Space_Invaders/Core/Src/main.c
2021-07-17 19:30:16 +02:00

1926 lines
58 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under Ultimate Liberty license
* SLA0044, the "License"; You may not use this file except in compliance with
* the License. You may obtain a copy of the License at:
* www.st.com/SLA0044
*
*
* Bonjour ! J'aime beaucoup l'informatique industrielle
*
* Licorne magique
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
#include "lwip.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stm32746g_discovery_lcd.h"
#include "stm32746g_discovery_ts.h"
#include "stdio.h"
#include "semphr.h"
#include "ennemi_v.h"
#include "ennemi_r.h"
#include "ennemi_b.h"
#include "vaisseau.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc3;
CRC_HandleTypeDef hcrc;
DAC_HandleTypeDef hdac;
DMA2D_HandleTypeDef hdma2d;
LTDC_HandleTypeDef hltdc;
RNG_HandleTypeDef hrng;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim5;
TIM_HandleTypeDef htim8;
SDRAM_HandleTypeDef hsdram1;
osThreadId GameMasterHandle;
osThreadId Joueur_1Handle;
osThreadId Block_EnemieHandle;
osThreadId ProjectileHandle;
osThreadId HUDHandle;
osThreadId chargeurHandle;
osMessageQId Queue_FHandle;
osMessageQId Queue_NHandle;
osMessageQId Queue_JHandle;
osMessageQId Queue_EHandle;
osMutexId MutexLCDHandle;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC3_Init(void);
static void MX_LTDC_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM3_Init(void);
static void MX_TIM5_Init(void);
static void MX_TIM8_Init(void);
static void MX_DAC_Init(void);
static void MX_FMC_Init(void);
static void MX_DMA2D_Init(void);
static void MX_CRC_Init(void);
static void MX_RNG_Init(void);
static void MX_ADC1_Init(void);
void f_GameMaster(void const * argument);
void f_Joueur_1(void const * argument);
void f_block_enemie(void const * argument);
void f_projectile(void const * argument);
void f_HUD(void const * argument);
void f_chargeur(void const * argument);
/* USER CODE BEGIN PFP */
uint8_t proba_bernoulli(uint32_t numerateur, uint32_t denominateur);
uint8_t proba_tirrage(uint8_t nombre_valeur);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
enum Camps_missile
{
MISSILE_AMI,
MISSILE_ENNEMI
};
enum End_type
{
END_TABLEAU_VIDE,
END_MORT_JOUEUR
};
enum Sens_ennemie
{
DROITE,
GAUCHE
};
const uint16_t joueur_width = 20;
const uint16_t joueur_height = 20;
const uint16_t monstre_width = 25;
const uint16_t monstre_height = 15;
struct Missile
{
int16_t x;
int16_t y;
int8_t dx;
int8_t dy;
enum Camps_missile equipe;
uint8_t damage;
uint8_t valide;
};
struct Joueur
{
// uint32_t et pas 16 car fonction d'affichage bitmap (j'en sais pas plus)
int32_t x; // Position de l'angle superieur gauche
int32_t y; // Position de l'angle superieur gauche
int8_t dx; // Vitesse du joueur
int8_t dy; // Vitesse du joueur
int8_t health; // Vie du joueur
struct Missile missile; // Missile lancé par le joueur
};
struct Monster
{
int32_t x;
int32_t y;
int16_t health;
// uint8_t type; // TODO d'autre ennemies ?
struct Missile missile;
uint8_t* pbmp;
};
struct Collision
{
uint8_t idx1;
uint8_t idx2;
uint8_t damage;
};
struct Led
{
GPIO_TypeDef* port;
uint16_t pin;
};
struct Led Leds[] = {
{LED18_GPIO_Port, LED18_Pin},
{LED17_GPIO_Port, LED17_Pin},
{LED16_GPIO_Port, LED16_Pin},
{LED15_GPIO_Port, LED15_Pin},
{LED14_GPIO_Port, LED14_Pin},
{LED13_GPIO_Port, LED13_Pin},
{LED12_GPIO_Port, LED12_Pin},
{LED11_GPIO_Port, LED11_Pin}};
// Définition des paramètres du joueurs
struct Joueur joueur = {200, 200, 1, 1, 5, {0, 0, 0, -1, MISSILE_AMI, 1, 1}};
uint8_t LED = 1;
uint32_t LCD_COLOR_BACKGROUND = LCD_COLOR_BLACK;
// Number of waves of enemies before the game is won.
