flow diagram !
This commit is contained in:
parent
328b313a9f
commit
2781383039
3 changed files with 352 additions and 11 deletions
|
@ -302,7 +302,7 @@ Chaque phase du stator possède un couplage magnétique avec les autres phases d
|
|||
On a les équations suivantes pour le stator:
|
||||
\begin{align*}
|
||||
v_{as} &= R_s i_{as}(t)+\deriv[\Phi_{as}(t)]{t}\\
|
||||
\Phi_{as}(t) &= L_{s} i_{as} + M_s(i_{bs}+i_{bs}) \\&\quad+M_0 (\cos(\theta)i_{ar}(t)+\cos(\theta+\frac{2\pi}{3})i_{br}(t)+\cos(\theta+\frac{2\pi}{3})i_{br}(t)+\cos(\theta-\frac{2\pi}{3})i_{cr}(t))\\
|
||||
\Phi_{as}(t) &= L_{s} i_{as} + M_s(i_{bs}+i_{bs}) +M_0 (\cos(\theta)i_{ar}(t)+\cos(\theta+\frac{2\pi}{3})i_{br}(t)+\cos(\theta-\frac{2\pi}{3})i_{cr}(t))\\
|
||||
\Phi_{as}(t) &= (L_s-M_s) i_{as}(t)+\frac{3M_0I_r}{\sqrt{2}}\cos(\theta+\omega_rt+\phi_r+\theta_0) \\
|
||||
\Phi_{as}(t) &= (L_s-M_s) i_{as}(t)+\frac{3M_0I_r}{\sqrt{2}}\cos(\omega_st+\phi_s)
|
||||
\end{align*}
|
||||
|
@ -318,7 +318,7 @@ On fais les mêmes calculs pour le rotor :
|
|||
|
||||
\begin{align*}
|
||||
v_{ar}(t) &= R_ri_{ar}(t) + \deriv[\Phi]{t}\\
|
||||
\Phi_{ar}(t) &= (L_{r}-M_r) i_{ar} +M_0( \cos(\theta)i_{as}(t)+\cos(\theta+\frac{2\pi}{3})i_{br}(t)+\cos(\theta+\frac{2\pi}{3})i_{br}(t)+\cos(\theta-\frac{2\pi}{3})i_{cr}(t))\\
|
||||
\Phi_{ar}(t) &= (L_{r}-M_r) i_{ar} +M_0( \cos(\theta)i_{as}(t)+\cos(\theta+\frac{2\pi}{3})i_{br}(t)+\cos(\theta-\frac{2\pi}{3})i_{cr}(t))\\
|
||||
\Phi_{ar}(t) &= (L_{r}-M_r) i_{ar} +\frac{3M_0I_s}{\sqrt{2}} \cos(\Omega t-\omega_st+\theta_0-\phi_s) \\
|
||||
\Phi_{ar}(t) &= L_{rc} i_{ar} +\frac{3M_0I_s}{\sqrt{2}} \cos(\omega_rt +\phi_s')
|
||||
\end{align*}
|
||||
|
@ -418,7 +418,7 @@ Avec:
|
|||
\end{circuitikz}
|
||||
\caption{Modèle au synchronisme}
|
||||
\end{figure}
|
||||
On mesurre la puissance active $P_0$ et la puissance réactive $Q_0$ et les courants $I_{s0}$ et $V_{s0}$ on obtient les équations:
|
||||
On mesure la puissance active $P_0$ et la puissance réactive $Q_0$ et les courants $I_{s0}$ et $V_{s0}$ on obtient les équations:
|
||||
|
||||
\[
|
||||
\begin{cases}
|
||||
|
@ -459,6 +459,94 @@ Dans le modèle équivalent on est a $\omega_s$. Or dans le rotor les courants s
|
|||
\[
|
||||
g =\frac{\omega_s-\omega}{\omega_s}
|
||||
\]
|
||||
|
||||
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\begin{tikzpicture}[x=1pt,y=1pt]
|
||||
|
||||
\begin{sankeydiagram}[
|
||||
sankey tot length=90pt,%
|
||||
sankey tot quantity=6,%
|
||||
sankey min radius=15pt,%
|
||||
sankey fill/.style={
|
||||
draw,line width=0pt,
|
||||
%fill,
|
||||
white,
|
||||
},
|
||||
sankey draw/.style={
|
||||
draw=black,
|
||||
line width=1pt,
|
||||
line cap=round,
|
||||
line join=round,
|
||||
},
|
||||
]
|
||||
\sankeynodestart{6}{0}{Pa}{0,100};
|
||||
\node[left] at (Pa) {$P_a=3UI\cos{\phi}$};
|
||||
\sankeyadvance{Pa}{50pt}
|
||||
|
||||
\sankeyfork{Pa}{5/Pa2,1/Pjs}
|
||||
\sankeyturn{Pjs}{-90}
|
||||
\sankeyadvance{Pjs}{15pt}
|
||||
\sankeynodeend{1}{-90}{Pjs}{Pjs}
|
||||
\node[below=1em] at (Pjs) {$p_{js}=3R_sI_s^2$};
|
||||
|
||||
\sankeyadvance{Pa2}{60pt}
|
||||
\sankeyfork{Pa2}{4/Ptr,1/Pfs}
|
||||
\sankeyturn{Pfs}{-90}
|
||||
\sankeyadvance{Pfs}{30pt}
|
||||
\sankeynodeend{1}{-90}{Pfs}{Pfs}
|
||||
\node[below=1em] at (Pfs) {$p_{fs}$};
|
||||
\sankeyadvance{Ptr}{60pt}
|
||||
\sankeynodeend{4}{0}{Ptr}{Ptr}
|
||||
\node[left] at (Ptr) {$P_{tr}=C_{em}\omega_s$};
|
||||
|
||||
\sankeyadvance{Ptr}{30pt}
|
||||
\sankeyfork{Ptr}{3/Pr,1/Pjr}
|
||||
\sankeyturn{Pjr}{-90}
|
||||
\sankeyadvance{Pjr}{30pt}
|
||||
\sankeynodeend{1}{-90}{Pjr}{Pjr}
|
||||
\node[below=1em] at (Pjr) {$p_{jr}=gP_{tr}$};
|
||||
\sankeyadvance{Pr}{70pt}
|
||||
\sankeynodeend{3}{0}{Pr}{Pr}
|
||||
\node[left] at (Pr) {$P_r=C_{em}p\Omega$};
|
||||
\sankeyadvance{Pr}{30pt}
|
||||
\sankeyfork{Pr}{2/Pu,1/Pmec}
|
||||
\sankeyturn{Pmec}{-90}
|
||||
\sankeyadvance{Pmec}{30pt}
|
||||
\sankeynodeend{1}{-90}{Pmec}{Pmec}
|
||||
\node[below=1em] at (Pmec) {$p_{mec}$};
|
||||
\sankeyadvance{Pu}{60pt}
|
||||
\sankeynodeend{2}{0}{Pu}{Pu}
|
||||
\node[right=1em] at (Pu) {$P_{u}$};
|
||||
\draw [
|
||||
very thick,
|
||||
decoration={
|
||||
brace,
|
||||
mirror,
|
||||
raise=0.5cm
|
||||
},
|
||||
decorate
|
||||
] (-20,0) -- ++ (180,0) node[midway, below=1.5em]{Stator};
|
||||
\draw [
|
||||
very thick,
|
||||
decoration={
|
||||
brace,
|
||||
mirror,
|
||||
raise=0.5cm
|
||||
},
|
||||
decorate
|
||||
] (170,0) -- ++ (190,0) node[midway, below=1.5em]{Rotor};
|
||||
|
||||
|
||||
|
||||
\end{sankeydiagram}
|
||||
\end{tikzpicture}
|
||||
\caption{Bilan de puissance}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\begin{exemple}
|
||||
Pour une machine asynchrone , 400V/690V ,1.5kW ,1425 tr/min :
|
||||
\begin{enumerate}
|
||||
|
@ -494,7 +582,7 @@ P_e = 3 \frac{R_r'}{g}I_r^2 = C_e \Omega
|
|||
On en déduit alors le couple électromagnétique. \emph{en négligeant la resistance du stator}:
|
||||
\begin{align*}
|
||||
C_{em} &= 3 p \frac{V_s^2}{\omega_s} \frac{\frac{R_r'}{g}}{\left(\frac{R_r'}{g}\right)^2+(l_{fuites}\omega_s)^2}\\
|
||||
&= 3 p \frac{V_s^2}{\omega_s} \frac{1}{\left(\frac{g(l_f\omega_s)^2}{R_r'}\right) + \frac{R_r'}{g}}\\
|
||||
&= 3 p \frac{V_s^2}{\omega_s} \frac{1}{\left(\frac{g(l_f\omega_s)^2}{R_r'}\right) + \frac{R_r'}{g(l_f\omega_s)^2}}\\
|
||||
&= \frac{3p}{l_f}\frac{V_s^2}{\omega_s^2}\frac{1}{\left(\frac{g(l_f\omega_s)^2}{R_r'}\right)+\left(\frac{R_r'}{g(l_f\omega_s)^2}\right)}\\
