hostap/src/drivers/driver.h
Kyeyoon Park c551700f1f Interworking: Add support for QoS Mapping functionality for the AP
This allows QoS Map Set element to be added to (Re)Association Response
frames and in QoS Map Configure frame. The QoS Mapping parameters are
also made available for the driver interface.

Signed-hostap: Jouni Malinen <jouni@qca.qualcomm.com>
2013-10-18 14:13:45 +03:00

4046 lines
122 KiB
C

/*
* Driver interface definition
* Copyright (c) 2003-2012, Jouni Malinen <j@w1.fi>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*
* This file defines a driver interface used by both %wpa_supplicant and
* hostapd. The first part of the file defines data structures used in various
* driver operations. This is followed by the struct wpa_driver_ops that each
* driver wrapper will beed to define with callback functions for requesting
* driver operations. After this, there are definitions for driver event
* reporting with wpa_supplicant_event() and some convenience helper functions
* that can be used to report events.
*/
#ifndef DRIVER_H
#define DRIVER_H
#define WPA_SUPPLICANT_DRIVER_VERSION 4
#include "common/defs.h"
#include "utils/list.h"
#define HOSTAPD_CHAN_DISABLED 0x00000001
#define HOSTAPD_CHAN_PASSIVE_SCAN 0x00000002
#define HOSTAPD_CHAN_NO_IBSS 0x00000004
#define HOSTAPD_CHAN_RADAR 0x00000008
#define HOSTAPD_CHAN_HT40PLUS 0x00000010
#define HOSTAPD_CHAN_HT40MINUS 0x00000020
#define HOSTAPD_CHAN_HT40 0x00000040
#define HOSTAPD_CHAN_SURVEY_LIST_INITIALIZED 0x00000080
#define HOSTAPD_CHAN_DFS_UNKNOWN 0x00000000
#define HOSTAPD_CHAN_DFS_USABLE 0x00000100
#define HOSTAPD_CHAN_DFS_UNAVAILABLE 0x00000200
#define HOSTAPD_CHAN_DFS_AVAILABLE 0x00000300
#define HOSTAPD_CHAN_DFS_MASK 0x00000300
/**
* struct hostapd_channel_data - Channel information
*/
struct hostapd_channel_data {
/**
* chan - Channel number (IEEE 802.11)
*/
short chan;
/**
* freq - Frequency in MHz
*/
int freq;
/**
* flag - Channel flags (HOSTAPD_CHAN_*)
*/
int flag;
/**
* max_tx_power - Maximum transmit power in dBm
*/
u8 max_tx_power;
/*
* survey_list - Linked list of surveys
*/
struct dl_list survey_list;
/**
* min_nf - Minimum observed noise floor, in dBm, based on all
* surveyed channel data
*/
s8 min_nf;
#ifdef CONFIG_ACS
/**
* interference_factor - Computed interference factor on this
* channel (used internally in src/ap/acs.c; driver wrappers do not
* need to set this)
*/
long double interference_factor;
#endif /* CONFIG_ACS */
};
#define HOSTAPD_MODE_FLAG_HT_INFO_KNOWN BIT(0)
#define HOSTAPD_MODE_FLAG_VHT_INFO_KNOWN BIT(1)
/**
* struct hostapd_hw_modes - Supported hardware mode information
*/
struct hostapd_hw_modes {
/**
* mode - Hardware mode
*/
enum hostapd_hw_mode mode;
/**
* num_channels - Number of entries in the channels array
*/
int num_channels;
/**
* channels - Array of supported channels
*/
struct hostapd_channel_data *channels;
/**
* num_rates - Number of entries in the rates array
*/
int num_rates;
/**
* rates - Array of supported rates in 100 kbps units
*/
int *rates;
/**
* ht_capab - HT (IEEE 802.11n) capabilities
*/
u16 ht_capab;
/**
* mcs_set - MCS (IEEE 802.11n) rate parameters
*/
u8 mcs_set[16];
/**
* a_mpdu_params - A-MPDU (IEEE 802.11n) parameters
*/
u8 a_mpdu_params;
/**
* vht_capab - VHT (IEEE 802.11ac) capabilities
*/
u32 vht_capab;
/**
* vht_mcs_set - VHT MCS (IEEE 802.11ac) rate parameters
*/
u8 vht_mcs_set[8];
unsigned int flags; /* HOSTAPD_MODE_FLAG_* */
};
#define IEEE80211_MODE_INFRA 0
#define IEEE80211_MODE_IBSS 1
#define IEEE80211_MODE_AP 2
#define IEEE80211_CAP_ESS 0x0001
#define IEEE80211_CAP_IBSS 0x0002
#define IEEE80211_CAP_PRIVACY 0x0010
/* DMG (60 GHz) IEEE 802.11ad */
/* type - bits 0..1 */
#define IEEE80211_CAP_DMG_MASK 0x0003
#define IEEE80211_CAP_DMG_IBSS 0x0001 /* Tx by: STA */
#define IEEE80211_CAP_DMG_PBSS 0x0002 /* Tx by: PCP */
#define IEEE80211_CAP_DMG_AP 0x0003 /* Tx by: AP */
#define WPA_SCAN_QUAL_INVALID BIT(0)
#define WPA_SCAN_NOISE_INVALID BIT(1)
#define WPA_SCAN_LEVEL_INVALID BIT(2)
#define WPA_SCAN_LEVEL_DBM BIT(3)
#define WPA_SCAN_AUTHENTICATED BIT(4)
#define WPA_SCAN_ASSOCIATED BIT(5)
/**
* struct wpa_scan_res - Scan result for an BSS/IBSS
* @flags: information flags about the BSS/IBSS (WPA_SCAN_*)
* @bssid: BSSID
* @freq: frequency of the channel in MHz (e.g., 2412 = channel 1)
* @beacon_int: beacon interval in TUs (host byte order)
* @caps: capability information field in host byte order
* @qual: signal quality
* @noise: noise level
* @level: signal level
* @tsf: Timestamp
* @age: Age of the information in milliseconds (i.e., how many milliseconds
* ago the last Beacon or Probe Response frame was received)
* @ie_len: length of the following IE field in octets
* @beacon_ie_len: length of the following Beacon IE field in octets
*
* This structure is used as a generic format for scan results from the
* driver. Each driver interface implementation is responsible for converting
* the driver or OS specific scan results into this format.
*
* If the driver does not support reporting all IEs, the IE data structure is
* constructed of the IEs that are available. This field will also need to
* include SSID in IE format. All drivers are encouraged to be extended to
* report all IEs to make it easier to support future additions.
*/
struct wpa_scan_res {
unsigned int flags;
u8 bssid[ETH_ALEN];
int freq;
u16 beacon_int;
u16 caps;
int qual;
int noise;
int level;
u64 tsf;
unsigned int age;
size_t ie_len;
size_t beacon_ie_len;
/*
* Followed by ie_len octets of IEs from Probe Response frame (or if
* the driver does not indicate source of IEs, these may also be from
* Beacon frame). After the first set of IEs, another set of IEs may
* follow (with beacon_ie_len octets of data) if the driver provides
* both IE sets.
*/
};
/**
* struct wpa_scan_results - Scan results
* @res: Array of pointers to allocated variable length scan result entries
* @num: Number of entries in the scan result array
* @fetch_time: Time when the results were fetched from the driver
*/
struct wpa_scan_results {
struct wpa_scan_res **res;
size_t num;
struct os_time fetch_time;
};
/**
* struct wpa_interface_info - Network interface information
* @next: Pointer to the next interface or NULL if this is the last one
* @ifname: Interface name that can be used with init() or init2()
* @desc: Human readable adapter description (e.g., vendor/model) or NULL if
* not available
* @drv_name: struct wpa_driver_ops::name (note: unlike other strings, this one
* is not an allocated copy, i.e., get_interfaces() caller will not free
* this)
*/
struct wpa_interface_info {
struct wpa_interface_info *next;
char *ifname;
char *desc;
const char *drv_name;
};
#define WPAS_MAX_SCAN_SSIDS 16
/**
* struct wpa_driver_scan_params - Scan parameters
* Data for struct wpa_driver_ops::scan2().
*/
struct wpa_driver_scan_params {
/**
* ssids - SSIDs to scan for
*/
struct wpa_driver_scan_ssid {
/**
* ssid - specific SSID to scan for (ProbeReq)
* %NULL or zero-length SSID is used to indicate active scan
* with wildcard SSID.
*/
const u8 *ssid;
/**
* ssid_len: Length of the SSID in octets
*/
size_t ssid_len;
} ssids[WPAS_MAX_SCAN_SSIDS];
/**
* num_ssids - Number of entries in ssids array
* Zero indicates a request for a passive scan.
*/
size_t num_ssids;
/**
* extra_ies - Extra IE(s) to add into Probe Request or %NULL
*/
const u8 *extra_ies;
/**
* extra_ies_len - Length of extra_ies in octets
*/
size_t extra_ies_len;
/**
* freqs - Array of frequencies to scan or %NULL for all frequencies
*
* The frequency is set in MHz. The array is zero-terminated.
*/
int *freqs;
/**
* filter_ssids - Filter for reporting SSIDs
*
* This optional parameter can be used to request the driver wrapper to
* filter scan results to include only the specified SSIDs. %NULL
* indicates that no filtering is to be done. This can be used to
* reduce memory needs for scan results in environments that have large
* number of APs with different SSIDs.
*
* The driver wrapper is allowed to take this allocated buffer into its
* own use by setting the pointer to %NULL. In that case, the driver
* wrapper is responsible for freeing the buffer with os_free() once it
* is not needed anymore.
*/
struct wpa_driver_scan_filter {
u8 ssid[32];
size_t ssid_len;
} *filter_ssids;
/**
* num_filter_ssids - Number of entries in filter_ssids array
*/
size_t num_filter_ssids;
/**
* filter_rssi - Filter by RSSI
*
* The driver may filter scan results in firmware to reduce host
* wakeups and thereby save power. Specify the RSSI threshold in s32
* dBm.
*/
s32 filter_rssi;
/**
* p2p_probe - Used to disable CCK (802.11b) rates for P2P probes
*
* When set, the driver is expected to remove rates 1, 2, 5.5, and 11
* Mbps from the support rates element(s) in the Probe Request frames
* and not to transmit the frames at any of those rates.
*/
u8 p2p_probe;
};
/**
* struct wpa_driver_auth_params - Authentication parameters
* Data for struct wpa_driver_ops::authenticate().
*/
struct wpa_driver_auth_params {
int freq;
const u8 *bssid;
const u8 *ssid;
size_t ssid_len;
int auth_alg;
const u8 *ie;
size_t ie_len;
const u8 *wep_key[4];
size_t wep_key_len[4];
int wep_tx_keyidx;
int local_state_change;
/**
* p2p - Whether this connection is a P2P group
*/
int p2p;
const u8 *sae_data;
size_t sae_data_len;
};
enum wps_mode {
WPS_MODE_NONE /* no WPS provisioning being used */,
WPS_MODE_OPEN /* WPS provisioning with AP that is in open mode */,
WPS_MODE_PRIVACY /* WPS provisioning with AP that is using protection
*/
};
/**
* struct wpa_driver_associate_params - Association parameters
* Data for struct wpa_driver_ops::associate().