uint8_t wave = 0;
uint8_t kill = 0;
uint8_t charge = 0;
// Tableau des monstres (8 par ligne, sur 3 ligne)
struct Monster Table_ennemis[8][3];
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
static TS_StateTypeDef TS_State;
ADC_ChannelConfTypeDef sConfig = {0};
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_ADC3_Init();
MX_LTDC_Init();
MX_TIM1_Init();
MX_TIM2_Init();
MX_TIM3_Init();
MX_TIM5_Init();
MX_TIM8_Init();
MX_DAC_Init();
MX_FMC_Init();
MX_DMA2D_Init();
MX_CRC_Init();
MX_RNG_Init();
MX_ADC1_Init();
/* USER CODE BEGIN 2 */
BSP_LCD_Init();
BSP_LCD_LayerDefaultInit(0, LCD_FB_START_ADDRESS);
BSP_LCD_LayerDefaultInit(1,
LCD_FB_START_ADDRESS + BSP_LCD_GetXSize() * BSP_LCD_GetYSize() * 4);
BSP_LCD_DisplayOn();
BSP_LCD_SelectLayer(1);
BSP_LCD_Clear(LCD_COLOR_BLACK);
BSP_LCD_SetFont(&Font12);
BSP_LCD_SetTextColor(LCD_COLOR_BLUE);
BSP_LCD_SetBackColor(LCD_COLOR_BLACK);
BSP_TS_Init(BSP_LCD_GetXSize(), BSP_LCD_GetYSize());
/* USER CODE END 2 */
/* Create the mutex(es) */
/* definition and creation of MutexLCD */
osMutexDef(MutexLCD);
MutexLCDHandle = osMutexCreate(osMutex(MutexLCD));
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
/* USER CODE END RTOS_SEMAPHORES */
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* Create the queue(s) */
/* definition and creation of Queue_F */
osMessageQDef(Queue_F, 8, enum End_type);
Queue_FHandle = osMessageCreate(osMessageQ(Queue_F), NULL);
/* definition and creation of Queue_N */
osMessageQDef(Queue_N, 8, struct Missile);
Queue_NHandle = osMessageCreate(osMessageQ(Queue_N), NULL);
/* definition and creation of Queue_J */
osMessageQDef(Queue_J, 8, uint8_t);
Queue_JHandle = osMessageCreate(osMessageQ(Queue_J), NULL);
/* definition and creation of Queue_E */
osMessageQDef(Queue_E, 8, struct Collision);
Queue_EHandle = osMessageCreate(osMessageQ(Queue_E), NULL);
/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
/* USER CODE END RTOS_QUEUES */
/* Create the thread(s) */
/* definition and creation of GameMaster */
osThreadDef(GameMaster, f_GameMaster, osPriorityHigh, 0, 1024);
GameMasterHandle = osThreadCreate(osThread(GameMaster), NULL);
/* definition and creation of Joueur_1 */
osThreadDef(Joueur_1, f_Joueur_1, osPriorityAboveNormal, 0, 1024);
Joueur_1Handle = osThreadCreate(osThread(Joueur_1), NULL);
/* definition and creation of Block_Enemie */
osThreadDef(Block_Enemie, f_block_enemie, osPriorityLow, 0, 1024);
Block_EnemieHandle = osThreadCreate(osThread(Block_Enemie), NULL);
/* definition and creation of Projectile */
osThreadDef(Projectile, f_projectile, osPriorityNormal, 0, 1024);
ProjectileHandle = osThreadCreate(osThread(Projectile), NULL);
/* definition and creation of HUD */
osThreadDef(HUD, f_HUD, osPriorityBelowNormal, 0, 1024);
HUDHandle = osThreadCreate(osThread(HUD), NULL);
/* definition and creation of chargeur */
osThreadDef(chargeur, f_chargeur, osPriorityBelowNormal, 0, 128);
chargeurHandle = osThreadCreate(osThread(chargeur), NULL);
/* USER CODE BEGIN RTOS_THREADS */
vQueueAddToRegistry(Queue_NHandle, "Queue Missile");
vQueueAddToRegistry(Queue_JHandle, "Queue Joueur");
vQueueAddToRegistry(Queue_EHandle, "Queue Ennemie");
vQueueAddToRegistry(Queue_FHandle, "Queue Fin");
/* USER CODE END RTOS_THREADS */
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* Code de base */
// HAL_GPIO_WritePin(LED13_GPIO_Port, LED13_Pin,
// HAL_GPIO_ReadPin(BP1_GPIO_Port, BP1_Pin));
// HAL_GPIO_WritePin(LED14_GPIO_Port, LED14_Pin,
// HAL_GPIO_ReadPin(BP2_GPIO_Port, BP2_Pin));
// sprintf(text, "BP1 : %d", HAL_GPIO_ReadPin(BP1_GPIO_Port, BP1_Pin));
// BSP_LCD_DisplayStringAtLine(5, (uint8_t *)text);
;
sConfig.Channel = ADC_CHANNEL_7;
HAL_ADC_ConfigChannel(&hadc3, &sConfig);
HAL_ADC_Start(&hadc3);
sConfig.Channel = ADC_CHANNEL_6;
HAL_ADC_ConfigChannel(&hadc3, &sConfig);
HAL_ADC_Start(&hadc3);
sConfig.Channel = ADC_CHANNEL_8;
HAL_ADC_ConfigChannel(&hadc3, &sConfig);
HAL_ADC_Start(&hadc3);
HAL_ADC_Start(&hadc1);
BSP_TS_GetState(&TS_State);
if (TS_State.touchDetected)
{
BSP_LCD_FillCircle(TS_State.touchX[0], TS_State.touchY[0], 4);
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
/** Configure LSE Drive Capability
*/
HAL_PWR_EnableBkUpAccess();
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 400;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Activate the Over-Drive mode
*/
if (HAL_PWREx_EnableOverDrive() != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_6) != HAL_OK)
{
Error_Handler();
}
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_LTDC|RCC_PERIPHCLK_CLK48;
PeriphClkInitStruct.PLLSAI.PLLSAIN = 384;
PeriphClkInitStruct.PLLSAI.PLLSAIR = 5;
PeriphClkInitStruct.PLLSAI.PLLSAIQ = 2;
PeriphClkInitStruct.PLLSAI.PLLSAIP = RCC_PLLSAIP_DIV8;
PeriphClkInitStruct.PLLSAIDivQ = 1;
PeriphClkInitStruct.PLLSAIDivR = RCC_PLLSAIDIVR_8;
PeriphClkInitStruct.Clk48ClockSelection = RCC_CLK48SOURCE_PLLSAIP;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief ADC3 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC3_Init(void)