|
||||
\Aboxed{&= 2C_{max}\frac{1}{\left(\frac{g}{g_{max}}\right)+\left(\frac{g_{max}}{g}\right)}}
|
||||
\end{align*}
|
||||
|
@ -536,7 +624,7 @@ Avec la relation glissement vitesse on a:
|
|||
\includegraphics[width=0.7\textwidth]{Domaines_fonctionnement_MAs.png}
|
||||
\caption{Mode de fonctionnement de la MAS}
|
||||
\end{figure}
|
||||
|
||||
---
|
||||
|
||||
\subsection{Alimentation par un onduleur}
|
||||
\emph{merci wikipédia}
|
||||
|
@ -556,7 +644,7 @@ Pour cela, la machine asynchrone est alimentée par un onduleur délivrant une t
|
|||
|
||||
On reprend l'équation générale du couple :
|
||||
|
||||
:\[ T_{em}= \frac{3 p}{\mathcal{N}_r} \cdot \frac{V_S^2}{ \omega_S^2} \cdot \frac{1}{\left(\frac{g \mathcal{N}_r \omega_S}{R_r^*}\right)+ \left(\frac{R_r^* }{g \mathcal{N}_r \omega_S }\right)} \,\]
|
||||
:\[ C_{em}= \frac{3 p}{\mathcal{N}_r} \cdot \frac{V_S^2}{ \omega_S^2} \cdot \frac{1}{\left(\frac{g \mathcal{N}_r \omega_S}{R_r^*}\right)+ \left(\frac{R_r^* }{g \mathcal{N}_r \omega_S }\right)} \,\]
|
||||
|
||||
On note $ C_{max} $le couple maximal.
|
||||
|
||||
|
@ -572,11 +660,11 @@ On note $ \Phi_s$ la valeur efficace du flux nominal.
|
|||
|
||||
Si on garde le rapport $\frac{V_S}{ \omega_S}$ constant, il est donc possible de déplacer la vitesse à laquelle $ C_{max}$ est disponible. L'expression du couple devient :
|
||||
|
||||
\[T_{em}= \frac{2 C_{max}}{\left(\frac{g \mathcal{N}_r \omega_S}{R_r^*}\right)+ \left(\frac{R_r^* }{g \mathcal{N}_r \omega_S }\right)}\]
|
||||
\[C_{em}= \frac{2 C_{max}}{\left(\frac{g \mathcal{N}_r \omega_S}{R_r^*}\right)+ \left(\frac{R_r^* }{g \mathcal{N}_r \omega_S }\right)}\]
|
||||
|
||||
Après un \emph{développement limité} au premier ordre de $T_{em}$ lorsque $g$ tend vers 0, on obtient :
|
||||
Après un \emph{développement limité} au premier ordre de $C_{em}$ lorsque $g$ tend vers 0, on obtient :
|
||||
|
||||
\[T_{em}= Cte \cdot g \cdot \omega_S = Cte \cdot (\omega_S - \omega) = Cte \cdot (n_S - n) \,\]
|
||||
\[C_{em}= Cte \cdot g \cdot \omega_S = Cte \cdot (\omega_S - \omega) = Cte \cdot (n_S - n) \,\]
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
\documentclass{../../cours}
|
||||
\documentclass[openany]{../../cours}
|
||||
\usepackage{../../raccourcis}
|
||||
|
||||
% Mise en page
|
||||
|
@ -7,6 +7,7 @@
|
|||
\teacher{Anthony Juton \& Olivier Villain \& Emmanuel Hoang}
|
||||
\module{414\\ Production d'électricité\\à partir d'énergie renouvelables}
|
||||
\renewcommand{\vec}{\overrightarrow}
|
||||
\input{sankey.tex}
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
@ -20,7 +21,7 @@
|
|||
\subfile{chap3.tex}
|
||||
\chapter{Physique de la conversion électrovoltaïque}\label{chap:photov}
|
||||
\subfile{chap6.tex}
|
||||
\chapter{Électronique de puissance pour les parcs éoliens connectés au réseau}
|
||||
%\chapter{Électronique de puissance pour les parcs éoliens connectés au réseau}
|
||||
|
||||
|
||||
|
||||
|
|
252
414-Energie_Renouvelable/Cours/sankey.tex
Normal file
252
414-Energie_Renouvelable/Cours/sankey.tex
Normal file
|
@ -0,0 +1,252 @@
|
|||
|
||||
\usetikzlibrary{calc}
|
||||
\usepackage{etoolbox}
|
||||
|
||||
\pgfdeclarelayer{background}
|
||||
\pgfdeclarelayer{foreground}
|
||||
\pgfdeclarelayer{sankeydebug}
|
||||
\pgfsetlayers{background,main,foreground,sankeydebug}
|
||||
|
||||
\newif\ifsankeydebug
|
||||
|
||||
\newenvironment{sankeydiagram}[1][]{
|
||||
|
||||
\def\sankeyflow##1##2{% sn, en
|
||||
\path[sankey fill]
|
||||
let
|
||||
\p1=(##1.north east),\p2=(##1.south east),
|
||||
\n1={atan2(\y1-\y2,\x1-\x2)-90},
|
||||
\p3=(##2.north west),\p4=(##2.south west),
|
||||
\n2={atan2(\y3-\y4,\x3-\x4)+90}
|
||||
in
|
||||
(\p1) to[out=\n1,in=\n2] (\p3) --
|
||||
(\p4) to[in=\n1,out=\n2] (\p2) -- cycle;
|
||||
\draw[sankey draw]
|
||||
let
|
||||
\p1=(##1.north east),\p2=(##1.south east),
|
||||
\n1={atan2(\y1-\y2,\x1-\x2)-90},
|
||||
\p3=(##2.north west),\p4=(##2.south west),
|
||||
\n2={atan2(\y3-\y4,\x3-\x4)+90}
|
||||
in
|
||||
(\p1) to[out=\n1,in=\n2] (\p3)
|
||||
(\p4) to[in=\n1,out=\n2] (\p2);
|
||||
}
|
||||
|
||||
|
||||
\tikzset{
|
||||
sankey tot length/.store in=\sankeytotallen,
|
||||
sankey tot quantity/.store in=\sankeytotalqty,
|
||||
sankey min radius/.store in=\sankeyminradius,
|
||||
sankey arrow length/.store in=\sankeyarrowlen,
|
||||
sankey debug/.is if=sankeydebug,
|
||||
sankey debug=false,
|
||||
sankey flow/.style={
|
||||
to path={
|
||||
\pgfextra{
|
||||
\pgfinterruptpath
|
||||
\edef\sankeystart{\tikztostart}
|
||||
\edef\sankeytarget{\tikztotarget}
|
||||
\sankeyflow{\sankeystart}{\sankeytarget}
|
||||
\endpgfinterruptpath
|
||||
}
|
||||
},
|
||||
},
|
||||
sankey node/.style={
|
||||
inner sep=0,minimum height={sankeyqtytolen(##1)},
|
||||
minimum width=0,draw=none,line width=0pt,
|
||||
},
|
||||
% sankey angle
|
||||
sankey angle/.store in=\sankeyangle,
|
||||
% sankey default styles
|
||||
sankey fill/.style={line width=0pt,fill,white},
|
||||
sankey draw/.style={draw=black,line width=.4pt},
|
||||
}
|
||||
|
||||
\newcommand\sankeynode[4]{%prop,orientation,name,pos
|
||||
\node[sankey node=##1,rotate=##2] (##3) at (##4) {};
|
||||
\ifsankeydebug
|
||||
\begin{pgfonlayer}{sankeydebug}
|
||||
\draw[red,|-|] (##3.north west) -- (##3.south west);
|
||||
\pgfmathsetmacro{\len}{sankeyqtytolen(##1)/3}
|
||||