*/
struct wpa_driver_associate_params {
/**
* bssid - BSSID of the selected AP
* This can be %NULL, if ap_scan=2 mode is used and the driver is
* responsible for selecting with which BSS to associate. */
const u8 *bssid;
/**
* ssid - The selected SSID
*/
const u8 *ssid;
/**
* ssid_len - Length of the SSID (1..32)
*/
size_t ssid_len;
/**
* freq - Frequency of the channel the selected AP is using
* Frequency that the selected AP is using (in MHz as
* reported in the scan results)
*/
int freq;
/**
* bg_scan_period - Background scan period in seconds, 0 to disable
* background scan, or -1 to indicate no change to default driver
* configuration
*/
int bg_scan_period;
/**
* wpa_ie - WPA information element for (Re)Association Request
* WPA information element to be included in (Re)Association
* Request (including information element id and length). Use
* of this WPA IE is optional. If the driver generates the WPA
* IE, it can use pairwise_suite, group_suite, and
* key_mgmt_suite to select proper algorithms. In this case,
* the driver has to notify wpa_supplicant about the used WPA
* IE by generating an event that the interface code will
* convert into EVENT_ASSOCINFO data (see below).
*
* When using WPA2/IEEE 802.11i, wpa_ie is used for RSN IE
* instead. The driver can determine which version is used by
* looking at the first byte of the IE (0xdd for WPA, 0x30 for
* WPA2/RSN).
*
* When using WPS, wpa_ie is used for WPS IE instead of WPA/RSN IE.
*/
const u8 *wpa_ie;
/**
* wpa_ie_len - length of the wpa_ie
*/
size_t wpa_ie_len;
/**
* wpa_proto - Bitfield of WPA_PROTO_* values to indicate WPA/WPA2
*/
unsigned int wpa_proto;
/**
* pairwise_suite - Selected pairwise cipher suite
*
* This is usually ignored if @wpa_ie is used.
*/
enum wpa_cipher pairwise_suite;
/**
* group_suite - Selected group cipher suite
*
* This is usually ignored if @wpa_ie is used.
*/
enum wpa_cipher group_suite;
/**
* key_mgmt_suite - Selected key management suite
*
* This is usually ignored if @wpa_ie is used.
*/
enum wpa_key_mgmt key_mgmt_suite;
/**
* auth_alg - Allowed authentication algorithms
* Bit field of WPA_AUTH_ALG_*
*/
int auth_alg;
/**
* mode - Operation mode (infra/ibss) IEEE80211_MODE_*
*/
int mode;
/**
* wep_key - WEP keys for static WEP configuration
*/
const u8 *wep_key[4];
/**
* wep_key_len - WEP key length for static WEP configuration
*/
size_t wep_key_len[4];
/**
* wep_tx_keyidx - WEP TX key index for static WEP configuration
*/
int wep_tx_keyidx;
/**
* mgmt_frame_protection - IEEE 802.11w management frame protection
*/
enum mfp_options mgmt_frame_protection;
/**
* ft_ies - IEEE 802.11r / FT information elements
* If the supplicant is using IEEE 802.11r (FT) and has the needed keys
* for fast transition, this parameter is set to include the IEs that
* are to be sent in the next FT Authentication Request message.
* update_ft_ies() handler is called to update the IEs for further
* FT messages in the sequence.
*
* The driver should use these IEs only if the target AP is advertising
* the same mobility domain as the one included in the MDIE here.
*
* In ap_scan=2 mode, the driver can use these IEs when moving to a new
* AP after the initial association. These IEs can only be used if the
* target AP is advertising support for FT and is using the same MDIE
* and SSID as the current AP.
*
* The driver is responsible for reporting the FT IEs received from the
* AP's response using wpa_supplicant_event() with EVENT_FT_RESPONSE
* type. update_ft_ies() handler will then be called with the FT IEs to
* include in the next frame in the authentication sequence.
*/
const u8 *ft_ies;
/**
* ft_ies_len - Length of ft_ies in bytes
*/
size_t ft_ies_len;
/**
* ft_md - FT Mobility domain (6 octets) (also included inside ft_ies)
*
* This value is provided to allow the driver interface easier access
* to the current mobility domain. This value is set to %NULL if no
* mobility domain is currently active.
*/
const u8 *ft_md;
/**
* passphrase - RSN passphrase for PSK
*
* This value is made available only for WPA/WPA2-Personal (PSK) and
* only for drivers that set WPA_DRIVER_FLAGS_4WAY_HANDSHAKE. This is
* the 8..63 character ASCII passphrase, if available. Please note that
* this can be %NULL if passphrase was not used to generate the PSK. In
* that case, the psk field must be used to fetch the PSK.
*/
const char *passphrase;
/**
* psk - RSN PSK (alternative for passphrase for PSK)
*
* This value is made available only for WPA/WPA2-Personal (PSK) and
* only for drivers that set WPA_DRIVER_FLAGS_4WAY_HANDSHAKE. This is
* the 32-octet (256-bit) PSK, if available. The driver wrapper should
* be prepared to handle %NULL value as an error.
*/
const u8 *psk;
/**
* drop_unencrypted - Enable/disable unencrypted frame filtering
*
* Configure the driver to drop all non-EAPOL frames (both receive and
* transmit paths). Unencrypted EAPOL frames (ethertype 0x888e) must
* still be allowed for key negotiation.
*/
int drop_unencrypted;
/**
* prev_bssid - Previously used BSSID in this ESS
*
* When not %NULL, this is a request to use reassociation instead of
* association.
*/
const u8 *prev_bssid;
/**
* wps - WPS mode
*
* If the driver needs to do special configuration for WPS association,
* this variable provides more information on what type of association
* is being requested. Most drivers should not need ot use this.
*/
enum wps_mode wps;
/**
* p2p - Whether this connection is a P2P group
*/
int p2p;
/**
* uapsd - UAPSD parameters for the network
* -1 = do not change defaults
* AP mode: 1 = enabled, 0 = disabled
* STA mode: bits 0..3 UAPSD enabled for VO,VI,BK,BE
*/
int uapsd;
/**
* fixed_bssid - Whether to force this BSSID in IBSS mode
* 1 = Fix this BSSID and prevent merges.
* 0 = Do not fix BSSID.
*/
int fixed_bssid;
/**
* disable_ht - Disable HT (IEEE 802.11n) for this connection
*/
int disable_ht;
/**
* HT Capabilities over-rides. Only bits set in the mask will be used,
* and not all values are used by the kernel anyway. Currently, MCS,
* MPDU and MSDU fields are used.
*/
const u8 *htcaps; /* struct ieee80211_ht_capabilities * */
const u8 *htcaps_mask; /* struct ieee80211_ht_capabilities * */
#ifdef CONFIG_VHT_OVERRIDES
/**
* disable_vht - Disable VHT for this connection
*/
int disable_vht;
/**
* VHT capability overrides.
*/
const struct ieee80211_vht_capabilities *vhtcaps;
const struct ieee80211_vht_capabilities *vhtcaps_mask;
#endif /* CONFIG_VHT_OVERRIDES */
};
enum hide_ssid {
NO_SSID_HIDING,
HIDDEN_SSID_ZERO_LEN,
HIDDEN_SSID_ZERO_CONTENTS
};
struct wpa_driver_ap_params {
/**
* head - Beacon head from IEEE 802.11 header to IEs before TIM IE
*/
const u8 *head;
/**
* head_len - Length of the head buffer in octets
*/
size_t head_len;
/**
* tail - Beacon tail following TIM IE
*/
const u8 *tail;
/**
* tail_len - Length of the tail buffer in octets
*/
size_t tail_len;
/**
* dtim_period - DTIM period
*/
int dtim_period;
/**
* beacon_int - Beacon interval
*/
int beacon_int;
/**
* basic_rates: -1 terminated array of basic rates in 100 kbps
*
* This parameter can be used to set a specific basic rate set for the
* BSS. If %NULL, default basic rate set is used.
*/
int *basic_rates;
/**
* proberesp - Probe Response template
*
* This is used by drivers that reply to Probe Requests internally in
* AP mode and require the full Probe Response template.
*/
const u8 *proberesp;
/**
* proberesp_len - Length of the proberesp buffer in octets
*/
size_t proberesp_len;
/**
* ssid - The SSID to use in Beacon/Probe Response frames
*/
const u8 *ssid;
/**
* ssid_len - Length of the SSID (1..32)
*/
size_t ssid_len;
/**
* hide_ssid - Whether to hide the SSID
*/
enum hide_ssid hide_ssid;
/**
* pairwise_ciphers - WPA_CIPHER_* bitfield
*/
unsigned int pairwise_ciphers;
/**
* group_cipher - WPA_CIPHER_*
*/
unsigned int group_cipher;
/**
* key_mgmt_suites - WPA_KEY_MGMT_* bitfield
*/
unsigned int key_mgmt_suites;
/**
* auth_algs - WPA_AUTH_ALG_* bitfield
*/
unsigned int auth_algs;
/**
* wpa_version - WPA_PROTO_* bitfield
*/
unsigned int wpa_version;
/**
* privacy - Whether privacy is used in the BSS
*/
int privacy;
/**
* beacon_ies - WPS/P2P IE(s) for Beacon frames
*
* This is used to add IEs like WPS IE and P2P IE by drivers that do
* not use the full Beacon template.
*/
const struct wpabuf *beacon_ies;
/**
* proberesp_ies - P2P/WPS IE(s) for Probe Response frames
*
* This is used to add IEs like WPS IE and P2P IE by drivers that
* reply to Probe Request frames internally.
*/
const struct wpabuf *proberesp_ies;
/**
* assocresp_ies - WPS IE(s) for (Re)Association Response frames
*
* This is used to add IEs like WPS IE by drivers that reply to
* (Re)Association Request frames internally.
*/
const struct wpabuf *assocresp_ies;
/**
* isolate - Whether to isolate frames between associated stations
*
* If this is non-zero, the AP is requested to disable forwarding of
* frames between associated stations.
*/
int isolate;
/**
* cts_protect - Whether CTS protection is enabled
*/
int cts_protect;
/**
* preamble - Whether short preamble is enabled
*/
int preamble;
/**
* short_slot_time - Whether short slot time is enabled
*
* 0 = short slot time disable, 1 = short slot time enabled, -1 = do
* not set (e.g., when 802.11g mode is not in use)
*/
int short_slot_time;
/**
* ht_opmode - HT operation mode or -1 if HT not in use
*/
int ht_opmode;
/**
* interworking - Whether Interworking is enabled
*/
int interworking;
/**
* hessid - Homogeneous ESS identifier or %NULL if not set
*/
const u8 *hessid;
/**
* access_network_type - Access Network Type (0..15)
*
* This is used for filtering Probe Request frames when Interworking is
* enabled.