{
/* USER CODE BEGIN ADC3_Init 0 */
/* USER CODE END ADC3_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC3_Init 1 */
/* USER CODE END ADC3_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc3.Instance = ADC3;
hadc3.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc3.Init.Resolution = ADC_RESOLUTION_12B;
hadc3.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc3.Init.ContinuousConvMode = DISABLE;
hadc3.Init.DiscontinuousConvMode = DISABLE;
hadc3.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc3.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc3.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc3.Init.NbrOfConversion = 1;
hadc3.Init.DMAContinuousRequests = DISABLE;
hadc3.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc3) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_8;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC3_Init 2 */
/* USER CODE END ADC3_Init 2 */
}
/**
* @brief CRC Initialization Function
* @param None
* @retval None
*/
static void MX_CRC_Init(void)
{
/* USER CODE BEGIN CRC_Init 0 */
/* USER CODE END CRC_Init 0 */
/* USER CODE BEGIN CRC_Init 1 */
/* USER CODE END CRC_Init 1 */
hcrc.Instance = CRC;
hcrc.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_ENABLE;
hcrc.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_ENABLE;
hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE;
hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE;
hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
if (HAL_CRC_Init(&hcrc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CRC_Init 2 */
/* USER CODE END CRC_Init 2 */
}
/**
* @brief DAC Initialization Function
* @param None
* @retval None
*/
static void MX_DAC_Init(void)
{
/* USER CODE BEGIN DAC_Init 0 */
/* USER CODE END DAC_Init 0 */
DAC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN DAC_Init 1 */
/* USER CODE END DAC_Init 1 */
/** DAC Initialization
*/
hdac.Instance = DAC;
if (HAL_DAC_Init(&hdac) != HAL_OK)
{
Error_Handler();
}
/** DAC channel OUT1 config
*/
sConfig.DAC_Trigger = DAC_TRIGGER_NONE;
sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
if (HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN DAC_Init 2 */
/* USER CODE END DAC_Init 2 */
}
/**
* @brief DMA2D Initialization Function
* @param None
* @retval None
*/
static void MX_DMA2D_Init(void)
{
/* USER CODE BEGIN DMA2D_Init 0 */
/* USER CODE END DMA2D_Init 0 */
/* USER CODE BEGIN DMA2D_Init 1 */
/* USER CODE END DMA2D_Init 1 */
hdma2d.Instance = DMA2D;
hdma2d.Init.Mode = DMA2D_M2M;
hdma2d.Init.ColorMode = DMA2D_OUTPUT_ARGB8888;
hdma2d.Init.OutputOffset = 0;
hdma2d.LayerCfg[1].InputOffset = 0;
hdma2d.LayerCfg[1].InputColorMode = DMA2D_INPUT_ARGB8888;
hdma2d.LayerCfg[1].AlphaMode = DMA2D_NO_MODIF_ALPHA;
hdma2d.LayerCfg[1].InputAlpha = 0;
if (HAL_DMA2D_Init(&hdma2d) != HAL_OK)
{
Error_Handler();
}
if (HAL_DMA2D_ConfigLayer(&hdma2d, 1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN DMA2D_Init 2 */
/* USER CODE END DMA2D_Init 2 */
}
/**
* @brief LTDC Initialization Function
* @param None
* @retval None
*/
static void MX_LTDC_Init(void)
{
/* USER CODE BEGIN LTDC_Init 0 */
/* USER CODE END LTDC_Init 0 */
LTDC_LayerCfgTypeDef pLayerCfg = {0};
/* USER CODE BEGIN LTDC_Init 1 */
/* USER CODE END LTDC_Init 1 */
hltdc.Instance = LTDC;
hltdc.Init.HSPolarity = LTDC_HSPOLARITY_AL;
hltdc.Init.VSPolarity = LTDC_VSPOLARITY_AL;
hltdc.Init.DEPolarity = LTDC_DEPOLARITY_AL;
hltdc.Init.PCPolarity = LTDC_PCPOLARITY_IPC;
hltdc.Init.HorizontalSync = 40;
hltdc.Init.VerticalSync = 9;
hltdc.Init.AccumulatedHBP = 53;
hltdc.Init.AccumulatedVBP = 11;
hltdc.Init.AccumulatedActiveW = 533;
hltdc.Init.AccumulatedActiveH = 283;
hltdc.Init.TotalWidth = 565;
hltdc.Init.TotalHeigh = 285;
hltdc.Init.Backcolor.Blue = 0;
hltdc.Init.Backcolor.Green = 0;
hltdc.Init.Backcolor.Red = 0;
if (HAL_LTDC_Init(&hltdc) != HAL_OK)
{
Error_Handler();
}
pLayerCfg.WindowX0 = 0;
pLayerCfg.WindowX1 = 480;
pLayerCfg.WindowY0 = 0;
pLayerCfg.WindowY1 = 272;
pLayerCfg.PixelFormat = LTDC_PIXEL_FORMAT_RGB565;
pLayerCfg.Alpha = 255;
pLayerCfg.Alpha0 = 0;
pLayerCfg.BlendingFactor1 = LTDC_BLENDING_FACTOR1_PAxCA;
pLayerCfg.BlendingFactor2 = LTDC_BLENDING_FACTOR2_PAxCA;
pLayerCfg.FBStartAdress = 0xC0000000;
pLayerCfg.ImageWidth = 480;
pLayerCfg.ImageHeight = 272;
pLayerCfg.Backcolor.Blue = 0;
pLayerCfg.Backcolor.Green = 0;
pLayerCfg.Backcolor.Red = 0;
if (HAL_LTDC_ConfigLayer(&hltdc, &pLayerCfg, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN LTDC_Init 2 */
/* USER CODE END LTDC_Init 2 */
}
/**
* @brief RNG Initialization Function
* @param None
* @retval None
*/
static void MX_RNG_Init(void)
{
/* USER CODE BEGIN RNG_Init 0 */
/* USER CODE END RNG_Init 0 */
/* USER CODE BEGIN RNG_Init 1 */
/* USER CODE END RNG_Init 1 */
hrng.Instance = RNG;
if (HAL_RNG_Init(&hrng) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RNG_Init 2 */
/* USER CODE END RNG_Init 2 */
}
/**
