diff --git a/424-Systeme_Non_Lineaires/Cours/5/1.png b/424-Systeme_Non_Lineaires/Cours/5/1.png deleted file mode 100644 index 4b6fb6b..0000000 Binary files a/424-Systeme_Non_Lineaires/Cours/5/1.png and /dev/null differ diff --git a/424-Systeme_Non_Lineaires/Cours/5/2.png b/424-Systeme_Non_Lineaires/Cours/5/2.png deleted file mode 100644 index 3e69331..0000000 Binary files a/424-Systeme_Non_Lineaires/Cours/5/2.png and /dev/null differ diff --git a/424-Systeme_Non_Lineaires/Cours/chap7.tex b/424-Systeme_Non_Lineaires/Cours/chap7.tex index 3179350..252ec96 100644 --- a/424-Systeme_Non_Lineaires/Cours/chap7.tex +++ b/424-Systeme_Non_Lineaires/Cours/chap7.tex @@ -11,11 +11,22 @@ Dans la suite du chapitre on étudiera le modèle suivant : Affine en la command \section{Commande par bouclage linéarisant} \begin{figure}[H] \centering - \includegraphics[width=0.7\textwidth]{5/1.png} + \begin{tikzpicture} + \node[draw, minimum height=1cm] (C) at (0,0) { + \begin{tabular}{c} +Commande\\ Linéarisée + \end{tabular}}; + \node[draw, minimum height=1cm] (S) at (5,0) { + \begin{tabular}{c} +Système\\ NL + \end{tabular}}; + \draw[-latex] (-2,0) -- (C.west) node[near start,above]{$v$}; + \draw[-latex] (C.east) -- (S.west) node[near start, above]{$u$}; + \draw[-latex] (S.east) -- ++(2,0) node[above left]{$y$}; + \draw[-latex] (S.south) |- ++(-2,-1) node[near start,right]{$x$} -| (C.south); + \end{tikzpicture} \caption{Principe du bouclage linéarisant} \end{figure} -% \img{0.5}{5/1} A rajouter ! -Figure a rajouter \subsection{Linéarisation entrées-sorties} On se place dans le cas SISO: $u\in \R$ et $y\in\R$ @@ -95,7 +106,29 @@ Qui nécessite le changement de base des variables d'états : \begin{figure}[H] \centering - \includegraphics[width=0.7\textwidth]{5/2.png} + \begin{tikzpicture} + \begin{scope}[at={(0,0)}] + \node[draw, minimum height=1cm] (C) at (0,0) {$\frac{v-a(z)}{b(z)}$}; + \node[draw, minimum height=1cm] (S) at (3.5,0) {$\dot{x}=f(x)+g(x)u$}; + \node[draw, minimum height=1cm] (N) at (7,0) {$z=\Phi(x)$}; + \draw[-latex] (-2,0) -- (C.west) node[near start,above]{$v$}; + \draw[-latex] (C.east) -- (S.west) node[near start, above]{$u$}; + \draw[-latex] (S.east) -- (N.west); + \draw[-latex] (N.east) -- ++(1,0) node[above left]{$y$}; + \draw[-latex] (N.south) |- ++(-2,-1) node[near start,right]{$x$} -| (C.south); + \end{scope} + \node at (3,-2.5){\Large$\Updownarrow$}; + \begin{scope}[shift={(0,-4)}] + \node[draw, minimum height=1cm] (I1) at (0,0) {$\int$}; + \node[draw, minimum height=1cm] (I2) at (2,0) {$\int$}; + \node[draw, minimum height=1cm] (I3) at (5,0) {$\int$}; +\draw[-latex] (-2,0) -- (I1.west) node[near start, above]{$v$}; +\draw[-latex] (I1.east) -- (I2.west) node[near start, above]{$z_n$}; +\draw[-latex] (I2.east) -- ++(1,0) node[midway,above]{$z_{n-1}$}; +\draw[-latex,dashed] (I2.east)++(1,0) -- (I3.west) node[near end, above]{$z_{2}$}; +\draw[-latex] (I3.east) -- ++(2,0) node[near end, above]{$z_1=y$}; + \end{scope} + \end{tikzpicture} \caption{Forme normale} \end{figure} @@ -123,6 +156,7 @@ Ainsi on défini la dynamique des zéros. Le système commandé est en régime s \dot{v}=0 y=0 .. \] La dynamique des zéro est celle $\dot{\eta} =q(\eta,0,v)$. Puisque la commande est linéaire on aussi prendre $v=0$ +\end{rem} \subsection{Dynamique des zéros} \begin{defin} C'est la dynamique interne pour une sortie identiquement nulle.