*/
u8 access_network_type;
/**
* ap_max_inactivity - Timeout in seconds to detect STA's inactivity
*
* This is used by driver which advertises this capability.
*/
int ap_max_inactivity;
/**
* disable_dgaf - Whether group-addressed frames are disabled
*/
int disable_dgaf;
};
/**
* struct wpa_driver_capa - Driver capability information
*/
struct wpa_driver_capa {
#define WPA_DRIVER_CAPA_KEY_MGMT_WPA 0x00000001
#define WPA_DRIVER_CAPA_KEY_MGMT_WPA2 0x00000002
#define WPA_DRIVER_CAPA_KEY_MGMT_WPA_PSK 0x00000004
#define WPA_DRIVER_CAPA_KEY_MGMT_WPA2_PSK 0x00000008
#define WPA_DRIVER_CAPA_KEY_MGMT_WPA_NONE 0x00000010
#define WPA_DRIVER_CAPA_KEY_MGMT_FT 0x00000020
#define WPA_DRIVER_CAPA_KEY_MGMT_FT_PSK 0x00000040
#define WPA_DRIVER_CAPA_KEY_MGMT_WAPI_PSK 0x00000080
unsigned int key_mgmt;
#define WPA_DRIVER_CAPA_ENC_WEP40 0x00000001
#define WPA_DRIVER_CAPA_ENC_WEP104 0x00000002
#define WPA_DRIVER_CAPA_ENC_TKIP 0x00000004
#define WPA_DRIVER_CAPA_ENC_CCMP 0x00000008
#define WPA_DRIVER_CAPA_ENC_WEP128 0x00000010
#define WPA_DRIVER_CAPA_ENC_GCMP 0x00000020
unsigned int enc;
#define WPA_DRIVER_AUTH_OPEN 0x00000001
#define WPA_DRIVER_AUTH_SHARED 0x00000002
#define WPA_DRIVER_AUTH_LEAP 0x00000004
unsigned int auth;
/* Driver generated WPA/RSN IE */
#define WPA_DRIVER_FLAGS_DRIVER_IE 0x00000001
/* Driver needs static WEP key setup after association command */
#define WPA_DRIVER_FLAGS_SET_KEYS_AFTER_ASSOC 0x00000002
/* unused: 0x00000004 */
/* Driver takes care of RSN 4-way handshake internally; PMK is configured with
* struct wpa_driver_ops::set_key using alg = WPA_ALG_PMK */
#define WPA_DRIVER_FLAGS_4WAY_HANDSHAKE 0x00000008
#define WPA_DRIVER_FLAGS_WIRED 0x00000010
/* Driver provides separate commands for authentication and association (SME in
* wpa_supplicant). */
#define WPA_DRIVER_FLAGS_SME 0x00000020
/* Driver supports AP mode */
#define WPA_DRIVER_FLAGS_AP 0x00000040
/* Driver needs static WEP key setup after association has been completed */
#define WPA_DRIVER_FLAGS_SET_KEYS_AFTER_ASSOC_DONE 0x00000080
/* Driver takes care of P2P management operations */
#define WPA_DRIVER_FLAGS_P2P_MGMT 0x00000100
/* Driver supports concurrent P2P operations */
#define WPA_DRIVER_FLAGS_P2P_CONCURRENT 0x00000200
/*
* Driver uses the initial interface as a dedicated management interface, i.e.,
* it cannot be used for P2P group operations or non-P2P purposes.
*/
#define WPA_DRIVER_FLAGS_P2P_DEDICATED_INTERFACE 0x00000400
/* This interface is P2P capable (P2P GO or P2P Client) */
#define WPA_DRIVER_FLAGS_P2P_CAPABLE 0x00000800
/* unused: 0x00001000 */
/*
* Driver uses the initial interface for P2P management interface and non-P2P
* purposes (e.g., connect to infra AP), but this interface cannot be used for
* P2P group operations.
*/
#define WPA_DRIVER_FLAGS_P2P_MGMT_AND_NON_P2P 0x00002000
/*
* Driver is known to use sane error codes, i.e., when it indicates that
* something (e.g., association) fails, there was indeed a failure and the
* operation does not end up getting completed successfully later.
*/
#define WPA_DRIVER_FLAGS_SANE_ERROR_CODES 0x00004000
/* Driver supports off-channel TX */
#define WPA_DRIVER_FLAGS_OFFCHANNEL_TX 0x00008000
/* Driver indicates TX status events for EAPOL Data frames */
#define WPA_DRIVER_FLAGS_EAPOL_TX_STATUS 0x00010000
/* Driver indicates TX status events for Deauth/Disassoc frames */
#define WPA_DRIVER_FLAGS_DEAUTH_TX_STATUS 0x00020000
/* Driver supports roaming (BSS selection) in firmware */
#define WPA_DRIVER_FLAGS_BSS_SELECTION 0x00040000
/* Driver supports operating as a TDLS peer */
#define WPA_DRIVER_FLAGS_TDLS_SUPPORT 0x00080000
/* Driver requires external TDLS setup/teardown/discovery */
#define WPA_DRIVER_FLAGS_TDLS_EXTERNAL_SETUP 0x00100000
/* Driver indicates support for Probe Response offloading in AP mode */
#define WPA_DRIVER_FLAGS_PROBE_RESP_OFFLOAD 0x00200000
/* Driver supports U-APSD in AP mode */
#define WPA_DRIVER_FLAGS_AP_UAPSD 0x00400000
/* Driver supports inactivity timer in AP mode */
#define WPA_DRIVER_FLAGS_INACTIVITY_TIMER 0x00800000
/* Driver expects user space implementation of MLME in AP mode */
#define WPA_DRIVER_FLAGS_AP_MLME 0x01000000
/* Driver supports SAE with user space SME */
#define WPA_DRIVER_FLAGS_SAE 0x02000000
/* Driver makes use of OBSS scan mechanism in wpa_supplicant */
#define WPA_DRIVER_FLAGS_OBSS_SCAN 0x04000000
/* Driver supports IBSS (Ad-hoc) mode */
#define WPA_DRIVER_FLAGS_IBSS 0x08000000
/* Driver supports radar detection */
#define WPA_DRIVER_FLAGS_RADAR 0x10000000
/* Driver supports a dedicated interface for P2P Device */
#define WPA_DRIVER_FLAGS_DEDICATED_P2P_DEVICE 0x20000000
unsigned int flags;
int max_scan_ssids;
int max_sched_scan_ssids;
int sched_scan_supported;
int max_match_sets;
/**
* max_remain_on_chan - Maximum remain-on-channel duration in msec
*/
unsigned int max_remain_on_chan;
/**
* max_stations - Maximum number of associated stations the driver
* supports in AP mode
*/
unsigned int max_stations;
/**
* probe_resp_offloads - Bitmap of supported protocols by the driver
* for Probe Response offloading.
*/
/* Driver Probe Response offloading support for WPS ver. 1 */
#define WPA_DRIVER_PROBE_RESP_OFFLOAD_WPS 0x00000001
/* Driver Probe Response offloading support for WPS ver. 2 */
#define WPA_DRIVER_PROBE_RESP_OFFLOAD_WPS2 0x00000002
/* Driver Probe Response offloading support for P2P */
#define WPA_DRIVER_PROBE_RESP_OFFLOAD_P2P 0x00000004
/* Driver Probe Response offloading support for IEEE 802.11u (Interworking) */
#define WPA_DRIVER_PROBE_RESP_OFFLOAD_INTERWORKING 0x00000008
unsigned int probe_resp_offloads;
unsigned int max_acl_mac_addrs;
/**
* Number of supported concurrent channels
*/
unsigned int num_multichan_concurrent;
/**
* extended_capa - extended capabilities in driver/device
*
* Must be allocated and freed by driver and the pointers must be
* valid for the lifetime of the driver, i.e., freed in deinit()
*/
const u8 *extended_capa, *extended_capa_mask;
unsigned int extended_capa_len;
};
struct hostapd_data;
struct hostap_sta_driver_data {
unsigned long rx_packets, tx_packets, rx_bytes, tx_bytes;
unsigned long current_tx_rate;
unsigned long inactive_msec;
unsigned long flags;
unsigned long num_ps_buf_frames;
unsigned long tx_retry_failed;
unsigned long tx_retry_count;
int last_rssi;
int last_ack_rssi;
};
struct hostapd_sta_add_params {
const u8 *addr;
u16 aid;
u16 capability;
const u8 *supp_rates;
size_t supp_rates_len;
u16 listen_interval;
const struct ieee80211_ht_capabilities *ht_capabilities;
const struct ieee80211_vht_capabilities *vht_capabilities;
u32 flags; /* bitmask of WPA_STA_* flags */
int set; /* Set STA parameters instead of add */
u8 qosinfo;
const u8 *ext_capab;
size_t ext_capab_len;
};
struct hostapd_freq_params {
int mode;
int freq;
int channel;
/* for HT */
int ht_enabled;
int sec_channel_offset; /* 0 = HT40 disabled, -1 = HT40 enabled,
* secondary channel below primary, 1 = HT40
* enabled, secondary channel above primary */
/* for VHT */
int vht_enabled;
/* valid for both HT and VHT, center_freq2 is non-zero
* only for bandwidth 80 and an 80+80 channel */
int center_freq1, center_freq2;
int bandwidth;
};
struct mac_address {
u8 addr[ETH_ALEN];
};
struct hostapd_acl_params {
u8 acl_policy;
unsigned int num_mac_acl;
struct mac_address mac_acl[0];
};
enum wpa_driver_if_type {
/**
* WPA_IF_STATION - Station mode interface
*/
WPA_IF_STATION,
/**
* WPA_IF_AP_VLAN - AP mode VLAN interface
*
* This interface shares its address and Beacon frame with the main
* BSS.
*/
WPA_IF_AP_VLAN,
/**
* WPA_IF_AP_BSS - AP mode BSS interface
*
* This interface has its own address and Beacon frame.
