cours-m1-eea/455-Codage_Sources/Cours/chap3.tex

175 lines
6.3 KiB
TeX
Raw Normal View History

2019-01-15 15:56:28 +01:00
\documentclass[main.tex]{subfiles}
\begin{document}
L'idée du codage prédictif est d'utiliser les corrélations (ressemblances) temporelles ou spatiales du signal à compresser.
\section{Rappels sur la corrélation}
On considère une source $X$ qui émet un signal constitué de $x_1,\dots,x_N$ considérés comme une réalisation d'une suite de variables aléatoires $X_1,\dots,X_N$ de moyenne nulle.
%\img{0.5}{3/1/1}
La fonction de corrélation permet de mesurer la ressemblance entre échantillons voisins :
\[ \gamma_x(n,k) = E(X_nX_{n+k}) \]
Pour un signal stationnaire (dont les caractéristiques statistiques n'évoluent pas au cours du temps :
\[ \gamma_x(n,k) = \gamma_x(k) = E(X_nX_{n+k}), \forall n\]
En pratique, on estime la corrélation à partir des échantillons du signal à compresser.
Estimateur biaisé :
\[ \hat{\gamma_x}(k) = \frac{1}{N}\sum_{i=1}^{N-k} x_i x_{i+k}, \forall k \geq 0 \]
\[ \gamma_x(k) = \frac{1}{N} \sum_{i=-k}^N x_i x_{i+k}, \forall k \leq 0 \]
Avec Matlab, on l'obtient avec :
\begin{lstlisting}
[c,k] = xcorr(x,'biased');
plot(k,c); grid;
\end{lstlisting}
$\gamma_x(k)$ est maximale en 0 et est égale à l'énergie $\sigma^2$ du signal.
\newpage
\section{Prédicteur optimal à 1 pas}
On souhaite prédire la valeur de $X_n$ à partir de la valeur de $X_{n-1}$.
Le prédicteur sera linéaire :
\[\hat{X_n} = a_1 X_{n-1} \]
On cherche la valeur de $a_1$ qui minimise $e = E((X_n-\hat{X_n})^2)$
\begin{align*}
e & = E((X_n-a_1X_{n-1})^2) \\
& = E(X_n^2 -a_1^2 X_{n-1}^2 - 2a_1X_{n-1}X_n) \\
& = E(X_n^2) + a_1^2E(X_{n-1}^2) - 2a_1E(X_{n-1}X_n)\\
e & = \gamma_x(0) + a_1^2 \gamma_x(0) - 2a_1 \gamma_x(1) \text{ par stationnarité}\\
\derivp[e]{a_1}|_{\hat{a_1}} = 0 & \Leftrightarrow 2 \hat{a_1} \gamma_x(0) - 2 \gamma_x(1) = 0\\
& \Rightarrow \hat{a_1} = \frac{\gamma_x(1)}{\gamma_x(0)}
\end{align*}
\begin{rem}
Lorsque le signal sera très corrélé, $\gamma_x(1) \approx \gamma_x(0)$ et $\hat{a_1} \approx 1$. Pour un signal peu corrélé, $\gamma_x(1) \approx 0$ et $\hat{a_1} \approx 0$.
\end{rem}
Pour la valeur de $\hat{a_1}$ obtenue, on a
\begin{align*}
\hat{e} & = \gamma_x(0) + (\frac{\gamma_x(1)}{\gamma_x(0)})^2 \gamma_x(0) - 2 \frac{\gamma_x(1)^2}{\gamma_x(0)} \\
& = \frac{\gamma_x(0)^2-\gamma_x(1)^2}{\gamma_x(0)} \leq \gamma_x(0)
\end{align*}
$\hat{e}$ est l'énergie de la partie qui n'a pas pu être prédite de $x_1,\dots,x_N$.\\
Le résidu de prédiction a une variance plus faible. Si on le quantifie, il permettra de reconstituer le signal initial avec une distorsion plus faible.
\newpage
\section{Prédiction à $p$ pas}
On cherche à prédire $X_n$ à partir des échantillons précédents $X_{n-1},\dots,X_{n-p}$.
