62 lines
1.5 KiB
Python
62 lines
1.5 KiB
Python
|
#!/usr/bin/env python3
|
||
|
# -*- coding: utf-8 -*-
|
||
|
"""
|
||
|
Created on Sun May 5 13:59:37 2019
|
||
|
|
||
|
@author: pac
|
||
|
Algorithme de Linde-Buzo-Gray, version 2D
|
||
|
"""
|
||
|
|
||
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
from scipy.spatial import Voronoi, voronoi_plot_2d
|
||
|
|
||
|
mean= [0,0]
|
||
|
cov = [[1,0],[0,1]]
|
||
|
M = 20;
|
||
|
N =100; #point par cluster
|
||
|
K = N*M
|
||
|
means = np.random.rand(M,2)*10
|
||
|
X = np.zeros((K,2))
|
||
|
plt.figure()
|
||
|
|
||
|
for m in range(M):
|
||
|
xi = np.random.multivariate_normal(means[m,:],cov,N)
|
||
|
X[m*N:(m+1)*N] = xi
|
||
|
plt.plot(xi[:,0],xi[:,1],'+')
|
||
|
plt.plot(means[:,0],means[:,1],'ob')
|
||
|
plt.show()
|
||
|
|
||
|
# X = np.random.multivariate_normal(mean,cov,K)
|
||
|
Y0 = np.random.multivariate_normal(mean, cov,M)
|
||
|
Y0 = means;
|
||
|
def LBG(X,Y0,eps=1e-5,maxiter=1000):
|
||
|
Y = Y0.copy()
|
||
|
old_dist = np.inf
|
||
|
cluster_index = np.zeros(K,dtype=int)
|
||
|
for l in range(maxiter):
|
||
|
dist= 0;
|
||
|
for k in range(len(X)):
|
||
|
quant_min =np.inf
|
||
|
for j in range(len(Y)):
|
||
|
if np.linalg.norm(X[k]-Y[j]) <np.linalg.norm(X[k]-quant_min):
|
||
|
quant_min = Y[j]
|
||
|
cluster_index[k] = j
|
||
|
dist += sum((X[k]-quant_min)**2)
|
||
|
for j in range(len(Y)):
|
||
|
Y[j,:] = np.mean(X[cluster_index==j],axis=0)
|
||
|
if dist-old_dist < eps:
|
||
|
break
|
||
|
else:
|
||
|
old_dist = dist
|
||
|
return Y
|
||
|
Y = LBG(X,Y0)
|
||
|
vor = Voronoi(Y)
|
||
|
voronoi_plot_2d(vor,show_vertices=False)
|
||
|
print(Y)
|
||
|
plt.plot(X[:,0],X[:,1],'+')
|
||
|
plt.plot(Y[:,0],Y[:,1],'o')
|
||
|
#plt.plot(Y0[:,0],Y0[:,1],'ob')
|
||
|
plt.show()
|