\draw[red] (##3.west)
|
||||
-- ($(##3.west)!\len pt!90:(##3.south west)$)
|
||||
node[font=\tiny,text=black] {##3};
|
||||
\end{pgfonlayer}
|
||||
\fi
|
||||
}
|
||||
|
||||
\newcommand\sankeynodestart[4]{%prop,orientation,name,pos
|
||||
\sankeynode{##1}{##2}{##3}{##4}
|
||||
\begin{scope}[shift={(##3)},rotate=##2]
|
||||
\path[sankey fill]
|
||||
(##3.north west) -- ++(-\sankeyarrowlen,0)
|
||||
-- ([xshift=-\sankeyarrowlen/6]##3.west)
|
||||
-- ([xshift=-\sankeyarrowlen]##3.south west)
|
||||
-- (##3.south west) -- cycle;
|
||||
\path[sankey draw]
|
||||
(##3.north west) -- ++(-\sankeyarrowlen,0)
|
||||
-- ([xshift=-\sankeyarrowlen/6]##3.west)
|
||||
-- ([xshift=-\sankeyarrowlen]##3.south west)
|
||||
-- (##3.south west);
|
||||
\end{scope}
|
||||
}
|
||||
|
||||
\newcommand\sankeynodeend[4]{%prop,orientation,name,pos
|
||||
\sankeynode{##1}{##2}{##3}{##4}
|
||||
\begin{scope}[shift={(##3)},rotate=##2]
|
||||
\path[sankey fill]
|
||||
(##3.north east)
|
||||
-- ([xshift=\sankeyarrowlen]##3.east)
|
||||
-- (##3.south west) -- cycle;
|
||||
\path[sankey draw]
|
||||
(##3.north east)
|
||||
-- ([xshift=\sankeyarrowlen]##3.east)
|
||||
-- (##3.south west);
|
||||
\end{scope}
|
||||
}
|
||||
|
||||
\newcommand\sankeyadvance[3][]{%newname,name,distance
|
||||
\edef\name{##2}
|
||||
\ifstrempty{##1}{
|
||||
\def\newname{##2}
|
||||
\edef\name{##2-old}
|
||||
\path [late options={name=##2,alias=\name}];
|
||||
}{
|
||||
\def\newname{##1}
|
||||
}
|
||||
\path
|
||||
let
|
||||
% sankey node angle
|
||||
\p1=(##2.north east),
|
||||
\p2=(##2.south east),
|
||||
\n1={atan2(\y1-\y2,\x1-\x2)-90},
|
||||
% sankey prop
|
||||
\p3=($(\p1)-(\p2)$),
|
||||
\n2={sankeylentoqty(veclen(\x3,\y3))},
|
||||
% next position
|
||||
\p4=($(##2.east)!##3!-90:(##2.north east)$)
|
||||
in
|
||||
\pgfextra{
|
||||
\pgfmathsetmacro{\prop}{\n2}
|
||||
\pgfinterruptpath
|
||||
\sankeynode{\prop}{\n1}{\newname}{\p4}
|
||||
\path (\name) to[sankey flow] (\newname);
|
||||
\endpgfinterruptpath
|
||||
};
|
||||
}
|
||||
|
||||
\newcommand\sankeyturn[3][]{%newname,name,angle
|
||||
\edef\name{##2}
|
||||
\ifstrempty{##1}{
|
||||
\def\newname{##2}
|
||||
\edef\name{##2-old}
|
||||
\path [late options={name=##2,alias=\name}];
|
||||
}{
|
||||
\def\newname{##1}
|
||||
}
|
||||
\ifnumgreater{##3}{0}{
|
||||
\typeout{turn acw: ##3}
|
||||
\path
|
||||
let
|
||||
% sankey node angle
|
||||
\p1=(##2.north east),
|
||||
\p2=(##2.south east),
|
||||
\p3=($(\p1)!-\sankeyminradius!(\p2)$),
|
||||
\n1={atan2(\y1-\y2,\x1-\x2)-90},
|
||||
% sankey prop
|
||||
\p4=($(\p1)-(\p2)$),
|
||||
\n2={sankeylentoqty(veclen(\x4,\y4))},
|
||||
\p5=(##2.east),
|
||||
\p6=($(\p3)!1!##3:(\p5)$)
|
||||
in
|
||||
\pgfextra{
|
||||
\pgfmathsetmacro{\prop}{\n2}
|
||||
\pgfinterruptpath
|
||||
% \fill[red] (\p3) circle (2pt);
|
||||
% \fill[blue](\p6) circle (2pt);
|
||||
\sankeynode{\prop}{\n1+##3}{\newname}{\p6}
|
||||
\path (\name) to[sankey flow] (\newname);
|
||||
\endpgfinterruptpath
|
||||
};
|
||||
}{
|
||||
\typeout{turn acw: ##3}
|
||||
\path
|
||||
let
|
||||
% sankey node angle
|
||||
\p1=(##2.south east),
|
||||
\p2=(##2.north east),
|
||||
\p3=($(\p1)!-\sankeyminradius!(\p2)$),
|
||||
\n1={atan2(\y1-\y2,\x1-\x2)+90},
|
||||
% sankey prop
|
||||
\p4=($(\p1)-(\p2)$),
|
||||
\n2={sankeylentoqty(veclen(\x4,\y4))},
|
||||
\p5=(##2.east),
|
||||
\p6=($(\p3)!1!##3:(\p5)$)
|
||||
in
|
||||
\pgfextra{
|
||||
\pgfmathsetmacro{\prop}{\n2}
|
||||
\pgfinterruptpath
|
||||
% \fill[red] (\p3) circle (2pt);
|
||||
% \fill[blue](\p6) circle (2pt);
|
||||
\sankeynode{\prop}{\n1+##3}{\newname}{\p6}
|
||||
\path (\name) to[sankey flow] (\newname);
|
||||
\endpgfinterruptpath
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
\newcommand\sankeyfork[2]{%name,list of forks
|
||||
\def\name{##1}
|
||||
\def\listofforks{##2}
|
||||
\xdef\sankeytot{0}
|
||||
\path
|
||||
let
|
||||
% sankey node angle
|
||||
\p1=(\name.north east),
|
||||
\p2=(\name.south east),
|
||||
\n1={atan2(\y1-\y2,\x1-\x2)-90},
|
||||
% sankey prop
|
||||
\p4=($(\p1)-(\p2)$),
|
||||
\n2={sankeylentoqty(veclen(\x4,\y4))}
|
||||
in
|
||||
\pgfextra{
|
||||
\pgfmathsetmacro{\iprop}{\n2}
|
||||
}
|
||||
\foreach \prop/\name[count=\c] in \listofforks {
|
||||
let
|
||||
\p{start \name}=($(\p1)!\sankeytot/\iprop!(\p2)$),
|
||||
\n{nexttot}={\sankeytot+\prop},
|
||||
\p{end \name}=($(\p1)!\n{nexttot}/\iprop!(\p2)$),
|
||||
\p{mid \name}=($(\p{start \name})!.5!(\p{end \name})$)
|
||||
in
|
||||
\pgfextra{
|
||||
\xdef\sankeytot{\n{nexttot}}
|
||||
\pgfinterruptpath
|
||||
\sankeynode{\prop}{\n1}{\name}{\p{mid \name}}
|
||||
\endpgfinterruptpath
|
||||
}
|
||||
}
|
||||
\pgfextra{
|
||||
\pgfmathsetmacro{\diff}{abs(\iprop-\sankeytot)}
|
||||
\pgfmathtruncatemacro{\finish}{\diff<0.01?1:0}
|
||||
\ifnumequal{\finish}{1}{}{
|
||||
\message{*** Warning: bad sankey fork (maybe)...}
|
||||
\message{\iprop-\sankeytot}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
\tikzset{
|
||||
% default values,
|
||||
declare function={
|
||||
sankeyqtytolen(\qty)=\qty/\sankeytotalqty*\sankeytotallen;
|
||||
sankeylentoqty(\len)=\len/\sankeytotallen*\sankeytotalqty;
|
||||
},
|
||||
sankey tot length=100pt,
|
||||
sankey tot quantity=100,
|
||||
sankey min radius=30pt,%
|
||||
sankey arrow length=10pt,%
|
||||
% user values
|
||||
#1}
|
||||
}{
|
||||
}
|
Loading…
Reference in a new issue