\newcommand{\ap}{\underline{a}}
\newcommand{\Xn}{\underline{X_n}}
\newcommand{\cp}{\underline{c}}
\newcommand{\Rp}{\underline{\underline{R}}}
\[ \hat{X_n} = a_1 X_{n-1} + \dots + a_pX_{n-p} = \ap^T \Xn \quad \text{ avec} \ap^T=(a_1\dots a_p) \text{ et } \Xn^T = (X_{n-1} \dots X_{n-p})\]
On cherche $\ap$ minimisant
\begin{align*}
e & = E((X_n-\hat{X_n})^2) \\
& = E((X_n-\ap^T\Xn)^2) \\
& = E(X_n^2) + \ap^T E(\Xn\Xn^T) \ap -2\ap^t E(X_n\Xn) \\
\text{Or, } E(X_n\Xn)& =(E(X_nX_{n-1}),\dots,E(X_nX_{n-p}))^T \\
& = (\gamma_x(1), \gamma_x(2),\dots,\gamma_x(p))^T = \cp \\
\text{De plus, } E(\Xn\Xn^T) & =
\left[
\begin{array}{cccc}
E(X_{n-1}X_{n-1}) &E(X_{n-1}X_{n-2}) & \dots & E(X_{n-1}X_{n-p}) \\
E(X_{n-2}X_{n-1}) & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
E(X_{n-p}X_{n-1}) & \dots & \dots & E(X_{n-p}X_{n-p})
\end{array}
\right] \\
& =
\left[
\begin{array}{cccc}
\gamma_x(0) & \gamma_x(1) & \dots & \gamma_x(p-1) \\
\gamma_x(1) & \gamma_x(0) & & \vdots \\
\vdots & & \ddots & \gamma_x(1) \\
\gamma_x(p-1) & \dots & \gamma_x(1) & \gamma_x(0)
\end{array}
\right] = \Rp\\
\text{ donc } e & = \gamma_x(0) + \ap^T \Rp \ap - 2 \ap^T \cp
\end{align*}
\[ \left.\derivp[e]{\ap}\right|_{\hat{\ap}} = 0 \quad \Leftrightarrow \quad \underline{0} + 2 \Rp\hat{\ap} - 2\cp = 0 \quad \Rightarrow \quad \hat{\ap} = \Rp^{-1} \cp \]
Pour cette valeur de $\hat{\ap}$, on a
\begin{align*}
\hat{e} & = \gamma_x(0) + \cp^T \Rp^{-1} \Rp \Rp^{-1} \cp -2\cp^T\Rp^{-1}\cp \\
& = \gamma_x(0) - \cp^T \Rp^{-1} \cp \leq \gamma_x(0)
\end{align*}
Ce prédicteur à $p$ pas est en général plus efficace que le prédicteur à 1 pas mais il est plus complexe.
\newpage
\section{Mise en oeuvre du prédicteur}
On considère le codeur prédictif de structure suivante à l'émetteur :
%\img{0.4}{3/2/1}
et de structure suivante au décodeur de récepteur:
%\img{0.4}{3/2/2}
On met en œuvre un dispositif de prédiction exploitant les échantillons disponibles au récepteur, de manière à éviter l'accumulation des erreurs de quantification. Il n'y a pas d'accumulation d'erreur de prédiction car le prédicteur est le même à l'émetteur et au récepteur.\\
Pour le réglage du prédicteur, on distingue plusieurs méthodes :
\begin{enumerate}\setlength{\itemsep}{5mm}
\item On calcule $\hat{\gamma_x}$ sur tout le signal et on transmet $\underline{\hat{a}}_{opt}$.
Avantage :
\begin{itemize}
\item sa simplicité de mise ne œuvre
\end{itemize}
Inconvénients :
\begin{itemize}
\item il ne permet pas de tenir compte des non stationnarités
\item on règle le prédicteur à partir de $x_n$ et non de $\hat{x_n}$.
\end{itemize}
\item On découpe le signal en blocs et on recalcule le prédicteur sur chaque bloc.
Avantages :
\begin{itemize}
\item sa simplicité de mise ne œuvre
\item permet de s'adapter aux non-stationnarités
\end{itemize}
Inconvénient :
\begin{itemize}
\item débit nécessaire à la transmission des $\underline{\hat{a}}_{opt}$.
\end{itemize}
\item Mettre en place un prédicteur adaptatif. On travaille sur une fenêtre glissante contenant les N échantillons décalés : $\underline{\hat{X}}_n = (\hat{x}_{n-1}, ..., \hat{x}_{n-N})^T$.
On calcule $\underline{\hat{a}}_{opt}$ à partir de $\underline{\hat{X}}_n$ (au codeur et au décodeur). On applique $\underline{\hat{a}}_{opt}$ pour coder et décoder $x_n$ en $\hat{x}_n$. À l'itération suivante, on calcule $\underline{\hat{a}}_{opt}$ à partir de $\underline{\hat{X}}_{n+1} = (\hat{x}_{n}, ..., \hat{x}_{n-N+1})^T$.
Avantages :
\begin{itemize}
\item Il est très adaptatif.
\item On ne transmet plus $\underline{\hat{a}}_{opt}$
\end{itemize}
Inconvénient :
\begin{itemize}
\item et bien... c'est pas simple.
\end{itemize}
\end{enumerate}
\end{document}