* @brief TIM1 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 65535;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 4294967295;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_SlaveConfigTypeDef sSlaveConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 0;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 65535;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sSlaveConfig.SlaveMode = TIM_SLAVEMODE_DISABLE;
sSlaveConfig.InputTrigger = TIM_TS_ITR0;
if (HAL_TIM_SlaveConfigSynchro(&htim3, &sSlaveConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
HAL_TIM_MspPostInit(&htim3);
}
/**
* @brief TIM5 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM5_Init(void)
{
/* USER CODE BEGIN TIM5_Init 0 */
/* USER CODE END TIM5_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM5_Init 1 */
/* USER CODE END TIM5_Init 1 */
htim5.Instance = TIM5;
htim5.Init.Prescaler = 0;
htim5.Init.CounterMode = TIM_COUNTERMODE_UP;
htim5.Init.Period = 4294967295;
htim5.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim5.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim5) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim5, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim5, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM5_Init 2 */
/* USER CODE END TIM5_Init 2 */
}
/**
* @brief TIM8 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM8_Init(void)
{
/* USER CODE BEGIN TIM8_Init 0 */
/* USER CODE END TIM8_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
/* USER CODE BEGIN TIM8_Init 1 */
/* USER CODE END TIM8_Init 1 */
htim8.Instance = TIM8;
htim8.Init.Prescaler = 0;
htim8.Init.CounterMode = TIM_COUNTERMODE_UP;
htim8.Init.Period = 65535;
htim8.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim8.Init.RepetitionCounter = 0;
htim8.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim8) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim8, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim8) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim8, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim8, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
{
Error_Handler();
}
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.BreakFilter = 0;
sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE;
sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH;
sBreakDeadTimeConfig.Break2Filter = 0;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim8, &sBreakDeadTimeConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM8_Init 2 */
/* USER CODE END TIM8_Init 2 */
HAL_TIM_MspPostInit(&htim8);
}
/* FMC initialization function */
static void MX_FMC_Init(void)
{
/* USER CODE BEGIN FMC_Init 0 */
/* USER CODE END FMC_Init 0 */
FMC_SDRAM_TimingTypeDef SdramTiming = {0};
/* USER CODE BEGIN FMC_Init 1 */
/* USER CODE END FMC_Init 1 */
/** Perform the SDRAM1 memory initialization sequence
*/
hsdram1.Instance = FMC_SDRAM_DEVICE;
/* hsdram1.Init */
hsdram1.Init.SDBank = FMC_SDRAM_BANK1;
hsdram1.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_8;
hsdram1.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_12;
hsdram1.Init.MemoryDataWidth = FMC_SDRAM_MEM_BUS_WIDTH_16;
hsdram1.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4;
hsdram1.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_1;
hsdram1.Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE;
hsdram1.Init.SDClockPeriod = FMC_SDRAM_CLOCK_DISABLE;
hsdram1.Init.ReadBurst = FMC_SDRAM_RBURST_DISABLE;
hsdram1.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_0;
/* SdramTiming */
SdramTiming.LoadToActiveDelay = 16;
SdramTiming.ExitSelfRefreshDelay = 16;
SdramTiming.SelfRefreshTime = 16;
SdramTiming.RowCycleDelay = 16;
SdramTiming.WriteRecoveryTime = 16;
SdramTiming.RPDelay = 16;
SdramTiming.RCDDelay = 16;
if (HAL_SDRAM_Init(&hsdram1, &SdramTiming) != HAL_OK)
{
Error_Handler( );
}
/* USER CODE BEGIN FMC_Init 2 */
/* USER CODE END FMC_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOJ_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOI_CLK_ENABLE();
__HAL_RCC_GPIOK_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOE, LED14_Pin|LED15_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(OTG_FS_PowerSwitchOn_GPIO_Port, OTG_FS_PowerSwitchOn_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LED16_GPIO_Port, LED16_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LCD_BL_CTRL_GPIO_Port, LCD_BL_CTRL_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LCD_DISP_GPIO_Port, LCD_DISP_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOH, LED13_Pin|LED17_Pin|LED11_Pin|LED12_Pin
|LED2_Pin|LED18_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(EXT_RST_GPIO_Port, EXT_RST_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : PE3 */
GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/*Configure GPIO pins : ARDUINO_SCL_D15_Pin ARDUINO_SDA_D14_Pin */
