CoAP/coapthon/client/superviseur.py

239 lines
6.8 KiB
Python
Raw Normal View History

import random
import time
import numpy as np
from coapthon import defines
2021-07-09 11:46:42 +02:00
class SupervisorError(Exception):
def __init__(self, *args: object) -> None:
super().__init__(*args)
class NoRttError(SupervisorError):
def __init__(self, *args: object) -> None:
super().__init__(*args)
2021-07-01 14:42:48 +02:00
class SuperviseurLocalPlaceHolder():
"""Class de base pour le superviseur
"""
2021-07-09 11:46:42 +02:00
N_MESURE = 0
2021-07-01 14:42:48 +02:00
def __init__(self, client_CoAP) -> None:
client_CoAP.superviseur = self
self.client = client_CoAP
2021-07-01 14:42:48 +02:00
self._RTTs = []
self._taux_retransmition = 0
self._RTO = defines.ACK_TIMEOUT
def envoie_message(self, message) -> None:
self.envoie_token(message.token)
def reception_message(self, message) -> None:
self.reception_token(message.token)
2021-07-01 14:42:48 +02:00
def envoie_token(self, token) -> None:
pass
def reception_token(self, tokken) -> None:
pass
2021-07-09 11:46:42 +02:00
def failed_request(self):
pass
2021-07-01 14:42:48 +02:00
@property
def RTTs(self):
return self._RTTs
@property
def taux_retransmission(self):
2021-07-01 14:42:48 +02:00
return self._taux_retransmition
@property
def min_RTT(self):
"""Valeur minimum du RTT"""
2021-07-09 11:46:42 +02:00
if len(self.RTTs):
return min(self.RTTs)
raise NoRttError
@property
def avg_RTT(self):
"""Moyenne du RTT."""
2021-07-09 11:46:42 +02:00
if len(self.RTTs):
return sum(self.RTTs)/len(self.RTTs)
raise NoRttError
@property
def RTO(self):
2021-07-09 11:46:42 +02:00
return self._RTO
return random.uniform(self._RTO, (self._RTO * defines.ACK_RANDOM_FACTOR))
2021-07-01 14:42:48 +02:00
class SuperviseurLocal(SuperviseurLocalPlaceHolder):
"""
Class implementant la supervision local de chaque client.
"""
2021-07-09 11:46:42 +02:00
N_MESURE = 2
def __init__(self, client_CoAP) -> None:
super().__init__(client_CoAP)
self._dict_envoie = {}
2021-07-01 14:42:48 +02:00
self._n_envoie = 0
2021-07-09 11:46:42 +02:00
self._n_token = 0
self._n_echec = 0
def envoie_token(self, token) -> None:
"""Enregistre l'envoie d'un token
Args:
token (int): Token à enregistrer
"""
self._n_envoie += 1
2021-07-09 11:46:42 +02:00
self._n_token += not(token in self._dict_envoie)
2021-07-01 14:42:48 +02:00
self._dict_envoie[token] = time.time()
2021-07-09 11:46:42 +02:00
self._taux_retransmition = 1 - self._n_token/self._n_envoie
def reception_token(self, token) -> None:
"""Enregistre l'arrivée d'un token
Args:
token (int): Token à enregister
"""
2021-07-01 14:42:48 +02:00
if token in self._dict_envoie:
rtt = time.time() - self._dict_envoie[token]
self._RTTs.append(time.time() - self._dict_envoie[token])
# del self._dict_envoie[token]
2021-07-01 14:42:48 +02:00
self.callback_new_rtt(rtt)
else:
pass # raise ValueError("Tokken inconnue")
2021-07-09 11:46:42 +02:00
def failed_request(self):
self._n_echec += 1
return super().failed_request()
2021-07-01 14:42:48 +02:00
def callback_new_rtt(self, rtt):
pass
def reset(self):
self._dict_envoie = {}
self._n_envoie = 0
2021-07-09 11:46:42 +02:00
self._n_token = 0
self._n_echec = 0
self._RTTs = []
2021-07-01 14:42:48 +02:00
class SuperviseurLocalFiltre(SuperviseurLocal):
2021-07-09 11:46:42 +02:00
