cours-m1-eea/455-Codage_Sources/Cours/chap3.tex
Pierre-antoine Comby d438079569 changes modes
2020-01-07 15:19:35 +01:00

259 lines
9.2 KiB
TeX
Executable file

\documentclass[main.tex]{subfiles}
\begin{document}
L'idée du codage prédictif est d'utiliser les corrélations (ressemblances) temporelles ou spatiales du signal à compresser.
\paragraph{Rappels sur la corrélation}
On considère une source $X$ qui émet un signal constitué de $x_1,\dots,x_N$ considérés comme une réalisation d'une suite de variables aléatoires $X_1,\dots,X_N$ de moyenne nulle.
La fonction de corrélation permet de mesurer la ressemblance entre échantillons voisins :
\[ \gamma_x(n,k) = E(X_nX_{n+k}) \]
Pour un signal stationnaire (dont les caractéristiques statistiques n'évoluent pas au cours du temps :
\[ \gamma_x(n,k) = \gamma_x(k) = E(X_nX_{n+k}), \forall n\]
En pratique, on estime la corrélation à partir des échantillons du signal à compresser.
\begin{itemize}
\item Estimateur biaisé :
\[ \hat{\gamma_x^{B}}(k) =
\begin{cases}
\displaystyle\frac{1}{N}\sum_{i=1}^{N-k} x_i x_{i+k}, \forall k \geq 0 \\[2em]
\displaystyle\frac{1}{N} \sum_{i=-k}^N x_i x_{i+k}, \forall k \leq 0
\end{cases}
\]
\item Estimateur non biaisé
\[
\hat{\gamma_x^{NB}}(k) =\frac{1}{N-|k|} \sum_{i=1}^{N-k} x_i x_{i+k} \forall k \geq 0
\]
\end{itemize}
\begin{rem}
On préfère l'estimateur biaisé car il est plus stable numériquement.
\end{rem}
Avec Matlab, on l'obtient avec :
\begin{minted}{matlab}
[c,k] = xcorr(x,'biased');
plot(k,c); grid;
\end{minted}
$\gamma_x(k)$ est maximale en 0 et est égale à l'énergie $\sigma^2$ du signal.
\section{Codage prédictif en boucle ouverte}
Schéma en boucle ouverte:
\begin{figure}[H]
\centering
\begin{tikzpicture}[scale=0.8,transform shape]
\sbEntree{E}
\node[above left] (X) at (E) {$x_n$};
\draw (E.east) -- ++(-2em,0) (E.south) -- ++(0,4pt) ;
\sbDecaleNoeudy[5]{E}{mem}
\sbBloc{mem2}{Mémoire}{mem}
\sbBlocL{pred}{Prédiction}{mem2}
\sbRelieryx{E}{mem2}
\sbDecaleNoeudy[-5]{pred}{comp2}
\sbComp{comp}{comp2}
\sbRelierxy{pred}{comp}
\sbRelier{E}{comp}
\sbBlocL{Q}{Quantif}{comp}
\sbBlocL{C}{Codage entropique}{Q}
\sbSortie[5]{S}{C}
\sbRelier[0100..1]{C}{S}
\end{tikzpicture}
\caption{Emetteur en boucle ouverte}
\end{figure}
\begin{figure}[H]
\centering
\begin{tikzpicture}[scale=0.8,transform shape]
\sbEntree{E}
\sbBlocL{Dc}{Décodeur entropique}{E}
\sbBlocL{Di}{Desindexation}{Dc}
\sbSumb[7]{comp}{Di}
\sbRelier{Di}{comp}
\sbDecaleNoeudy[5]{comp}{comp2}
\sbBloc{pred}{Prédicteur}{comp2}
\sbBlocL{mem}{Mémoire}{pred}
\sbDecaleNoeudy[-5]{mem}{S}
\sbSortie[5]{X}{S}
\sbRelierxy{pred}{comp}
\sbRelieryx{X}{mem}
\sbRelier{comp}{X}
\end{tikzpicture}
\caption{Recepteur en boucle ouverte}
\end{figure}
Ca marche mais la quantification introduit des erreurs qui peuvent s'accumuler. On s'en sort en réinitialisant le codeur régulièrement.
\subsection{Prédicteur linéaire optimal à 1 pas}
On souhaite prédire la valeur de $X_n$ à partir de la valeur de $X_{n-1}$.