*/
WPA_IF_AP_BSS,
/**
* WPA_IF_P2P_GO - P2P Group Owner
*/
WPA_IF_P2P_GO,
/**
* WPA_IF_P2P_CLIENT - P2P Client
*/
WPA_IF_P2P_CLIENT,
/**
* WPA_IF_P2P_GROUP - P2P Group interface (will become either
* WPA_IF_P2P_GO or WPA_IF_P2P_CLIENT, but the role is not yet known)
*/
WPA_IF_P2P_GROUP,
/**
* WPA_IF_P2P_DEVICE - P2P Device interface is used to indentify the
* abstracted P2P Device function in the driver
*/
WPA_IF_P2P_DEVICE
};
struct wpa_init_params {
void *global_priv;
const u8 *bssid;
const char *ifname;
const u8 *ssid;
size_t ssid_len;
const char *test_socket;
int use_pae_group_addr;
char **bridge;
size_t num_bridge;
u8 *own_addr; /* buffer for writing own MAC address */
};
struct wpa_bss_params {
/** Interface name (for multi-SSID/VLAN support) */
const char *ifname;
/** Whether IEEE 802.1X or WPA/WPA2 is enabled */
int enabled;
int wpa;
int ieee802_1x;
int wpa_group;
int wpa_pairwise;
int wpa_key_mgmt;
int rsn_preauth;
enum mfp_options ieee80211w;
};
#define WPA_STA_AUTHORIZED BIT(0)
#define WPA_STA_WMM BIT(1)
#define WPA_STA_SHORT_PREAMBLE BIT(2)
#define WPA_STA_MFP BIT(3)
#define WPA_STA_TDLS_PEER BIT(4)
/**
* struct p2p_params - P2P parameters for driver-based P2P management
*/
struct p2p_params {
const char *dev_name;
u8 pri_dev_type[8];
#define DRV_MAX_SEC_DEV_TYPES 5
u8 sec_dev_type[DRV_MAX_SEC_DEV_TYPES][8];
size_t num_sec_dev_types;
};
enum tdls_oper {
TDLS_DISCOVERY_REQ,
TDLS_SETUP,
TDLS_TEARDOWN,
TDLS_ENABLE_LINK,
TDLS_DISABLE_LINK,
TDLS_ENABLE,
TDLS_DISABLE
};
enum wnm_oper {
WNM_SLEEP_ENTER_CONFIRM,
WNM_SLEEP_ENTER_FAIL,
WNM_SLEEP_EXIT_CONFIRM,
WNM_SLEEP_EXIT_FAIL,
WNM_SLEEP_TFS_REQ_IE_ADD, /* STA requests driver to add TFS req IE */
WNM_SLEEP_TFS_REQ_IE_NONE, /* STA requests empty TFS req IE */
WNM_SLEEP_TFS_REQ_IE_SET, /* AP requests driver to set TFS req IE for
* a STA */
WNM_SLEEP_TFS_RESP_IE_ADD, /* AP requests driver to add TFS resp IE
* for a STA */
WNM_SLEEP_TFS_RESP_IE_NONE, /* AP requests empty TFS resp IE */
WNM_SLEEP_TFS_RESP_IE_SET, /* AP requests driver to set TFS resp IE
* for a STA */
WNM_SLEEP_TFS_IE_DEL /* AP delete the TFS IE */
};
/* enum chan_width - Channel width definitions */
enum chan_width {
CHAN_WIDTH_20_NOHT,
CHAN_WIDTH_20,
CHAN_WIDTH_40,
CHAN_WIDTH_80,
CHAN_WIDTH_80P80,
CHAN_WIDTH_160,
CHAN_WIDTH_UNKNOWN
};
/**
* struct wpa_signal_info - Information about channel signal quality
*/
struct wpa_signal_info {
u32 frequency;
int above_threshold;
int current_signal;
int avg_signal;
int current_noise;
int current_txrate;
enum chan_width chanwidth;
int center_frq1;
int center_frq2;
};
/**
* struct wpa_driver_ops - Driver interface API definition
*
* This structure defines the API that each driver interface needs to implement
* for core wpa_supplicant code. All driver specific functionality is captured
* in this wrapper.
*/
struct wpa_driver_ops {
/** Name of the driver interface */
const char *name;
/** One line description of the driver interface */
const char *desc;
/**
* get_bssid - Get the current BSSID
* @priv: private driver interface data
* @bssid: buffer for BSSID (ETH_ALEN = 6 bytes)
*
* Returns: 0 on success, -1 on failure
*
* Query kernel driver for the current BSSID and copy it to bssid.
* Setting bssid to 00:00:00:00:00:00 is recommended if the STA is not
* associated.
*/
int (*get_bssid)(void *priv, u8 *bssid);
/**
* get_ssid - Get the current SSID
* @priv: private driver interface data
* @ssid: buffer for SSID (at least 32 bytes)
*
* Returns: Length of the SSID on success, -1 on failure
*
* Query kernel driver for the current SSID and copy it to ssid.
* Returning zero is recommended if the STA is not associated.
*
* Note: SSID is an array of octets, i.e., it is not nul terminated and
* can, at least in theory, contain control characters (including nul)
* and as such, should be processed as binary data, not a printable
* string.
*/
int (*get_ssid)(void *priv, u8 *ssid);
/**
* set_key - Configure encryption key
* @ifname: Interface name (for multi-SSID/VLAN support)
* @priv: private driver interface data
* @alg: encryption algorithm (%WPA_ALG_NONE, %WPA_ALG_WEP,
* %WPA_ALG_TKIP, %WPA_ALG_CCMP, %WPA_ALG_IGTK, %WPA_ALG_PMK,
* %WPA_ALG_GCMP);
* %WPA_ALG_NONE clears the key.
* @addr: Address of the peer STA (BSSID of the current AP when setting
* pairwise key in station mode), ff:ff:ff:ff:ff:ff for
* broadcast keys, %NULL for default keys that are used both for
* broadcast and unicast; when clearing keys, %NULL is used to
* indicate that both the broadcast-only and default key of the
* specified key index is to be cleared
* @key_idx: key index (0..3), usually 0 for unicast keys; 0..4095 for
* IGTK
* @set_tx: configure this key as the default Tx key (only used when
* driver does not support separate unicast/individual key
* @seq: sequence number/packet number, seq_len octets, the next
* packet number to be used for in replay protection; configured
* for Rx keys (in most cases, this is only used with broadcast
* keys and set to zero for unicast keys); %NULL if not set
* @seq_len: length of the seq, depends on the algorithm:
* TKIP: 6 octets, CCMP/GCMP: 6 octets, IGTK: 6 octets
* @key: key buffer; TKIP: 16-byte temporal key, 8-byte Tx Mic key,
* 8-byte Rx Mic Key
* @key_len: length of the key buffer in octets (WEP: 5 or 13,
* TKIP: 32, CCMP/GCMP: 16, IGTK: 16)
*
* Returns: 0 on success, -1 on failure
*
* Configure the given key for the kernel driver. If the driver
* supports separate individual keys (4 default keys + 1 individual),
* addr can be used to determine whether the key is default or
* individual. If only 4 keys are supported, the default key with key
* index 0 is used as the individual key. STA must be configured to use
* it as the default Tx key (set_tx is set) and accept Rx for all the
* key indexes. In most cases, WPA uses only key indexes 1 and 2 for
* broadcast keys, so key index 0 is available for this kind of
* configuration.
*
* Please note that TKIP keys include separate TX and RX MIC keys and
* some drivers may expect them in different order than wpa_supplicant
* is using. If the TX/RX keys are swapped, all TKIP encrypted packets
* will trigger Michael MIC errors. This can be fixed by changing the
* order of MIC keys by swapping te bytes 16..23 and 24..31 of the key
* in driver_*.c set_key() implementation, see driver_ndis.c for an
* example on how this can be done.
*/
int (*set_key)(const char *ifname, void *priv, enum wpa_alg alg,
const u8 *addr, int key_idx, int set_tx,
const u8 *seq, size_t seq_len,
const u8 *key, size_t key_len);
/**
* init - Initialize driver interface
* @ctx: context to be used when calling wpa_supplicant functions,
* e.g., wpa_supplicant_event()
* @ifname: interface name, e.g., wlan0
*
* Returns: Pointer to private data, %NULL on failure
*
* Initialize driver interface, including event processing for kernel
* driver events (e.g., associated, scan results, Michael MIC failure).
* This function can allocate a private configuration data area for
* @ctx, file descriptor, interface name, etc. information that may be
* needed in future driver operations. If this is not used, non-NULL
* value will need to be returned because %NULL is used to indicate
* failure. The returned value will be used as 'void *priv' data for
* all other driver_ops functions.
*
* The main event loop (eloop.c) of wpa_supplicant can be used to
* register callback for read sockets (eloop_register_read_sock()).
*
* See below for more information about events and
* wpa_supplicant_event() function.
*/
void * (*init)(void *ctx, const char *ifname);
/**
* deinit - Deinitialize driver interface
* @priv: private driver interface data from init()
*
* Shut down driver interface and processing of driver events. Free
* private data buffer if one was allocated in init() handler.
*/
void (*deinit)(void *priv);
/**
* set_param - Set driver configuration parameters
* @priv: private driver interface data from init()
* @param: driver specific configuration parameters
*
* Returns: 0 on success, -1 on failure
*
* Optional handler for notifying driver interface about configuration
* parameters (driver_param).
*/
int (*set_param)(void *priv, const char *param);
/**
* set_countermeasures - Enable/disable TKIP countermeasures
* @priv: private driver interface data
* @enabled: 1 = countermeasures enabled, 0 = disabled
*
* Returns: 0 on success, -1 on failure
*
* Configure TKIP countermeasures. When these are enabled, the driver
* should drop all received and queued frames that are using TKIP.
*/
int (*set_countermeasures)(void *priv, int enabled);
/**
* deauthenticate - Request driver to deauthenticate
* @priv: private driver interface data
* @addr: peer address (BSSID of the AP)
* @reason_code: 16-bit reason code to be sent in the deauthentication
* frame
*
* Returns: 0 on success, -1 on failure
*/
int (*deauthenticate)(void *priv, const u8 *addr, int reason_code);
/**
* associate - Request driver to associate
* @priv: private driver interface data
* @params: association parameters
*
* Returns: 0 on success, -1 on failure
*/
int (*associate)(void *priv,
struct wpa_driver_associate_params *params);
/**
* add_pmkid - Add PMKSA cache entry to the driver
* @priv: private driver interface data
* @bssid: BSSID for the PMKSA cache entry
* @pmkid: PMKID for the PMKSA cache entry
*
* Returns: 0 on success, -1 on failure
*
* This function is called when a new PMK is received, as a result of
* either normal authentication or RSN pre-authentication.
*
* If the driver generates RSN IE, i.e., it does not use wpa_ie in
* associate(), add_pmkid() can be used to add new PMKSA cache entries
* in the driver. If the driver uses wpa_ie from wpa_supplicant, this
* driver_ops function does not need to be implemented. Likewise, if
* the driver does not support WPA, this function is not needed.
*/
int (*add_pmkid)(void *priv, const u8 *bssid, const u8 *pmkid);
/**
* remove_pmkid - Remove PMKSA cache entry to the driver
* @priv: private driver interface data
* @bssid: BSSID for the PMKSA cache entry
* @pmkid: PMKID for the PMKSA cache entry
*
* Returns: 0 on success, -1 on failure
*
* This function is called when the supplicant drops a PMKSA cache
* entry for any reason.
*
* If the driver generates RSN IE, i.e., it does not use wpa_ie in
* associate(), remove_pmkid() can be used to synchronize PMKSA caches
* between the driver and wpa_supplicant. If the driver uses wpa_ie
* from wpa_supplicant, this driver_ops function does not need to be
* implemented. Likewise, if the driver does not support WPA, this
* function is not needed.
*/
int (*remove_pmkid)(void *priv, const u8 *bssid, const u8 *pmkid);
/**
* flush_pmkid - Flush PMKSA cache
* @priv: private driver interface data
*
* Returns: 0 on success, -1 on failure
*
* This function is called when the supplicant drops all PMKSA cache
* entries for any reason.
*
* If the driver generates RSN IE, i.e., it does not use wpa_ie in
* associate(), remove_pmkid() can be used to synchronize PMKSA caches
* between the driver and wpa_supplicant. If the driver uses wpa_ie
* from wpa_supplicant, this driver_ops function does not need to be
* implemented. Likewise, if the driver does not support WPA, this
* function is not needed.
*/
int (*flush_pmkid)(void *priv);
/**
* get_capa - Get driver capabilities
* @priv: private driver interface data
*
* Returns: 0 on success, -1 on failure
*
* Get driver/firmware/hardware capabilities.
*/
int (*get_capa)(void *priv, struct wpa_driver_capa *capa);
/**
* poll - Poll driver for association information
* @priv: private driver interface data
*
* This is an option callback that can be used when the driver does not
* provide event mechanism for association events. This is called when
* receiving WPA EAPOL-Key messages that require association
* information. The driver interface is supposed to generate associnfo
* event before returning from this callback function. In addition, the
* driver interface should generate an association event after having
* sent out associnfo.
*/
void (*poll)(void *priv);
/**
* get_ifname - Get interface name
* @priv: private driver interface data
*
* Returns: Pointer to the interface name. This can differ from the
* interface name used in init() call. Init() is called first.
*
* This optional function can be used to allow the driver interface to
* replace the interface name with something else, e.g., based on an
* interface mapping from a more descriptive name.
*/
const char * (*get_ifname)(void *priv);
/**
* get_mac_addr - Get own MAC address
* @priv: private driver interface data
*
* Returns: Pointer to own MAC address or %NULL on failure
*
* This optional function can be used to get the own MAC address of the
* device from the driver interface code. This is only needed if the
* l2_packet implementation for the OS does not provide easy access to
* a MAC address. */
const u8 * (*get_mac_addr)(void *priv);
/**
* send_eapol - Optional function for sending EAPOL packets
* @priv: private driver interface data
* @dest: Destination MAC address
* @proto: Ethertype
* @data: EAPOL packet starting with IEEE 802.1X header
* @data_len: Size of the EAPOL packet
*
* Returns: 0 on success, -1 on failure
*
* This optional function can be used to override l2_packet operations
* with driver specific functionality. If this function pointer is set,
* l2_packet module is not used at all and the driver interface code is
* responsible for receiving and sending all EAPOL packets. The
* received EAPOL packets are sent to core code with EVENT_EAPOL_RX
* event. The driver interface is required to implement get_mac_addr()
* handler if send_eapol() is used.
*/
int (*send_eapol)(void *priv, const u8 *dest, u16 proto,
const u8 *data, size_t data_len);
/**
* set_operstate - Sets device operating state to DORMANT or UP
* @priv: private driver interface data
* @state: 0 = dormant, 1 = up
* Returns: 0 on success, -1 on failure
*
* This is an optional function that can be used on operating systems
* that support a concept of controlling network device state from user
* space applications. This function, if set, gets called with
* state = 1 when authentication has been completed and with state = 0
* when connection is lost.
*/
int (*set_operstate)(void *priv, int state);
/**
* mlme_setprotection - MLME-SETPROTECTION.request primitive
* @priv: Private driver interface data
* @addr: Address of the station for which to set protection (may be
* %NULL for group keys)
* @protect_type: MLME_SETPROTECTION_PROTECT_TYPE_*
* @key_type: MLME_SETPROTECTION_KEY_TYPE_*
* Returns: 0 on success, -1 on failure
*
* This is an optional function that can be used to set the driver to
* require protection for Tx and/or Rx frames. This uses the layer
* interface defined in IEEE 802.11i-2004 clause 10.3.22.1
* (MLME-SETPROTECTION.request). Many drivers do not use explicit
* set protection operation; instead, they set protection implicitly
* based on configured keys.
*/
int (*mlme_setprotection)(void *priv, const u8 *addr, int protect_type,
int key_type);
/**
* get_hw_feature_data - Get hardware support data (channels and rates)
* @priv: Private driver interface data
* @num_modes: Variable for returning the number of returned modes
* flags: Variable for returning hardware feature flags
* Returns: Pointer to allocated hardware data on success or %NULL on
* failure. Caller is responsible for freeing this.
*/
struct hostapd_hw_modes * (*get_hw_feature_data)(void *priv,
u16 *num_modes,
u16 *flags);
/**
* send_mlme - Send management frame from MLME
* @priv: Private driver interface data
* @data: IEEE 802.11 management frame with IEEE 802.11 header
* @data_len: Size of the management frame
* @noack: Do not wait for this frame to be acked (disable retries)
* Returns: 0 on success, -1 on failure
*/
int (*send_mlme)(void *priv, const u8 *data, size_t data_len,
int noack);
/**
* update_ft_ies - Update FT (IEEE 802.11r) IEs
* @priv: Private driver interface data
* @md: Mobility domain (2 octets) (also included inside ies)
* @ies: FT IEs (MDIE, FTIE, ...) or %NULL to remove IEs
* @ies_len: Length of FT IEs in bytes
* Returns: 0 on success, -1 on failure
*
* The supplicant uses this callback to let the driver know that keying
* material for FT is available and that the driver can use the
* provided IEs in the next message in FT authentication sequence.
*
* This function is only needed for driver that support IEEE 802.11r
* (Fast BSS Transition).
*/
int (*update_ft_ies)(void *priv, const u8 *md, const u8 *ies,
size_t ies_len);
/**
* send_ft_action - Send FT Action frame (IEEE 802.11r)
* @priv: Private driver interface data
* @action: Action field value
* @target_ap: Target AP address
* @ies: FT IEs (MDIE, FTIE, ...) (FT Request action frame body)
* @ies_len: Length of FT IEs in bytes
* Returns: 0 on success, -1 on failure
*
* The supplicant uses this callback to request the driver to transmit
* an FT Action frame (action category 6) for over-the-DS fast BSS
* transition.
*/
int (*send_ft_action)(void *priv, u8 action, const u8 *target_ap,
const u8 *ies, size_t ies_len);
/**
* get_scan_results2 - Fetch the latest scan results
* @priv: private driver interface data
*
* Returns: Allocated buffer of scan results (caller is responsible for
* freeing the data structure) on success, NULL on failure
*/
struct wpa_scan_results * (*get_scan_results2)(void *priv);
/**
* set_country - Set country
* @priv: Private driver interface data
* @alpha2: country to which to switch to
* Returns: 0 on success, -1 on failure
*
* This function is for drivers which support some form
* of setting a regulatory domain.
*/
int (*set_country)(void *priv, const char *alpha2);
/**
* global_init - Global driver initialization
* Returns: Pointer to private data (global), %NULL on failure
*
* This optional function is called to initialize the driver wrapper
* for global data, i.e., data that applies to all interfaces. If this
* function is implemented, global_deinit() will also need to be
* implemented to free the private data. The driver will also likely
* use init2() function instead of init() to get the pointer to global
* data available to per-interface initializer.
*/
void * (*global_init)(void);
/**
* global_deinit - Global driver deinitialization
* @priv: private driver global data from global_init()
*
* Terminate any global driver related functionality and free the
* global data structure.
*/
void (*global_deinit)(void *priv);
/**
* init2 - Initialize driver interface (with global data)
* @ctx: context to be used when calling wpa_supplicant functions,
* e.g., wpa_supplicant_event()
* @ifname: interface name, e.g., wlan0
* @global_priv: private driver global data from global_init()
* Returns: Pointer to private data, %NULL on failure
*
* This function can be used instead of init() if the driver wrapper
* uses global data.
*/
void * (*init2)(void *ctx, const char *ifname, void *global_priv);
/**
* get_interfaces - Get information about available interfaces
* @global_priv: private driver global data from global_init()
* Returns: Allocated buffer of interface information (caller is
* responsible for freeing the data structure) on success, NULL on
* failure
*/
struct wpa_interface_info * (*get_interfaces)(void *global_priv);
/**
* scan2 - Request the driver to initiate scan
* @priv: private driver interface data
* @params: Scan parameters
*
* Returns: 0 on success, -1 on failure
*
* Once the scan results are ready, the driver should report scan
* results event for wpa_supplicant which will eventually request the
* results with wpa_driver_get_scan_results2().
*/
int (*scan2)(void *priv, struct wpa_driver_scan_params *params);
/**
* authenticate - Request driver to authenticate
* @priv: private driver interface data
* @params: authentication parameters
* Returns: 0 on success, -1 on failure
*
* This is an optional function that can be used with drivers that
* support separate authentication and association steps, i.e., when
* wpa_supplicant can act as the SME. If not implemented, associate()
* function is expected to take care of IEEE 802.11 authentication,
* too.
*/
int (*authenticate)(void *priv,
struct wpa_driver_auth_params *params);
/**
* set_ap - Set Beacon and Probe Response information for AP mode
* @priv: Private driver interface data
* @params: Parameters to use in AP mode
*
* This function is used to configure Beacon template and/or extra IEs
* to add for Beacon and Probe Response frames for the driver in
* AP mode. The driver is responsible for building the full Beacon
* frame by concatenating the head part with TIM IE generated by the
* driver/firmware and finishing with the tail part. Depending on the
* driver architectue, this can be done either by using the full
* template or the set of additional IEs (e.g., WPS and P2P IE).
* Similarly, Probe Response processing depends on the driver design.
* If the driver (or firmware) takes care of replying to Probe Request
* frames, the extra IEs provided here needs to be added to the Probe
* Response frames.
*
* Returns: 0 on success, -1 on failure
*/
int (*set_ap)(void *priv, struct wpa_driver_ap_params *params);
/**
* set_acl - Set ACL in AP mode
* @priv: Private driver interface data
* @params: Parameters to configure ACL
* Returns: 0 on success, -1 on failure
*
* This is used only for the drivers which support MAC address ACL.
*/
int (*set_acl)(void *priv, struct hostapd_acl_params *params);
/**
* hapd_init - Initialize driver interface (hostapd only)
* @hapd: Pointer to hostapd context
* @params: Configuration for the driver wrapper
* Returns: Pointer to private data, %NULL on failure
*
* This function is used instead of init() or init2() when the driver
* wrapper is used with hostapd.
*/
void * (*hapd_init)(struct hostapd_data *hapd,
struct wpa_init_params *params);
/**
* hapd_deinit - Deinitialize driver interface (hostapd only)
* @priv: Private driver interface data from hapd_init()
*/
void (*hapd_deinit)(void *priv);
/**
* set_ieee8021x - Enable/disable IEEE 802.1X support (AP only)
* @priv: Private driver interface data
* @params: BSS parameters
* Returns: 0 on success, -1 on failure
*
* This is an optional function to configure the kernel driver to
* enable/disable IEEE 802.1X support and set WPA/WPA2 parameters. This
* can be left undefined (set to %NULL) if IEEE 802.1X support is
* always enabled and the driver uses set_ap() to set WPA/RSN IE
* for Beacon frames.