GPIO_InitStruct.Pin = ARDUINO_SCL_D15_Pin|ARDUINO_SDA_D14_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF4_I2C1;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : ULPI_D7_Pin ULPI_D6_Pin ULPI_D5_Pin ULPI_D2_Pin
ULPI_D1_Pin ULPI_D4_Pin */
GPIO_InitStruct.Pin = ULPI_D7_Pin|ULPI_D6_Pin|ULPI_D5_Pin|ULPI_D2_Pin
|ULPI_D1_Pin|ULPI_D4_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF10_OTG_HS;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : BP2_Pin BP1_Pin */
GPIO_InitStruct.Pin = BP2_Pin|BP1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : LED14_Pin LED15_Pin */
GPIO_InitStruct.Pin = LED14_Pin|LED15_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/*Configure GPIO pin : VCP_RX_Pin */
GPIO_InitStruct.Pin = VCP_RX_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF7_USART1;
HAL_GPIO_Init(VCP_RX_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : OTG_FS_VBUS_Pin */
GPIO_InitStruct.Pin = OTG_FS_VBUS_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(OTG_FS_VBUS_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : Audio_INT_Pin */
GPIO_InitStruct.Pin = Audio_INT_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_EVT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(Audio_INT_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : OTG_FS_PowerSwitchOn_Pin LED16_Pin */
GPIO_InitStruct.Pin = OTG_FS_PowerSwitchOn_Pin|LED16_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/*Configure GPIO pins : LED3_Pin LCD_DISP_Pin */
GPIO_InitStruct.Pin = LED3_Pin|LCD_DISP_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOI, &GPIO_InitStruct);
/*Configure GPIO pin : uSD_Detect_Pin */
GPIO_InitStruct.Pin = uSD_Detect_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(uSD_Detect_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : LCD_BL_CTRL_Pin */
GPIO_InitStruct.Pin = LCD_BL_CTRL_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LCD_BL_CTRL_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : OTG_FS_OverCurrent_Pin */
GPIO_InitStruct.Pin = OTG_FS_OverCurrent_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(OTG_FS_OverCurrent_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : TP3_Pin NC2_Pin */
GPIO_InitStruct.Pin = TP3_Pin|NC2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
/*Configure GPIO pin : ARDUINO_SCK_D13_Pin */
GPIO_InitStruct.Pin = ARDUINO_SCK_D13_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF5_SPI2;
HAL_GPIO_Init(ARDUINO_SCK_D13_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : LED13_Pin LED17_Pin LED11_Pin LED12_Pin
LED2_Pin LED18_Pin */
GPIO_InitStruct.Pin = LED13_Pin|LED17_Pin|LED11_Pin|LED12_Pin
|LED2_Pin|LED18_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
/*Configure GPIO pin : PI0 */
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF5_SPI2;
HAL_GPIO_Init(GPIOI, &GPIO_InitStruct);
/*Configure GPIO pin : VCP_TX_Pin */
GPIO_InitStruct.Pin = VCP_TX_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF7_USART1;
HAL_GPIO_Init(VCP_TX_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : LCD_INT_Pin */
GPIO_InitStruct.Pin = LCD_INT_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_EVT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(LCD_INT_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : PC7 PC6 */
GPIO_InitStruct.Pin = GPIO_PIN_7|GPIO_PIN_6;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF8_USART6;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : ULPI_NXT_Pin */
GPIO_InitStruct.Pin = ULPI_NXT_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF10_OTG_HS;
HAL_GPIO_Init(ULPI_NXT_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : BP_JOYSTICK_Pin RMII_RXER_Pin */
GPIO_InitStruct.Pin = BP_JOYSTICK_Pin|RMII_RXER_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
/*Configure GPIO pin : PF7 */
GPIO_InitStruct.Pin = GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF8_UART7;
HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
/*Configure GPIO pins : ULPI_STP_Pin ULPI_DIR_Pin */
GPIO_InitStruct.Pin = ULPI_STP_Pin|ULPI_DIR_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF10_OTG_HS;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : EXT_RST_Pin */
GPIO_InitStruct.Pin = EXT_RST_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(EXT_RST_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : LCD_SCL_Pin LCD_SDA_Pin */
GPIO_InitStruct.Pin = LCD_SCL_Pin|LCD_SDA_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF4_I2C3;
HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
/*Configure GPIO pins : ULPI_CLK_Pin ULPI_D0_Pin */
GPIO_InitStruct.Pin = ULPI_CLK_Pin|ULPI_D0_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF10_OTG_HS;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : PB14 PB15 */
GPIO_InitStruct.Pin = GPIO_PIN_14|GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF5_SPI2;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
const uint32_t Couleur_joueur = LCD_COLOR_CYAN;
const uint32_t Couleur_monstre = LCD_COLOR_RED;
const uint32_t Couleur_missile = LCD_COLOR_WHITE;
const uint32_t Couleur_vide = LCD_COLOR_BLACK;