N_MESURE = 3
def __init__(self, client_CoAP, rtt_init=0.01, alpha_l=0.01, alpha_s=0.1) -> None:
super().__init__(client_CoAP)
self.alpha_l = alpha_l
self.alpha_s = alpha_s
2021-07-01 14:42:48 +02:00
self._RTT_L = rtt_init
self._RTT_S = rtt_init
2021-07-01 14:42:48 +02:00
def callback_new_rtt(self, rtt):
self._RTT_L = rtt*self.alpha_l + (1 - self.alpha_l) * self._RTT_L
self._RTT_S = rtt*self.alpha_s + (1 - self.alpha_s) * self._RTT_S
return super().callback_new_rtt(rtt)
2021-07-01 14:42:48 +02:00
@property
def RTT_L(self):
return self._RTT_L
2021-07-01 14:42:48 +02:00
@property
def RTT_S(self):
return self._RTT_S
class SuperviseurGlobal():
2021-07-09 11:46:42 +02:00
nombre_mesure = 3
def __init__(self, clients, superviseur_type, *superviseur_args) -> None:
"""Genère un superviseur global pour la liste de client donnée
Args:
clients (List(HelperClient)): Liste des clients à supervisé
superviseur_type (Type): Type de superviseur à utilisé
"""
self.clients = clients
self.superviseurs = [superviseur_type(
client, *superviseur_args) for client in clients]
2021-07-09 11:46:42 +02:00
self._last_state = np.zeros((superviseur_type.N_MESURE, len(clients)))
@property
def state(self):
2021-07-09 11:46:42 +02:00
"""[summary]
Returns:
[type]: [description]
"""
"""
taux_retransmissions = np.array(
[superviseur.taux_retransmission for superviseur in self.superviseurs])
min_rtts = np.array(
[superviseur.min_RTT for superviseur in self.superviseurs])
avg_rtts = np.array(
[superviseur.avg_RTT for superviseur in self.superviseurs])
ratio_rtts = np.array(min_rtts/avg_rtts)
if isinstance(self.superviseurs[0], SuperviseurLocalFiltre):
rtt_ls = np.array(
[superviseur.RTT_L for superviseur in self.superviseurs])
rtt_ss = np.array(
[superviseur.RTT_S for superviseur in self.superviseurs])
ratio_filtres = rtt_ss/rtt_ls
representation_etat = np.array(
[taux_retransmissions, ratio_rtts, ratio_filtres])
else:
representation_etat = np.array([taux_retransmissions, ratio_rtts])
return representation_etat
2021-07-09 11:46:42 +02:00
"""
vecteurs = []
for n, superviseur in enumerate(self.superviseurs):
if isinstance(superviseur, SuperviseurLocalFiltre):
try :
vecteurs.append(np.array([[superviseur.taux_retransmission, superviseur.min_RTT/superviseur.avg_RTT, superviseur.RTT_S/superviseur.RTT_L]], dtype=np.float32))
except NoRttError:
vecteurs.append(self._last_state[:,n])
return np.concatenate(vecteurs, axis=0).T
def application_action(self, actions):
for n, alpha in enumerate(actions):
if alpha >= 0:
g = 1 + alpha
else:
g = 1/(1-alpha)
self.superviseurs[n]._RTO *= g
self.superviseurs[n]._RTO = min([self.superviseurs[n]._RTO, 2])
def reset(self):
[superviseur.reset() for superviseur in self.superviseurs]
def qualite(self, n_request, beta_retransmission, beta_equite, beta_RTO):
n_envoies = np.array([
superviseur._n_envoie for superviseur in self.superviseurs])
n_tokens = np.array([superviseur._n_token for superviseur in self.superviseurs])
RTOs = np.array([superviseur.RTO for superviseur in self.superviseurs])
qualite = 0
qualite -= beta_retransmission * sum(n_tokens)/sum(n_envoies)
qualite += beta_equite * \
(sum(n_envoies/n_tokens))**2 / \
(len(n_envoies) * sum((n_envoies/n_tokens)**2))
qualite -= beta_RTO * np.max(RTOs)
return qualite