57 lines
1.4 KiB
Python
Executable file
57 lines
1.4 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
from scipy.spatial import Voronoi, voronoi_plot_2d
|
|
#
|
|
M = 20;
|
|
N =100; #point par cluster
|
|
K = N*M
|
|
means = np.random.rand(M,2)*10
|
|
X = np.zeros((K,2))
|
|
plt.figure()
|
|
cov = np.array([[1,0],[0,1]])
|
|
for m in range(M):
|
|
xi = np.random.multivariate_normal(means[m,:],cov,N)
|
|
X[m*N:(m+1)*N] = xi
|
|
plt.plot(xi[:,0],xi[:,1],'+')
|
|
plt.plot(means[:,0],means[:,1],'ob')
|
|
|
|
mean= np.mean(X,axis=0)
|
|
|
|
Y0 = np.random.multivariate_normal(mean, 10*cov, M)
|
|
plt.show()
|
|
print(Y0)
|
|
Y0= means
|
|
plt.plot(Y0[:,0],Y0[:,1],'ok')
|
|
|
|
def LBG(X,Y0,eps=1e-5,maxiter=1000):
|
|
Y = Y0.copy()
|
|
old_dist = np.inf
|
|
cluster_index = np.zeros(K,dtype=int)
|
|
for l in range(maxiter):
|
|
dist= 0;
|
|
for k in range(len(X)):
|
|
quant_min =np.inf
|
|
for j in range(len(Y)):
|
|
if np.linalg.norm(X[k]-Y[j]) <np.linalg.norm(X[k]-quant_min):
|
|
quant_min = Y[j]
|
|
cluster_index[k] = j
|
|
dist += sum((X[k]-quant_min)**2)
|
|
for j in range(len(Y)):
|
|
Y[j,:] = np.mean(X[cluster_index==j],axis=0)
|
|
print(Y)
|
|
if dist-old_dist < eps:
|
|
break
|
|
else:
|
|
old_dist = dist
|
|
return Y
|
|
Y = LBG(X,Y0)
|
|
vor = Voronoi(Y)
|
|
voronoi_plot_2d(vor,show_vertices=False)
|
|
print(Y)
|
|
plt.plot(X[:,0],X[:,1],'+')
|
|
plt.plot(Y[:,0],Y[:,1],'ob')
|
|
plt.plot(Y0[:,0],Y0[:,1],'ok')
|
|
plt.show()
|