remove overfull hbox
This commit is contained in:
parent
e04a7d96f4
commit
8cae2bbf6d
1 changed files with 6 additions and 3 deletions
|
@ -160,7 +160,10 @@ On remarque que $DA = I_n$.
|
||||||
\subparagraph{Méthode 2} Pour $A^TMA>0$.
|
\subparagraph{Méthode 2} Pour $A^TMA>0$.
|
||||||
|
|
||||||
\[
|
\[
|
||||||
J_{MC} = \underbracket{(D(Y-m_B)-\Theta)^TA^TMA(D(Y-m_B)-\theta)}_ {J_1(Y,\theta)} + \underbracket{(Y-m_B)^T(M-D^TA^TMAD)(Y-m_B)}_{J_2(Y)}
|
\begin{aligned}
|
||||||
|
J_{MC} &= \underbracket{(D(Y-m_B)-\Theta)^TA^TMA(D(Y-m_B)-\theta)}_ {J_1(Y,\theta)}\\
|
||||||
|
&+ \underbracket{(Y-m_B)^T(M-D^TA^TMAD)(Y-m_B)}_{J_2(Y)}
|
||||||
|
\end{aligned}
|
||||||
\]
|
\]
|
||||||
Alors $\nabla J_{MC} = 0 \implies J_1 = 0 \implies D(Y-m_B) = \hat{\theta}_{MC}$
|
Alors $\nabla J_{MC} = 0 \implies J_1 = 0 \implies D(Y-m_B) = \hat{\theta}_{MC}$
|
||||||
|
|
||||||
|
@ -376,8 +379,8 @@ On considère un cout uniforme.
|
||||||
\begin{defin}
|
\begin{defin}
|
||||||
En prenant:
|
En prenant:
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
E_{\theta|Y}[C(\hat{\theta},\theta)] &= \int_{\R^m}(1-\Pi_{\Delta}(\tilde{\theta}))f_{\theta|Y=y}(\theta)d\theta
|
E_{\theta|Y}[C(\hat{\theta},\theta)] &= \int_{\R^m}(1-\Pi_{\Delta}(\tilde{\theta}))f_{\theta|Y=y}(\theta)d\theta \\
|
||||||
&= 1 - \int_{\hat{\theta}-\Delta/2}^{{\hat{\theta}+\Delta/2}}f_{\theta|Y=y}(\theta)d\theta
|
&= 1 - \int_{\hat{\theta}-\Delta/2}^{{\hat{\theta}+\Delta/2}}f_{\theta|Y=y}(\theta)d\theta \\
|
||||||
&\simeq 1- \Delta^nf_{\theta|Y=y}(\hat{\theta})
|
&\simeq 1- \Delta^nf_{\theta|Y=y}(\hat{\theta})
|
||||||
\end{align*}
|
\end{align*}
|
||||||
Soit \[
|
Soit \[
|
||||||
|
|
Loading…
Reference in a new issue