clc, clear, warning('off') %% Valeurs des variables Ks = 1.61; %N/m Jp = 0.0021; %kg/(m.m) Jb = 0.0059; %kg/(m.m) m = 0.403; %kg h = 0.06; %m g = 9.8; %N/m N = 70; %Sans dim Phi = 0.00767;%N.s/rad R = 2.6; %Ohm %% Manip. 1 : Modèle NL A_nl = [0 0 1 0 ;... 0 0 0 1 ;... 0 Ks/Jp -Phi^2*N^2/(R*Jp) 0 ;... 0 -Ks*(Jp+Jb)/(Jp*Jb) Phi^2*N^2/(R*Jp) 0]; B = [0; 0; Phi*N/(R*Jp); -Phi*N/(R*Jp)]; B_b = [0; 0; 0; m*g*h/Jb]; B_nl = [B B_b]; C = [1, 1, 0, 0]; %% Manip. 2 : Bouclage linéarisant L = [0, -Ks^2*(Jp+Jb)/(Jp*Jb^2) , Ks*Phi^2*N^2/(R*Jp*Jb), 0]; l1 = m*g*h/Jb; l2 = -(m*g*h)^2/(Jb*Jb); l3 = Ks*m*g*h/(Jb^2); l4 = Ks*m*g*h/(Jb*Jb); Somme = [1 1 1 1 1]; beta = R*Jp*Jb/(Ks*N*Phi); %% Manip. 6 : Poursuite asymptotique % m =0.8; % w0 = 20; % w1 = 35; % w2 = 20; % i = sqrt(-1); m = 2; w0 = 2000; w1 = 3500; w2 = 3000; i = sqrt(-1); p = tf('p'); Po = (p+w0*m-i*w0*sqrt(1-m^2))*(p+w0*m+i*w0*sqrt(1-m^2))*... (p+w1)*(p+w2); P = Po.num{1}; a3=P(2); a2=P(3); a1=P(4); a0=P(5); T = 1/10; yinf = pi/4; % Modèle de la consigne : Pc = (p+(w0/100)*0.7-i*(w0/100)*sqrt(1-0.7^2))*(p+(w0/100)*0.7+i*(w0/100)*sqrt(1-0.7^2))*... (p+w1/100)*(p+w2/100)*(p+w2/100); Pc = Pc.num{1}; b4=Pc(2); b3=Pc(3); b2=Pc(4); b1=Pc(5); b0=Pc(6); Ac = [0 1 0 0 0; 0 0 1 0 0; 0 0 0 1 0; 0 0 0 0 1; ... -b0 -b1 -b2 -b3 -b4]; Bc = [0; 0; 0; 0; b0]; % % %% Manip. 10 : Backstepping % La1 = -10; % La2 = 10*La1; % La3 = 10*La2; % La4 = 10*La3;