//const ip_addr_t IP_REGULUS = (45 << (3 * 8)) + (66 << (2 * 8)) + (110 << (1 * 8)) + (180 << (0 * 8));
/*
static int envoie_score(int score)
{
struct udp_pcb socket;
&socket = new_udp();
return 0;
}
*/
void repopulate_ennemie_list(uint8_t wave)
{
int idx1;
int idx2;
for (idx1 = 0; idx1 < 8; idx1++)
{
for (idx2 = 0; idx2 < 3; idx2++)
{
Table_ennemis[idx1][idx2].x = (2 * idx1 + 2) * monstre_width;
Table_ennemis[idx1][idx2].y = (2 * idx2 + 1) * monstre_height;
Table_ennemis[idx1][idx2].health = 1; // wave / 2 + 1;
Table_ennemis[idx1][idx2].missile.x = 0;
Table_ennemis[idx1][idx2].missile.y = 0;
Table_ennemis[idx1][idx2].missile.dx = 1;
Table_ennemis[idx1][idx2].missile.dy = 0;
Table_ennemis[idx1][idx2].missile.equipe = 0;
Table_ennemis[idx1][idx2].missile.damage = 1; // wave / 2 + 1;
Table_ennemis[idx1][idx2].missile.valide = 1;
if (proba_bernoulli(1, 3))
Table_ennemis[idx1][idx2].health = 0;
uint8_t idx_texture = proba_tirrage(3);
if (idx_texture == 0) Table_ennemis[idx1][idx2].pbmp = ennemi_b;
else if (idx_texture == 1) Table_ennemis[idx1][idx2].pbmp = ennemi_v;
else Table_ennemis[idx1][idx2].pbmp = ennemi_r;
}
}
}
void update_leds(){
for (int idx = 0; idx<=8; idx++){
HAL_GPIO_WritePin(Leds[idx].port, Leds[idx].pin, !(charge-1<idx));
}
}
/*
* @brief Encapsulation du tracer d'un rectangle
* @param pos_x
* @retval None
*/
void lcd_plot_rect(uint16_t pos_x, uint16_t pos_y, uint16_t taille_x, uint16_t taille_y, uint32_t color)
{
while (xSemaphoreTake(MutexLCDHandle, (TickType_t)10) != pdPASS)
;
BSP_LCD_SetTextColor(color);
BSP_LCD_FillRect(pos_x, pos_y, taille_x, taille_y);
xSemaphoreGive(MutexLCDHandle);
}
void lcd_plot_circ(uint16_t pos_x, uint16_t pos_y, uint16_t rad, uint32_t color)
{
while (xSemaphoreTake(MutexLCDHandle, (TickType_t)10) != pdPASS)
;
BSP_LCD_SetTextColor(color);
if (rad == 0)
rad = 1;
BSP_LCD_FillCircle(pos_x, pos_y, rad);
xSemaphoreGive(MutexLCDHandle);
}
void lcd_plot_text_pos(uint16_t pos_x, uint16_t pos_y, uint8_t *text, uint32_t color, Text_AlignModeTypdef mode)
{
while (xSemaphoreTake(MutexLCDHandle, (TickType_t)10) != pdPASS)
;
BSP_LCD_SetTextColor(color);
BSP_LCD_SetBackColor(Couleur_vide);
BSP_LCD_DisplayStringAt(pos_x, pos_y, text, mode);
xSemaphoreGive(MutexLCDHandle);
}
void lcd_plot_text_line(uint16_t line, uint8_t *text, uint32_t color)
{
while (xSemaphoreTake(MutexLCDHandle, (TickType_t)10) != pdPASS)
;
BSP_LCD_SetTextColor(color);
BSP_LCD_SetBackColor(Couleur_vide);
BSP_LCD_DisplayStringAtLine(line, text);
xSemaphoreGive(MutexLCDHandle);
}
void lcd_plot_bitmap(uint16_t pos_x, uint16_t pos_y,uint8_t *pbmp){
while (xSemaphoreTake(MutexLCDHandle, (TickType_t)10) != pdPASS)
;
BSP_LCD_DrawBitmap(pos_x, pos_y, pbmp);
xSemaphoreGive(MutexLCDHandle);
}
uint8_t proba_bernoulli(uint32_t numerateur, uint32_t denominateur)
{
uint32_t nombre_aleatoire;
while (HAL_RNG_GenerateRandomNumber(&hrng, &nombre_aleatoire) != HAL_OK)
;
uint32_t limite;
limite = UINT32_MAX;
limite /= denominateur;
limite *= numerateur;
if (nombre_aleatoire > limite)
return 0;
else
return 1;
}
uint8_t proba_tirrage(uint8_t nombre_valeur)
{uint32_t nombre_aleatoire;
while (HAL_RNG_GenerateRandomNumber(&hrng, &nombre_aleatoire) != HAL_OK)
;
uint32_t limite = UINT32_MAX/nombre_valeur;
return (uint8_t)(nombre_aleatoire/limite);
}
uint8_t colision_missile(uint16_t m_pos_x, uint16_t m_pos_y, uint16_t o_pos_x, uint16_t o_pos_y, uint16_t o_taille_x, uint16_t o_taille_y)
{
return ((m_pos_x > o_pos_x) & (m_pos_x < o_pos_x + o_taille_x) & (m_pos_y > o_pos_y) & (m_pos_y < o_pos_y + o_taille_y));
}
/* USER CODE END 4 */
/* USER CODE BEGIN Header_f_GameMaster */
/**
* @brief Function implementing the GameMaster thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_f_GameMaster */
void f_GameMaster(void const * argument)
{
/* init code for LWIP */
MX_LWIP_Init();
/* USER CODE BEGIN 5 */
TickType_t xLastWakeTime;
xLastWakeTime = xTaskGetTickCount();
const TickType_t xPeriodeTache = 100 / portTICK_PERIOD_MS;
repopulate_ennemie_list(wave);
enum End_type end;
/* Infinite loop */
for (;;)
{
while (xQueueReceive(Queue_FHandle, &end, (TickType_t)10) != pdPASS)
; // Tant qu'il n'y a pas de nouveau message
if (end == END_MORT_JOUEUR)
{
vTaskDelete(Block_EnemieHandle);
vTaskDelete(ProjectileHandle);
vTaskDelete(Joueur_1Handle);
uint8_t msg[] = "GAME OVER";
lcd_plot_text_pos(BSP_LCD_GetXSize() / 2, BSP_LCD_GetYSize() / 2, msg, Couleur_joueur, CENTER_MODE);
//TODO L'affichage de l'écran de fin et des scores
}
if (end == END_TABLEAU_VIDE)
{
wave++;
repopulate_ennemie_list(wave);
}
vTaskDelayUntil(&xLastWakeTime, xPeriodeTache);
}
/* USER CODE END 5 */
}
/* USER CODE BEGIN Header_f_Joueur_1 */
/**
* @brief Function implementing the Joueur_1 thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_f_Joueur_1 */
void f_Joueur_1(void const * argument)
{
/* USER CODE BEGIN f_Joueur_1 */
TickType_t xLastWakeTime;
xLastWakeTime = xTaskGetTickCount();
const TickType_t xPeriodeTache = 5 / portTICK_PERIOD_MS;
