74 lines
1.3 KiB
TeX
74 lines
1.3 KiB
TeX
|
\documentclass[main.tex]{subfiles}
|
||
|
\begin{document}
|
||
|
\section{Intro}
|
||
|
\section{Modèle de commande}
|
||
|
|
||
|
\section{Couplage réseau}
|
||
|
|
||
|
\[
|
||
|
\deriv[(i)]{t} = -[L]^{-1}[R](i) - [L]^{-1}\left\{(v)-p\Omega \deriv[(\Phi_0)]{t}\right\}
|
||
|
\]
|
||
|
On a donc égalité des amplitudes et des phases pour la vitesse:
|
||
|
\[
|
||
|
\boxed{(v) = p\Omega \deriv[(\Phi_0)]{t}}
|
||
|
\]
|
||
|
|
||
|
|
||
|
\section{Schéma équivalent Behn-Eschenburg}
|
||
|
\paragraph{Hypothèse}:
|
||
|
\begin{itemize}
|
||
|
\item RPS sinus
|
||
|
\item MS non saturé , pole lisse , éuilibré
|
||
|
\end{itemize}
|
||
|
\begin{center}
|
||
|
|
||
|
\begin{tabular}[c]{rl}
|
||
|
\begin{minipage}[c]{0.3\linewidth}
|
||
|
\begin{circuitikz}
|
||
|
\draw (0,0) to[V] ++(0,2) to[L] ++(2,0) to[R] ++(2,0) to[open,v<=$V$] ++(0,-2) -- (0,0);
|
||
|
\end{circuitikz}
|
||
|
\end{minipage}
|
||
|
|
||
|
&
|
||
|
\begin{minipage}[h]{0.5\linewidth}
|
||
|
|
||
|
\[
|
||
|
\underline{E} = (j\mathcal{L}\omega+R) \underline{I} + \underline{V}
|
||
|
\]
|
||
|
\end{minipage}
|
||
|
|
||
|
\end{tabular}
|
||
|
\end{center}
|
||
|
\subsection{Diagramme de Fresnel}
|
||
|
On considère l'origine de phase sur $V$ et on se place en alternateur ie $\delta = Arg(E)-Arg(V) > 0$
|
||
|
|
||
|
\subsubsection{Surexcitation}
|
||
|
|
||
|
[schema fresnel]
|
||
|
\begin{prop}
|
||
|
$
|
||
|
\|E\| > \|V\|
|
||
|
$ on a alors :
|
||
|
\[
|
||
|
\begin{cases}
|
||
|
P > 0 \\
|
||
|
Q >0 \\
|
||
|
\end{cases}
|
||
|
\]
|
||
|
\end{prop}
|
||
|
\subsubsection{Sousexcitation}
|
||
|
[schema fresnel]
|
||
|
\begin{prop}
|
||
|
$
|
||
|
\|E\| < \|V\|
|
||
|
$ on a alors :
|
||
|
\[
|
||
|
\begin{cases}
|
||
|
P > 0 \\
|
||
|
Q >0 \\
|
||
|
\end{cases}
|
||
|
\]
|
||
|
\end{prop}
|
||
|
|
||
|
\end{document}
|