
validation_path = os.path.join(output_path, "validation")
os.symlink("./test", validation_path)