Le prédicteur sera linéaire :
\[\hat{X_n} = a_1 X_{n-1} \]
On cherche la valeur de $a_1$ qui minimise $e = E((X_n-\hat{X_n})^2)$
\begin{align*}
e & = E((X_n-a_1X_{n-1})^2) \\
& = E(X_n^2 -a_1^2 X_{n-1}^2 - 2a_1X_{n-1}X_n) \\
& = E(X_n^2) + a_1^2E(X_{n-1}^2) - 2a_1E(X_{n-1}X_n)\\
e & = \gamma_x(0) + a_1^2 \gamma_x(0) - 2a_1 \gamma_x(1) \text{ par stationnarité}\\
\derivp[e]{a_1}|_{\hat{a_1}} = 0 & \Leftrightarrow 2 \hat{a_1} \gamma_x(0) - 2 \gamma_x(1) = 0\\
& \Rightarrow \hat{a_1} = \frac{\gamma_x(1)}{\gamma_x(0)}
\end{align*}
\begin{rem}
Lorsque le signal sera très corrélé, $\gamma_x(1) \approx \gamma_x(0)$ et $\hat{a_1} \approx 1$. Pour un signal peu corrélé, $\gamma_x(1) \approx 0$ et $\hat{a_1} \approx 0$.
\end{rem}
Pour la valeur de $\hat{a_1}$ obtenue, on a
\begin{align*}
\hat{e} & = \gamma_x(0) + (\frac{\gamma_x(1)}{\gamma_x(0)})^2 \gamma_x(0) - 2 \frac{\gamma_x(1)^2}{\gamma_x(0)} \\
& = \frac{\gamma_x(0)^2-\gamma_x(1)^2}{\gamma_x(0)} \leq \gamma_x(0)
\end{align*}
$\hat{e}$ est l'énergie de la partie qui n'a pas pu être prédite de $x_1,\dots,x_N$.\\
Lorsque le signal est fortement corrélé, $\gamma_x(1)\simeq \gamma_x(0)$ et $\hat{a_1}\simeq 1$.
Le résidu de prédiction a une variance plus faible. Si on le quantifie, il permettra de reconstituer le signal initial avec une distorsion plus faible.
\subsection{Prédiction à $p$ pas}
On cherche à prédire $\vec{X_n}$ à partir des échantillons précédents $X_{n-1},\dots,X_{n-p}$.
\newcommand{\ap}{\vec{a}}
\newcommand{\Xn}{\vec{X_n}}
\newcommand{\cp}{\vec{c}}
\newcommand{\Rp}{\vec{R}}
\[ \hat{X_n} = a_1 X_{n-1} + \dots + a_pX_{n-p} = \ap^T \Xn \quad\text{avec}\quad \ap^T=(a_1\dots a_p) \text{ et } \Xn^T = (X_{n-1} \dots X_{n-p})\]
On cherche $\ap$ minimisant
\begin{align*}
e & = E((X_n-\hat{X_n})^2) \\
& = E((X_n-\ap^T\Xn)^2) \\
& = E(X_n^2) + \ap^T E(\Xn\Xn^T) \ap -2\ap^t E(X_n\Xn) \\
\text{Or, } E(X_n\Xn)& =(E(X_nX_{n-1}),\dots,E(X_nX_{n-p}))^T \\
& = (\gamma_x(1), \gamma_x(2),\dots,\gamma_x(p))^T = \cp \\
\text{De plus, } E(\Xn\Xn^T) & =
\left[
\begin{array}{cccc}
E(X_{n-1}X_{n-1}) &E(X_{n-1}X_{n-2}) & \dots & E(X_{n-1}X_{n-p}) \\
E(X_{n-2}X_{n-1}) & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
E(X_{n-p}X_{n-1}) & \dots & \dots & E(X_{n-p}X_{n-p})
\end{array}
\right] \\
& =
\left[
\begin{array}{cccc}
\gamma_x(0) & \gamma_x(1) & \dots & \gamma_x(p-1) \\
\gamma_x(1) & \gamma_x(0) & & \vdots \\
\vdots & & \ddots & \gamma_x(1) \\
\gamma_x(p-1) & \dots & \gamma_x(1) & \gamma_x(0)
\end{array}
\right] = \Rp\\
\text{ donc } e & = \gamma_x(0) + \ap^T \Rp \ap - 2 \ap^T \cp
\end{align*}
\[ \left.\derivp[e]{\ap}\right|_{\hat{\ap}} = 0 \quad \Leftrightarrow \quad \vec{0} + 2 \Rp\hat{\ap} - 2\cp = 0 \quad \Rightarrow \quad \hat{\ap} = \Rp^{-1} \cp \]
Pour cette valeur de $\hat{\ap}$, on a
\begin{align*}
\hat{e} & = \gamma_x(0) + \cp^T \Rp^{-1} \Rp \Rp^{-1} \cp -2\cp^T\Rp^{-1}\cp \\
& = \gamma_x(0) - \cp^T \Rp^{-1} \cp \leq \gamma_x(0)
\end{align*}
Ce prédicteur à $p$ pas est en général plus efficace que le prédicteur à 1 pas mais il est plus complexe.