*
* DEPRECATED - use set_ap() instead
*/
int (*set_ieee8021x)(void *priv, struct wpa_bss_params *params);
/**
* set_privacy - Enable/disable privacy (AP only)
* @priv: Private driver interface data
* @enabled: 1 = privacy enabled, 0 = disabled
* Returns: 0 on success, -1 on failure
*
* This is an optional function to configure privacy field in the
* kernel driver for Beacon frames. This can be left undefined (set to
* %NULL) if the driver uses the Beacon template from set_ap().
*
* DEPRECATED - use set_ap() instead
*/
int (*set_privacy)(void *priv, int enabled);
/**
* get_seqnum - Fetch the current TSC/packet number (AP only)
* @ifname: The interface name (main or virtual)
* @priv: Private driver interface data
* @addr: MAC address of the station or %NULL for group keys
* @idx: Key index
* @seq: Buffer for returning the latest used TSC/packet number
* Returns: 0 on success, -1 on failure
*
* This function is used to fetch the last used TSC/packet number for
* a TKIP, CCMP, GCMP, or BIP/IGTK key. It is mainly used with group
* keys, so there is no strict requirement on implementing support for
* unicast keys (i.e., addr != %NULL).
*/
int (*get_seqnum)(const char *ifname, void *priv, const u8 *addr,
int idx, u8 *seq);
/**
* flush - Flush all association stations (AP only)
* @priv: Private driver interface data
* Returns: 0 on success, -1 on failure
*
* This function requests the driver to disassociate all associated
* stations. This function does not need to be implemented if the
* driver does not process association frames internally.
*/
int (*flush)(void *priv);
/**
* set_generic_elem - Add IEs into Beacon/Probe Response frames (AP)
* @priv: Private driver interface data
* @elem: Information elements
* @elem_len: Length of the elem buffer in octets
* Returns: 0 on success, -1 on failure
*
* This is an optional function to add information elements in the
* kernel driver for Beacon and Probe Response frames. This can be left
* undefined (set to %NULL) if the driver uses the Beacon template from
* set_ap().
*
* DEPRECATED - use set_ap() instead
*/
int (*set_generic_elem)(void *priv, const u8 *elem, size_t elem_len);
/**
* read_sta_data - Fetch station data
* @priv: Private driver interface data
* @data: Buffer for returning station information
* @addr: MAC address of the station
* Returns: 0 on success, -1 on failure
*/
int (*read_sta_data)(void *priv, struct hostap_sta_driver_data *data,
const u8 *addr);
/**
* hapd_send_eapol - Send an EAPOL packet (AP only)
* @priv: private driver interface data
* @addr: Destination MAC address
* @data: EAPOL packet starting with IEEE 802.1X header
* @data_len: Length of the EAPOL packet in octets
* @encrypt: Whether the frame should be encrypted
* @own_addr: Source MAC address
* @flags: WPA_STA_* flags for the destination station
*
* Returns: 0 on success, -1 on failure
*/
int (*hapd_send_eapol)(void *priv, const u8 *addr, const u8 *data,
size_t data_len, int encrypt,
const u8 *own_addr, u32 flags);
/**
* sta_deauth - Deauthenticate a station (AP only)
* @priv: Private driver interface data
* @own_addr: Source address and BSSID for the Deauthentication frame
* @addr: MAC address of the station to deauthenticate
* @reason: Reason code for the Deauthentiation frame
* Returns: 0 on success, -1 on failure
*
* This function requests a specific station to be deauthenticated and
* a Deauthentication frame to be sent to it.
*/
int (*sta_deauth)(void *priv, const u8 *own_addr, const u8 *addr,
int reason);
/**
* sta_disassoc - Disassociate a station (AP only)
* @priv: Private driver interface data
* @own_addr: Source address and BSSID for the Disassociation frame
* @addr: MAC address of the station to disassociate
* @reason: Reason code for the Disassociation frame
* Returns: 0 on success, -1 on failure
*
* This function requests a specific station to be disassociated and
* a Disassociation frame to be sent to it.
*/
int (*sta_disassoc)(void *priv, const u8 *own_addr, const u8 *addr,
int reason);
/**
* sta_remove - Remove a station entry (AP only)
* @priv: Private driver interface data
* @addr: MAC address of the station to be removed
* Returns: 0 on success, -1 on failure
*/
int (*sta_remove)(void *priv, const u8 *addr);
/**
* hapd_get_ssid - Get the current SSID (AP only)
* @priv: Private driver interface data
* @buf: Buffer for returning the SSID
* @len: Maximum length of the buffer
* Returns: Length of the SSID on success, -1 on failure
*
* This function need not be implemented if the driver uses Beacon
* template from set_ap() and does not reply to Probe Request frames.
*/
int (*hapd_get_ssid)(void *priv, u8 *buf, int len);
/**
* hapd_set_ssid - Set SSID (AP only)
* @priv: Private driver interface data
* @buf: SSID
* @len: Length of the SSID in octets
* Returns: 0 on success, -1 on failure
*
* DEPRECATED - use set_ap() instead
*/
int (*hapd_set_ssid)(void *priv, const u8 *buf, int len);
/**
* hapd_set_countermeasures - Enable/disable TKIP countermeasures (AP)
* @priv: Private driver interface data
* @enabled: 1 = countermeasures enabled, 0 = disabled
* Returns: 0 on success, -1 on failure
*
* This need not be implemented if the driver does not take care of
* association processing.
*/
int (*hapd_set_countermeasures)(void *priv, int enabled);
/**
* sta_add - Add a station entry
* @priv: Private driver interface data
* @params: Station parameters
* Returns: 0 on success, -1 on failure
*
* This function is used to add a station entry to the driver once the
* station has completed association. This is only used if the driver
* does not take care of association processing.
*
* With TDLS, this function is also used to add or set (params->set 1)
* TDLS peer entries.
*/
int (*sta_add)(void *priv, struct hostapd_sta_add_params *params);
/**
* get_inact_sec - Get station inactivity duration (AP only)
* @priv: Private driver interface data
* @addr: Station address
* Returns: Number of seconds station has been inactive, -1 on failure
*/
int (*get_inact_sec)(void *priv, const u8 *addr);
/**
* sta_clear_stats - Clear station statistics (AP only)
* @priv: Private driver interface data
* @addr: Station address
* Returns: 0 on success, -1 on failure
*/
int (*sta_clear_stats)(void *priv, const u8 *addr);
/**
* set_freq - Set channel/frequency (AP only)
* @priv: Private driver interface data
* @freq: Channel parameters
* Returns: 0 on success, -1 on failure
*/
int (*set_freq)(void *priv, struct hostapd_freq_params *freq);
/**
* set_rts - Set RTS threshold
* @priv: Private driver interface data
* @rts: RTS threshold in octets
* Returns: 0 on success, -1 on failure
*/
int (*set_rts)(void *priv, int rts);
/**
* set_frag - Set fragmentation threshold
* @priv: Private driver interface data
* @frag: Fragmentation threshold in octets
* Returns: 0 on success, -1 on failure
*/
int (*set_frag)(void *priv, int frag);
/**
* sta_set_flags - Set station flags (AP only)
* @priv: Private driver interface data
* @addr: Station address
* @total_flags: Bitmap of all WPA_STA_* flags currently set
* @flags_or: Bitmap of WPA_STA_* flags to add
* @flags_and: Bitmap of WPA_STA_* flags to us as a mask
* Returns: 0 on success, -1 on failure
*/
int (*sta_set_flags)(void *priv, const u8 *addr,
int total_flags, int flags_or, int flags_and);
/**
* set_tx_queue_params - Set TX queue parameters
* @priv: Private driver interface data
* @queue: Queue number (0 = VO, 1 = VI, 2 = BE, 3 = BK)
* @aifs: AIFS
* @cw_min: cwMin
* @cw_max: cwMax
* @burst_time: Maximum length for bursting in 0.1 msec units
*/
int (*set_tx_queue_params)(void *priv, int queue, int aifs, int cw_min,
int cw_max, int burst_time);
/**
* if_add - Add a virtual interface
* @priv: Private driver interface data
* @type: Interface type
* @ifname: Interface name for the new virtual interface
* @addr: Local address to use for the interface or %NULL to use the
* parent interface address
* @bss_ctx: BSS context for %WPA_IF_AP_BSS interfaces
* @drv_priv: Pointer for overwriting the driver context or %NULL if
* not allowed (applies only to %WPA_IF_AP_BSS type)
* @force_ifname: Buffer for returning an interface name that the
* driver ended up using if it differs from the requested ifname
* @if_addr: Buffer for returning the allocated interface address
* (this may differ from the requested addr if the driver cannot
* change interface address)
* @bridge: Bridge interface to use or %NULL if no bridge configured
* Returns: 0 on success, -1 on failure
*/
int (*if_add)(void *priv, enum wpa_driver_if_type type,
const char *ifname, const u8 *addr, void *bss_ctx,
void **drv_priv, char *force_ifname, u8 *if_addr,
const char *bridge);
/**
* if_remove - Remove a virtual interface
* @priv: Private driver interface data
* @type: Interface type
* @ifname: Interface name of the virtual interface to be removed
* Returns: 0 on success, -1 on failure
*/
int (*if_remove)(void *priv, enum wpa_driver_if_type type,
const char *ifname);
/**
* set_sta_vlan - Bind a station into a specific interface (AP only)
* @priv: Private driver interface data
* @ifname: Interface (main or virtual BSS or VLAN)
* @addr: MAC address of the associated station
* @vlan_id: VLAN ID
* Returns: 0 on success, -1 on failure
*
* This function is used to bind a station to a specific virtual
* interface. It is only used if when virtual interfaces are supported,
* e.g., to assign stations to different VLAN interfaces based on
* information from a RADIUS server. This allows separate broadcast
* domains to be used with a single BSS.
*/
int (*set_sta_vlan)(void *priv, const u8 *addr, const char *ifname,
int vlan_id);
/**
* commit - Optional commit changes handler (AP only)
* @priv: driver private data
* Returns: 0 on success, -1 on failure
*
* This optional handler function can be registered if the driver
* interface implementation needs to commit changes (e.g., by setting
* network interface up) at the end of initial configuration. If set,
* this handler will be called after initial setup has been completed.