uint32_t joystick_h, joystick_v;
struct Missile missile;
uint8_t bp_1_relache = 1;
uint8_t bp_2_relache = 1;
ADC_ChannelConfTypeDef sConfig3 = {0};
sConfig3.Rank = ADC_REGULAR_RANK_1;
sConfig3.SamplingTime = ADC_SAMPLETIME_3CYCLES;
sConfig3.Channel = ADC_CHANNEL_8;
HAL_ADC_ConfigChannel(&hadc3, &sConfig3);
HAL_ADC_Start(&hadc3);
ADC_ChannelConfTypeDef sConfig1 = {0};
sConfig1.Rank = ADC_REGULAR_RANK_1;
sConfig1.SamplingTime = ADC_SAMPLETIME_3CYCLES;
sConfig1.Channel = ADC_CHANNEL_0;
HAL_ADC_ConfigChannel(&hadc1, &sConfig1);
HAL_ADC_Start(&hadc1);
enum End_type end = END_MORT_JOUEUR;
// Paramètre de l'écran pour la reprouductibilité
uint32_t LCD_HEIGHT = BSP_LCD_GetXSize();
uint32_t LCD_WIDTH = BSP_LCD_GetYSize();
const uint32_t seuil_joystick = 200;
const uint32_t centre_joystick = 2048;
/* Infinite loop */
for (;;)
{
lcd_plot_rect(joueur.x, joueur.y, joueur_width, joueur_height, Couleur_vide);
// BSP_LCD_DrawBitmap(uint32_t Xpos, uint32_t Ypos, uint8_t *pbmp)
HAL_ADC_ConfigChannel(&hadc3, &sConfig3);
HAL_ADC_Start(&hadc3);
while (HAL_ADC_PollForConversion(&hadc3, 100) != HAL_OK)
;
joystick_h = HAL_ADC_GetValue(&hadc3);
HAL_ADC_ConfigChannel(&hadc1, &sConfig1);
HAL_ADC_Start(&hadc1);
while (HAL_ADC_PollForConversion(&hadc1, 100) != HAL_OK)
;
joystick_v = HAL_ADC_GetValue(&hadc1);
if ((joueur.y < LCD_WIDTH - joueur_width - joueur.dy) && (joystick_h < centre_joystick - seuil_joystick))
joueur.y += joueur.dy;
if ((joueur.y > joueur.dy) && (joystick_h > centre_joystick + seuil_joystick))
joueur.y -= joueur.dy;
if ((joueur.x < LCD_HEIGHT - joueur_height - joueur.dx) && (joystick_v < centre_joystick - seuil_joystick))
joueur.x += joueur.dx;
if ((joueur.x > joueur.dx) && (joystick_v > centre_joystick + seuil_joystick))
joueur.x -= joueur.dx;
lcd_plot_bitmap(joueur.x, joueur.y, bmp_joueur);
//BSP_LCD_DrawBitmap(joueur.x, joueur.y, &vaisseau);
if (xQueueReceive(Queue_JHandle, &missile, 0) == pdPASS)
joueur.health = joueur.health - missile.damage;
// On envoie 1 si le joueur est mort et on envoie 0 si les enemis sont tous morts
if (joueur.health <= 0)
xQueueSend(Queue_FHandle, &end, 0);
if ((!HAL_GPIO_ReadPin(BP1_GPIO_Port, BP1_Pin)) && bp_1_relache)
{
bp_1_relache = 0;
missile = joueur.missile;
missile.x = joueur.x + joueur_width / 2;
missile.y = joueur.y;
xQueueSend(Queue_NHandle, &missile, 0);
}
if (HAL_GPIO_ReadPin(BP1_GPIO_Port, BP1_Pin))
bp_1_relache = 1;
if ((!HAL_GPIO_ReadPin(BP2_GPIO_Port, BP2_Pin)) && bp_2_relache && (charge == 8))
{
bp_2_relache = 0;
missile = joueur.missile;
missile.x = joueur.x + joueur_width / 2;
missile.y = joueur.y;
for (int idx_tirs = -3; idx_tirs <= 3; idx_tirs++)
{
missile.dy = -3;
missile.dx = idx_tirs;
xQueueSend(Queue_NHandle, &missile, 0);
}
charge = 0;
update_leds();
}
if (HAL_GPIO_ReadPin(BP2_GPIO_Port, BP2_Pin))
bp_2_relache = 1;
vTaskDelayUntil(&xLastWakeTime, xPeriodeTache);
}
/* USER CODE END f_Joueur_1 */
}
/* USER CODE BEGIN Header_f_block_enemie */
/**
* @brief Function implementing the Block_Enemie thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_f_block_enemie */
void f_block_enemie(void const * argument)
{
/* USER CODE BEGIN f_block_enemie */
TickType_t xLastWakeTime;
xLastWakeTime = xTaskGetTickCount();
const TickType_t xPeriodeTache = 200 / portTICK_PERIOD_MS; // Toute les demi secondes
uint8_t nombre_monstre;
struct Collision collision;
int8_t vitesse = 5;
enum Sens_ennemie direction = DROITE;
struct Missile missile = {0, 0, 0, 1, MISSILE_ENNEMI, 1, 1};
int32_t lim_droite;
int32_t lim_gauche;
/* Infinite loop */
for (;;)
{
while (xQueueReceive(Queue_EHandle, &collision, 0) == pdPASS)
{
Table_ennemis[collision.idx1][collision.idx2].health -= collision.damage;
if (Table_ennemis[collision.idx1][collision.idx2].health <= 0)
kill++;
}
for (int idx1 = 0; idx1 < 8; idx1++)
{
for (int idx2 = 0; idx2 < 3; idx2++)
{
lcd_plot_rect(Table_ennemis[idx1][idx2].x, Table_ennemis[idx1][idx2].y, monstre_width, monstre_height, Couleur_vide);
}
}
lim_droite = Table_ennemis[0][0].x;
lim_gauche = Table_ennemis[0][0].x;
for (int idx1 = 0; idx1 < 8; idx1++)
{
for (int idx2 = 0; idx2 < 3; idx2++)
{
if ((Table_ennemis[idx1][idx2].x > lim_droite) && (Table_ennemis[idx1][idx2].health > 0))
lim_droite = Table_ennemis[idx1][idx2].x;
if ((Table_ennemis[idx1][idx2].x < lim_gauche) && (Table_ennemis[idx1][idx2].health > 0))
lim_gauche = Table_ennemis[idx1][idx2].x;
}
}
if ((direction == DROITE) && (lim_droite + vitesse + monstre_width >= BSP_LCD_GetXSize()))
direction = GAUCHE;
else if ((direction == GAUCHE) && (lim_gauche <= vitesse))
direction = DROITE;
for (int idx1 = 0; idx1 < 8; idx1++)
{
for (int idx2 = 0; idx2 < 3; idx2++)
{
if (direction == DROITE)
Table_ennemis[idx1][idx2].x += vitesse;
if (direction == GAUCHE)
Table_ennemis[idx1][idx2].x -= vitesse;
}
}
// TODO déplacement des ennemies
nombre_monstre = 0;
for (int idx1 = 0; idx1 < 8; idx1++)
{
for (int idx2 = 0; idx2 < 3; idx2++)
{
if (Table_ennemis[idx1][idx2].health > 0)
{
nombre_monstre++;
lcd_plot_bitmap(Table_ennemis[idx1][idx2].x, Table_ennemis[idx1][idx2].y, Table_ennemis[idx1][idx2].pbmp);
}
}
}
if (!nombre_monstre)
{
enum End_type end = END_TABLEAU_VIDE;
xQueueSend(Queue_FHandle, &end, 0);
}
for (int idx1 = 0; idx1 < 8; idx1++)
{
for (int idx2 = 0; idx2 < 3; idx2++)
{
if (Table_ennemis[idx1][idx2].health > 0)
{
if (proba_bernoulli(wave, 16))
{
missile.x = Table_ennemis[idx1][idx2].x + monstre_width / 2;
missile.y = Table_ennemis[idx1][idx2].y + monstre_height;
xQueueSend(Queue_NHandle, &missile, 0);
}
}
}
}
vTaskDelayUntil(&xLastWakeTime, xPeriodeTache);
}
/* USER CODE END f_block_enemie */
}
/* USER CODE BEGIN Header_f_projectile */
/**
* @brief Function implementing the Projectile thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_f_projectile */
void f_projectile(void const * argument)
{
/* USER CODE BEGIN f_projectile */
TickType_t xLastWakeTime;
xLastWakeTime = xTaskGetTickCount();
const TickType_t xPeriodeTache = 10 / portTICK_PERIOD_MS; // Toutes les 200 ms
const int TAILLE_LISTE_MISSILE = 250;
/* Infinite loop */
struct Missile liste_missile[TAILLE_LISTE_MISSILE];
struct Missile missile = {70, 70, 0, 3, MISSILE_ENNEMI, 1, 0};
liste_missile[0] = missile;
uint32_t new_x;
uint32_t new_y;
// Paramètre de l'écran pour la reprouductibilité
uint32_t LCD_HEIGHT = BSP_LCD_GetYSize();
uint32_t LCD_WIDTH = BSP_LCD_GetXSize();
for (int idx_missile = 0; idx_missile < TAILLE_LISTE_MISSILE; idx_missile++)
liste_missile[idx_missile] = missile;
for (;;)
{
while (xQueueReceive(Queue_NHandle, &missile, 0) == pdPASS)
{
for (int idx_missile = 0; idx_missile < TAILLE_LISTE_MISSILE; idx_missile++)
{
if (liste_missile[idx_missile].valide == 0)
{
liste_missile[idx_missile] = missile;
break;
}
}
}
for (int idx_missile = 0; idx_missile < TAILLE_LISTE_MISSILE; idx_missile++)
{
if (liste_missile[idx_missile].valide)
{
lcd_plot_circ(liste_missile[idx_missile].x, liste_missile[idx_missile].y, liste_missile[idx_missile].damage, Couleur_vide);
new_x = liste_missile[idx_missile].x + liste_missile[idx_missile].dx;
new_y = liste_missile[idx_missile].y + liste_missile[idx_missile].dy;
if ((new_x <= 0) | (new_x >= LCD_WIDTH) | (new_y <= 0) | (new_y >= LCD_HEIGHT)) //Missile hors de l'écran
liste_missile[idx_missile].valide = 0;
if ((liste_missile[idx_missile].equipe == MISSILE_ENNEMI) & colision_missile(new_x, new_y, joueur.x, joueur.y, joueur_width, joueur_height))
{ //TODO condition de choc avec le joueur
xQueueSend(Queue_JHandle, &liste_missile[idx_missile], 0);
liste_missile[idx_missile].valide = 0;
}
if (liste_missile[idx_missile].equipe == MISSILE_AMI)
{
for (int idx_mechant_1 = 0; idx_mechant_1 < 8; idx_mechant_1++)
{
for (int idx_mechant_2 = 0; idx_mechant_2 < 3; idx_mechant_2++)
{
if ((colision_missile(new_x, new_y, Table_ennemis[idx_mechant_1][idx_mechant_2].x, Table_ennemis[idx_mechant_1][idx_mechant_2].y, monstre_width, monstre_height)) && (Table_ennemis[idx_mechant_1][idx_mechant_2].health > 0))
{
struct Collision collision = {idx_mechant_1, idx_mechant_2, liste_missile[idx_missile].damage};
xQueueSend(Queue_EHandle, (void *)&collision, 0);
liste_missile[idx_missile].valide = 0;
}
}
}
}
liste_missile[idx_missile].x = new_x;
liste_missile[idx_missile].y = new_y;
if (liste_missile[idx_missile].valide)
lcd_plot_circ(liste_missile[idx_missile].x, liste_missile[idx_missile].y, liste_missile[idx_missile].damage, Couleur_missile);
//TODO effacage
//TODO nouvelle position
}
}
vTaskDelayUntil(&xLastWakeTime, xPeriodeTache);
}
/* USER CODE END f_projectile */
}
/* USER CODE BEGIN Header_f_HUD */
/**
* @brief Function implementing the HUD thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_f_HUD */
void f_HUD(void const * argument)
{
/* USER CODE BEGIN f_HUD */
TickType_t xLastWakeTime;
xLastWakeTime = xTaskGetTickCount();
const TickType_t xPeriodeTache = 100 / portTICK_PERIOD_MS; // Toutes les 200 ms
uint8_t line_hud[100] = "";
const uint8_t base[100] = "vie : %2u - vague : %2u - kill : %2u";
/* Infinite loop */
for (;;)
{
sprintf(line_hud, base, (uint)joueur.health, (uint)wave, (uint)kill);
lcd_plot_text_line(0, line_hud, Couleur_missile);
vTaskDelayUntil(&xLastWakeTime, xPeriodeTache);
}
/* USER CODE END f_HUD */
}
/* USER CODE BEGIN Header_f_chargeur */
/**
* @brief Function implementing the chargeur thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_f_chargeur */
void f_chargeur(void const * argument)
{
/* USER CODE BEGIN f_chargeur */
TickType_t xLastWakeTime;
xLastWakeTime = xTaskGetTickCount();
const TickType_t xPeriodeTache = 5000/ 8 / portTICK_PERIOD_MS; // Toutes les 200 ms
/* Infinite loop */
for(;;)
{
if (charge < 8)
charge++;
update_leds();
vTaskDelayUntil(&xLastWakeTime, xPeriodeTache);
}
/* USER CODE END f_chargeur */
}
/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM6 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM6) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/