\subsection{Mise en oeuvre du prédicteur}
Il faut que le récepteur disposent également des coefficients de prédiction optimal. Il peuvent :
\begin{itemize}
\item être transmis mais cela coute du débit
\item Etre réestimés au récepteur mais cela rend le récepteur plus complexe.
\end{itemize}
Pour le réglage du prédicteur, on distingue plusieurs méthodes :
\subsubsection{Fenêtres fixes}
On découpe le signal en blocs de $M$ échantillons et on recalcule le prédicteur sur chaque bloc.
Les échantillons de la $m$-ième fenêtres (pour$(m-1)M+1$ à $mM$):
\begin{itemize}
\item servent à extimer $\hat{\gamma}_x(k)$ et les coefficients de prédiction utilisé pour la $m+1$-ème fenêtre.
\item sont comprimés en utilisant le prédicteur optimal calculé das la fenêtre $m-1$.
\item Le recepteur fait les mêmes opérations.
\end{itemize}
\begin{rem}
Pour la première fenêtre on utilise le prédicteur à 1 pas.
Cette méthode ne fonctionne que pour des compressions sans pertes ou a débit élevé.
\end{rem}
Avantages :
\begin{itemize}
\item sa simplicité de mise ne œuvre
\item permet de s'adapter aux non-stationnarités
\end{itemize}
Inconvénient :
\begin{itemize}
\item débit nécessaire à la transmission des $\vec{\hat{a}}_{opt}$.
\end{itemize}
\subsubsection{Fenêtres glissantes}
On travaille sur une fenêtre glissante contenant les N échantillons décalés : $\vec{\hat{X}}_n = (\hat{x}_{n-1}, ..., \hat{x}_{n-N})^T$.
\begin{itemize}
\item On estime $\gamma_x(k)$ à partir des échantillons.
\item On en déduit le prédicteur à $p$ pas.
\item On prédi $x_n$ et on compresse le résidu.
\item Au récepteur dans le cas c'un codage sans pertes on dispose également de $x_{n-N} ... x_{n-1}$. et on va pouvoir faire les mêmes opérations pour obtenir $\hat{x_n}$ auquel il rajoutera le résidu du codeur.
\end{itemize}
\begin{rem}
Pour les $N$ premiers échantillons on peux utiliser un prédicteur à 1 pas avec $a=0$ ou $a=0$
\end{rem}
Avantages :
\begin{itemize}
\item Il est très adaptatif.
\item On ne transmet plus $\vec{\hat{a}}_{opt}$
\end{itemize}
Inconvénient :
\begin{itemize}
\item et bien... c'est pas simple.
\end{itemize}
\section{Schéma de prédiction en boucle fermée}
Dans les schémas de codage avec pertes le récepteur dispose de $\tilde{x}_{n-M} ... \tilde{x}_{n-1}$ qui sont différents de $x_{n-M} ... x_{n-1}$.
Les fonctions de corrélations estimées ainsi que les prédicteurs seront différents. L'erreur entre le signal initial et le signal reconstitué aura tendance à augmenter.
Pour résoudre ce problème le codeur va comprendre un décodeur ``local'' qui va permettre d'estimer $\tilde{x}_{n-M} ... \tilde{x}_{n-1}$. Ensuite $\gamma_x$ et le prédicteurs seront estimée à partir de $\tilde{x}$ et non de $x$.
On montre qu'avec ce schéma les erreurs de quantification ne s'accumule pas.
\[
x_n-\tilde{x}_n= x_n -\hat{x}_n+\hat{x}_n+\tilde{x}_n = e_n - \tilde{e}_n
\]
Sur le $n$-ième échantillion on a seulement l'erreur de quantification associé a cet échantillon.
\begin{rem}
La qualité du prédicteur va influencer le débit et dans une moindre mesure la distorsion
\end{rem}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "main"
%%% End: