deux premiers algorithmes sous forme de Jupyter Notebook

This commit is contained in:
otthorn 2022-07-03 16:59:57 +02:00
parent 0dbe5cc391
commit a207c71687

153
exercices.ipynb Normal file
View file

@ -0,0 +1,153 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "0f3d617c",
"metadata": {},
"source": [
"# TP Word Embedding\n",
"\n",
"## Bag of Words\n",
"Un sac de mots (ou *Bag of Words* en anglais, parfois abbrévié *BOW*) est un description d'un ensemble de mot sous forme d'un vecteur où l'ordre des mots ne rentre pas en compte.\n",
"\n",
"### Term Frequency\n",
"L'idée de Term Frequency est d'effectué un simple compte du nombre d'occurence (ou de la fréquence) du nombre de mots dans le corpus.\n",
"\n",
"Soit un vocabulaire $V$ dans un corps $C$ contenant $D$ documents.\n",
"Soit $w$ un mot dans un document $d \\in C$.\n",
"\n",
"Alors $TF(C)$ est une matrice de taille $|V|\\times|D|$ tel que\n",
"\n",
"$$ TF(C)_{ij} = \\frac{\\text{# words $i$ in document $j$}}{|V|} $$"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a1445527",
"metadata": {},
"outputs": [],
"source": [
"document_1 = \"le chat mange la souris\"\n",
"document_2 = \"le chien regarde le canard\"\n",
"document_3 = \"le canard regarde le chat\"\n",
"\n",
"corpus = (document_1, document_2, document_3)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "6c989264",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'le': 5, 'chat': 2, 'mange': 1, 'la': 1, 'souris': 1, 'chien': 1, 'regarde': 2, 'canard': 2}\n"
]
}
],
"source": [
"# construction du vocabulaire\n",
"vocabulary = []\n",
"for d in corpus:\n",
" for w in d.split(\" \"):\n",
" if w not in vocabulary:\n",
" vocabulary.append(w)\n",
" \n",
"# calcul d'un histogramme simple sur le corpus\n",
"\n",
"# intialisation du dictionnaire\n",
"freq = dict()\n",
"for v in vocabulary:\n",
" freq[v] = 0\n",
"\n",
"# compte des fréquences\n",
"for d in corpus:\n",
" for w in d.split(\" \"):\n",
" freq[w] += 1 \n",
" \n",
"print(freq)"
]
},
{
"cell_type": "markdown",
"id": "34fa1346",
"metadata": {},
"source": [
"problèmes liés avec cette approche :\n",
"* indépendence au document (pousse les mots fréquents comme \"le\" vers le dessus alors qu'ils ne sont pas informatifs sémantiquements)\n",
"* pas de prise en compte de la case (majusucle / miniscule)\n",
"* simpliste"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "5fc408eb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[1. 1. 1. 1. 1. 0. 0. 0.]\n",
" [2. 0. 0. 0. 0. 1. 1. 1.]\n",
" [2. 1. 0. 0. 0. 0. 1. 1.]]\n"
]
}
],
"source": [
"# calcul d'un histogramme par document\n",
"import numpy as np\n",
"\n",
"V = len(vocabulary)\n",
"D = len(corpus)\n",
"\n",
"tf_idf = np.zeros([D, V])\n",
"\n",
"for i, d in enumerate(corpus):\n",
" for w in d.split(\" \"):\n",
" j = vocabulary.index(w)\n",
" tf_idf[i,j] += 1\n",
" \n",
"print(tf_idf)"
]
},
{
"cell_type": "markdown",
"id": "771b997f",
"metadata": {},
"source": [
"problèmes liés avec cette approche :\n",
"* résoud uniquement le premier problème cité précedement\n",
"* devrait être une implémentation en matrice creuse (*sparse matrix*) car va en pratique contenir beaucoup de zéros pour un vocabulaire grand\n",
"\n",
"Heuresement des implémentations existantes comme dans `scikit learn` permettent de résoudre ces problèmes techniques."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}