*/
int (*commit)(void *priv);
/**
* send_ether - Send an ethernet packet (AP only)
* @priv: private driver interface data
* @dst: Destination MAC address
* @src: Source MAC address
* @proto: Ethertype
* @data: EAPOL packet starting with IEEE 802.1X header
* @data_len: Length of the EAPOL packet in octets
* Returns: 0 on success, -1 on failure
*/
int (*send_ether)(void *priv, const u8 *dst, const u8 *src, u16 proto,
const u8 *data, size_t data_len);
/**
* set_radius_acl_auth - Notification of RADIUS ACL change
* @priv: Private driver interface data
* @mac: MAC address of the station
* @accepted: Whether the station was accepted
* @session_timeout: Session timeout for the station
* Returns: 0 on success, -1 on failure
*/
int (*set_radius_acl_auth)(void *priv, const u8 *mac, int accepted,
u32 session_timeout);
/**
* set_radius_acl_expire - Notification of RADIUS ACL expiration
* @priv: Private driver interface data
* @mac: MAC address of the station
* Returns: 0 on success, -1 on failure
*/
int (*set_radius_acl_expire)(void *priv, const u8 *mac);
/**
* set_ap_wps_ie - Add WPS IE(s) into Beacon/Probe Response frames (AP)
* @priv: Private driver interface data
* @beacon: WPS IE(s) for Beacon frames or %NULL to remove extra IE(s)
* @proberesp: WPS IE(s) for Probe Response frames or %NULL to remove
* extra IE(s)
* @assocresp: WPS IE(s) for (Re)Association Response frames or %NULL
* to remove extra IE(s)
* Returns: 0 on success, -1 on failure
*
* This is an optional function to add WPS IE in the kernel driver for
* Beacon and Probe Response frames. This can be left undefined (set
* to %NULL) if the driver uses the Beacon template from set_ap()
* and does not process Probe Request frames. If the driver takes care
* of (Re)Association frame processing, the assocresp buffer includes
* WPS IE(s) that need to be added to (Re)Association Response frames
* whenever a (Re)Association Request frame indicated use of WPS.
*
* This will also be used to add P2P IE(s) into Beacon/Probe Response
* frames when operating as a GO. The driver is responsible for adding
* timing related attributes (e.g., NoA) in addition to the IEs
* included here by appending them after these buffers. This call is
* also used to provide Probe Response IEs for P2P Listen state
* operations for drivers that generate the Probe Response frames
* internally.
*
* DEPRECATED - use set_ap() instead
*/
int (*set_ap_wps_ie)(void *priv, const struct wpabuf *beacon,
const struct wpabuf *proberesp,
const struct wpabuf *assocresp);
/**
* set_supp_port - Set IEEE 802.1X Supplicant Port status
* @priv: Private driver interface data
* @authorized: Whether the port is authorized
* Returns: 0 on success, -1 on failure
*/
int (*set_supp_port)(void *priv, int authorized);
/**
* set_wds_sta - Bind a station into a 4-address WDS (AP only)
* @priv: Private driver interface data
* @addr: MAC address of the associated station
* @aid: Association ID
* @val: 1 = bind to 4-address WDS; 0 = unbind
* @bridge_ifname: Bridge interface to use for the WDS station or %NULL
* to indicate that bridge is not to be used
* @ifname_wds: Buffer to return the interface name for the new WDS
* station or %NULL to indicate name is not returned.
* Returns: 0 on success, -1 on failure
*/
int (*set_wds_sta)(void *priv, const u8 *addr, int aid, int val,
const char *bridge_ifname, char *ifname_wds);
/**
* send_action - Transmit an Action frame
* @priv: Private driver interface data
* @freq: Frequency (in MHz) of the channel
* @wait: Time to wait off-channel for a response (in ms), or zero
* @dst: Destination MAC address (Address 1)
* @src: Source MAC address (Address 2)
* @bssid: BSSID (Address 3)
* @data: Frame body
* @data_len: data length in octets
@ @no_cck: Whether CCK rates must not be used to transmit this frame
* Returns: 0 on success, -1 on failure
*
* This command can be used to request the driver to transmit an action
* frame to the specified destination.
*
* If the %WPA_DRIVER_FLAGS_OFFCHANNEL_TX flag is set, the frame will
* be transmitted on the given channel and the device will wait for a
* response on that channel for the given wait time.
*
* If the flag is not set, the wait time will be ignored. In this case,
* if a remain-on-channel duration is in progress, the frame must be
* transmitted on that channel; alternatively the frame may be sent on
* the current operational channel (if in associated state in station
* mode or while operating as an AP.)
*/
int (*send_action)(void *priv, unsigned int freq, unsigned int wait,
const u8 *dst, const u8 *src, const u8 *bssid,
const u8 *data, size_t data_len, int no_cck);
/**
* send_action_cancel_wait - Cancel action frame TX wait
* @priv: Private driver interface data
*
* This command cancels the wait time associated with sending an action
* frame. It is only available when %WPA_DRIVER_FLAGS_OFFCHANNEL_TX is
* set in the driver flags.
*/
void (*send_action_cancel_wait)(void *priv);
/**
* remain_on_channel - Remain awake on a channel
* @priv: Private driver interface data
* @freq: Frequency (in MHz) of the channel
* @duration: Duration in milliseconds
* Returns: 0 on success, -1 on failure
*
* This command is used to request the driver to remain awake on the
* specified channel for the specified duration and report received
* Action frames with EVENT_RX_ACTION events. Optionally, received
* Probe Request frames may also be requested to be reported by calling
* probe_req_report(). These will be reported with EVENT_RX_PROBE_REQ.
*
* The driver may not be at the requested channel when this function
* returns, i.e., the return code is only indicating whether the
* request was accepted. The caller will need to wait until the
* EVENT_REMAIN_ON_CHANNEL event indicates that the driver has
* completed the channel change. This may take some time due to other
* need for the radio and the caller should be prepared to timing out
* its wait since there are no guarantees on when this request can be
* executed.
*/
int (*remain_on_channel)(void *priv, unsigned int freq,
unsigned int duration);
/**
* cancel_remain_on_channel - Cancel remain-on-channel operation
* @priv: Private driver interface data
*
* This command can be used to cancel a remain-on-channel operation
* before its originally requested duration has passed. This could be
* used, e.g., when remain_on_channel() is used to request extra time
* to receive a response to an Action frame and the response is
* received when there is still unneeded time remaining on the
* remain-on-channel operation.
*/
int (*cancel_remain_on_channel)(void *priv);
/**
* probe_req_report - Request Probe Request frames to be indicated
* @priv: Private driver interface data
* @report: Whether to report received Probe Request frames
* Returns: 0 on success, -1 on failure (or if not supported)
*
* This command can be used to request the driver to indicate when
* Probe Request frames are received with EVENT_RX_PROBE_REQ events.
* Since this operation may require extra resources, e.g., due to less
* optimal hardware/firmware RX filtering, many drivers may disable
* Probe Request reporting at least in station mode. This command is
* used to notify the driver when the Probe Request frames need to be
* reported, e.g., during remain-on-channel operations.
*/
int (*probe_req_report)(void *priv, int report);
/**
* deinit_ap - Deinitialize AP mode
* @priv: Private driver interface data
* Returns: 0 on success, -1 on failure (or if not supported)
*
* This optional function can be used to disable AP mode related
* configuration. If the interface was not dynamically added,
* change the driver mode to station mode to allow normal station
* operations like scanning to be completed.
*/
int (*deinit_ap)(void *priv);
/**
* deinit_p2p_cli - Deinitialize P2P client mode
* @priv: Private driver interface data
* Returns: 0 on success, -1 on failure (or if not supported)
*
* This optional function can be used to disable P2P client mode. If the
* interface was not dynamically added, change the interface type back
* to station mode.
*/
int (*deinit_p2p_cli)(void *priv);
/**
* suspend - Notification on system suspend/hibernate event
* @priv: Private driver interface data
*/
void (*suspend)(void *priv);
/**
* resume - Notification on system resume/thaw event
* @priv: Private driver interface data
*/
void (*resume)(void *priv);
/**
* signal_monitor - Set signal monitoring parameters
* @priv: Private driver interface data
* @threshold: Threshold value for signal change events; 0 = disabled
* @hysteresis: Minimum change in signal strength before indicating a
* new event
* Returns: 0 on success, -1 on failure (or if not supported)
*
* This function can be used to configure monitoring of signal strength
* with the current AP. Whenever signal strength drops below the
* %threshold value or increases above it, EVENT_SIGNAL_CHANGE event
* should be generated assuming the signal strength has changed at
* least %hysteresis from the previously indicated signal change event.
*/
int (*signal_monitor)(void *priv, int threshold, int hysteresis);
/**
* send_frame - Send IEEE 802.11 frame (testing use only)
* @priv: Private driver interface data
* @data: IEEE 802.11 frame with IEEE 802.11 header
* @data_len: Size of the frame
* @encrypt: Whether to encrypt the frame (if keys are set)
* Returns: 0 on success, -1 on failure
*
* This function is only used for debugging purposes and is not
* required to be implemented for normal operations.
*/
int (*send_frame)(void *priv, const u8 *data, size_t data_len,
int encrypt);
/**
* shared_freq - Get operating frequency of shared interface(s)
* @priv: Private driver interface data
* Returns: Operating frequency in MHz, 0 if no shared operation in
* use, or -1 on failure
*
* This command can be used to request the current operating frequency
* of any virtual interface that shares the same radio to provide
* information for channel selection for other virtual interfaces.
*/
int (*shared_freq)(void *priv);
/**
* get_noa - Get current Notice of Absence attribute payload
* @priv: Private driver interface data
* @buf: Buffer for returning NoA
* @buf_len: Buffer length in octets
* Returns: Number of octets used in buf, 0 to indicate no NoA is being
* advertized, or -1 on failure
*
* This function is used to fetch the current Notice of Absence
* attribute value from GO.
*/
int (*get_noa)(void *priv, u8 *buf, size_t buf_len);
/**
* set_noa - Set Notice of Absence parameters for GO (testing)
* @priv: Private driver interface data
* @count: Count
* @start: Start time in ms from next TBTT
* @duration: Duration in ms
* Returns: 0 on success or -1 on failure
*
* This function is used to set Notice of Absence parameters for GO. It
* is used only for testing. To disable NoA, all parameters are set to
* 0.
*/
int (*set_noa)(void *priv, u8 count, int start, int duration);
/**
* set_p2p_powersave - Set P2P power save options
* @priv: Private driver interface data
* @legacy_ps: 0 = disable, 1 = enable, 2 = maximum PS, -1 = no change
* @opp_ps: 0 = disable, 1 = enable, -1 = no change
* @ctwindow: 0.. = change (msec), -1 = no change
* Returns: 0 on success or -1 on failure
*/
int (*set_p2p_powersave)(void *priv, int legacy_ps, int opp_ps,
int ctwindow);
/**
* ampdu - Enable/disable aggregation
* @priv: Private driver interface data
* @ampdu: 1/0 = enable/disable A-MPDU aggregation
* Returns: 0 on success or -1 on failure
*/
int (*ampdu)(void *priv, int ampdu);
/**
* get_radio_name - Get physical radio name for the device
* @priv: Private driver interface data
* Returns: Radio name or %NULL if not known
*
* The returned data must not be modified by the caller. It is assumed
* that any interface that has the same radio name as another is
* sharing the same physical radio. This information can be used to
* share scan results etc. information between the virtual interfaces
* to speed up various operations.
*/
const char * (*get_radio_name)(void *priv);
/**
* p2p_find - Start P2P Device Discovery
* @priv: Private driver interface data
* @timeout: Timeout for find operation in seconds or 0 for no timeout
* @type: Device Discovery type (enum p2p_discovery_type)
* Returns: 0 on success, -1 on failure
*
* This function is only used if the driver implements P2P management,
* i.e., if it sets WPA_DRIVER_FLAGS_P2P_MGMT in
* struct wpa_driver_capa.
*/
int (*p2p_find)(void *priv, unsigned int timeout, int type);
/**
* p2p_stop_find - Stop P2P Device Discovery
* @priv: Private driver interface data
* Returns: 0 on success, -1 on failure
*
* This function is only used if the driver implements P2P management,
* i.e., if it sets WPA_DRIVER_FLAGS_P2P_MGMT in
* struct wpa_driver_capa.
*/
int (*p2p_stop_find)(void *priv);
/**
* p2p_listen - Start P2P Listen state for specified duration
* @priv: Private driver interface data
* @timeout: Listen state duration in milliseconds
* Returns: 0 on success, -1 on failure
*
* This function can be used to request the P2P module to keep the
* device discoverable on the listen channel for an extended set of
* time. At least in its current form, this is mainly used for testing
* purposes and may not be of much use for normal P2P operations.
*
* This function is only used if the driver implements P2P management,
* i.e., if it sets WPA_DRIVER_FLAGS_P2P_MGMT in
* struct wpa_driver_capa.
*/
int (*p2p_listen)(void *priv, unsigned int timeout);
/**
* p2p_connect - Start P2P group formation (GO negotiation)
* @priv: Private driver interface data
* @peer_addr: MAC address of the peer P2P client
* @wps_method: enum p2p_wps_method value indicating config method
* @go_intent: Local GO intent value (1..15)
* @own_interface_addr: Intended interface address to use with the
* group
* @force_freq: The only allowed channel frequency in MHz or 0
* @persistent_group: Whether to create persistent group
* Returns: 0 on success, -1 on failure
*
* This function is only used if the driver implements P2P management,
* i.e., if it sets WPA_DRIVER_FLAGS_P2P_MGMT in
* struct wpa_driver_capa.
*/
int (*p2p_connect)(void *priv, const u8 *peer_addr, int wps_method,
int go_intent, const u8 *own_interface_addr,
unsigned int force_freq, int persistent_group);
/**
* wps_success_cb - Report successfully completed WPS provisioning
* @priv: Private driver interface data
* @peer_addr: Peer address
* Returns: 0 on success, -1 on failure
*
* This function is used to report successfully completed WPS
* provisioning during group formation in both GO/Registrar and
* client/Enrollee roles.
*
* This function is only used if the driver implements P2P management,
* i.e., if it sets WPA_DRIVER_FLAGS_P2P_MGMT in
* struct wpa_driver_capa.
*/
int (*wps_success_cb)(void *priv, const u8 *peer_addr);
/**
* p2p_group_formation_failed - Report failed WPS provisioning
* @priv: Private driver interface data
* Returns: 0 on success, -1 on failure
*
* This function is used to report failed group formation. This can
* happen either due to failed WPS provisioning or due to 15 second
* timeout during the provisioning phase.
*
* This function is only used if the driver implements P2P management,
* i.e., if it sets WPA_DRIVER_FLAGS_P2P_MGMT in
* struct wpa_driver_capa.
*/
int (*p2p_group_formation_failed)(void *priv);
/**
* p2p_set_params - Set P2P parameters
* @priv: Private driver interface data
* @params: P2P parameters
* Returns: 0 on success, -1 on failure
*
* This function is only used if the driver implements P2P management,
* i.e., if it sets WPA_DRIVER_FLAGS_P2P_MGMT in
* struct wpa_driver_capa.
*/
int (*p2p_set_params)(void *priv, const struct p2p_params *params);
/**
* p2p_prov_disc_req - Send Provision Discovery Request
* @priv: Private driver interface data
* @peer_addr: MAC address of the peer P2P client
* @config_methods: WPS Config Methods value (only one bit set)
* Returns: 0 on success, -1 on failure
*
* This function can be used to request a discovered P2P peer to
* display a PIN (config_methods = WPS_CONFIG_DISPLAY) or be prepared
* to enter a PIN from us (config_methods = WPS_CONFIG_KEYPAD). The
* Provision Discovery Request frame is transmitted once immediately
* and if no response is received, the frame will be sent again
* whenever the target device is discovered during device dsicovery
* (start with a p2p_find() call). Response from the peer is indicated
* with the EVENT_P2P_PROV_DISC_RESPONSE event.
*
* This function is only used if the driver implements P2P management,
* i.e., if it sets WPA_DRIVER_FLAGS_P2P_MGMT in
* struct wpa_driver_capa.
*/
int (*p2p_prov_disc_req)(void *priv, const u8 *peer_addr,
u16 config_methods, int join);
/**
* p2p_sd_request - Schedule a service discovery query
* @priv: Private driver interface data
* @dst: Destination peer or %NULL to apply for all peers
* @tlvs: P2P Service Query TLV(s)
* Returns: Reference to the query or 0 on failure
*
* Response to the query is indicated with the
* EVENT_P2P_SD_RESPONSE driver event.
*
* This function is only used if the driver implements P2P management,
* i.e., if it sets WPA_DRIVER_FLAGS_P2P_MGMT in
* struct wpa_driver_capa.
*/
u64 (*p2p_sd_request)(void *priv, const u8 *dst,
const struct wpabuf *tlvs);
/**
* p2p_sd_cancel_request - Cancel a pending service discovery query
* @priv: Private driver interface data
* @req: Query reference from p2p_sd_request()
* Returns: 0 on success, -1 on failure
*
* This function is only used if the driver implements P2P management,
* i.e., if it sets WPA_DRIVER_FLAGS_P2P_MGMT in
* struct wpa_driver_capa.
*/
int (*p2p_sd_cancel_request)(void *priv, u64 req);
/**
* p2p_sd_response - Send response to a service discovery query
* @priv: Private driver interface data
* @freq: Frequency from EVENT_P2P_SD_REQUEST event
* @dst: Destination address from EVENT_P2P_SD_REQUEST event
* @dialog_token: Dialog token from EVENT_P2P_SD_REQUEST event
* @resp_tlvs: P2P Service Response TLV(s)
* Returns: 0 on success, -1 on failure
*
* This function is called as a response to the request indicated with
* the EVENT_P2P_SD_REQUEST driver event.
*
* This function is only used if the driver implements P2P management,
* i.e., if it sets WPA_DRIVER_FLAGS_P2P_MGMT in
* struct wpa_driver_capa.
*/
int (*p2p_sd_response)(void *priv, int freq, const u8 *dst,
u8 dialog_token,
const struct wpabuf *resp_tlvs);
/**
* p2p_service_update - Indicate a change in local services
* @priv: Private driver interface data
* Returns: 0 on success, -1 on failure
*
* This function needs to be called whenever there is a change in
* availability of the local services. This will increment the
* Service Update Indicator value which will be used in SD Request and
* Response frames.
*
* This function is only used if the driver implements P2P management,
* i.e., if it sets WPA_DRIVER_FLAGS_P2P_MGMT in
* struct wpa_driver_capa.
*/
int (*p2p_service_update)(void *priv);
/**
* p2p_reject - Reject peer device (explicitly block connections)
* @priv: Private driver interface data
* @addr: MAC address of the peer
* Returns: 0 on success, -1 on failure
*/
int (*p2p_reject)(void *priv, const u8 *addr);
/**
* p2p_invite - Invite a P2P Device into a group
* @priv: Private driver interface data
* @peer: Device Address of the peer P2P Device
* @role: Local role in the group
* @bssid: Group BSSID or %NULL if not known
* @ssid: Group SSID
* @ssid_len: Length of ssid in octets
* @go_dev_addr: Forced GO Device Address or %NULL if none
* @persistent_group: Whether this is to reinvoke a persistent group
* Returns: 0 on success, -1 on failure
*/
int (*p2p_invite)(void *priv, const u8 *peer, int role,
const u8 *bssid, const u8 *ssid, size_t ssid_len,
const u8 *go_dev_addr, int persistent_group);
/**
* send_tdls_mgmt - for sending TDLS management packets
* @priv: private driver interface data
* @dst: Destination (peer) MAC address
* @action_code: TDLS action code for the mssage
* @dialog_token: Dialog Token to use in the message (if needed)
* @status_code: Status Code or Reason Code to use (if needed)
* @buf: TDLS IEs to add to the message
* @len: Length of buf in octets
* Returns: 0 on success, negative (<0) on failure
*
* This optional function can be used to send packet to driver which is
* responsible for receiving and sending all TDLS packets.
*/
int (*send_tdls_mgmt)(void *priv, const u8 *dst, u8 action_code,
u8 dialog_token, u16 status_code,
const u8 *buf, size_t len);
/**
* tdls_oper - Ask the driver to perform high-level TDLS operations
* @priv: Private driver interface data
* @oper: TDLS high-level operation. See %enum tdls_oper
* @peer: Destination (peer) MAC address
* Returns: 0 on success, negative (<0) on failure
*
* This optional function can be used to send high-level TDLS commands
* to the driver.
*/
int (*tdls_oper)(void *priv, enum tdls_oper oper, const u8 *peer);
/**
* wnm_oper - Notify driver of the WNM frame reception
* @priv: Private driver interface data
* @oper: WNM operation. See %enum wnm_oper
* @peer: Destination (peer) MAC address
* @buf: Buffer for the driver to fill in (for getting IE)
* @buf_len: Return the len of buf
* Returns: 0 on success, negative (<0) on failure
*/
int (*wnm_oper)(void *priv, enum wnm_oper oper, const u8 *peer,
u8 *buf, u16 *buf_len);
/**
* set_qos_map - Set QoS Map
* @priv: Private driver interface data
* @qos_map_set: QoS Map
* @qos_map_set_len: Length of QoS Map
*/
int (*set_qos_map)(void *priv, const u8 *qos_map_set,
u8 qos_map_set_len);
/**
* signal_poll - Get current connection information
* @priv: Private driver interface data
* @signal_info: Connection info structure
*/
int (*signal_poll)(void *priv, struct wpa_signal_info *signal_info);
/**
* set_authmode - Set authentication algorithm(s) for static WEP
* @priv: Private driver interface data
* @authmode: 1=Open System, 2=Shared Key, 3=both
* Returns: 0 on success, -1 on failure
*
* This function can be used to set authentication algorithms for AP
* mode when static WEP is used. If the driver uses user space MLME/SME
* implementation, there is no need to implement this function.
*
* DEPRECATED - use set_ap() instead
*/
int (*set_authmode)(void *priv, int authmode);
/**
* set_rekey_info - Set rekey information
* @priv: Private driver interface data
* @kek: Current KEK
* @kck: Current KCK
* @replay_ctr: Current EAPOL-Key Replay Counter
*
* This optional function can be used to provide information for the
* driver/firmware to process EAPOL-Key frames in Group Key Handshake
* while the host (including wpa_supplicant) is sleeping.
*/
void (*set_rekey_info)(void *priv, const u8 *kek, const u8 *kck,
const u8 *replay_ctr);
/**
* sta_assoc - Station association indication
* @priv: Private driver interface data
* @own_addr: Source address and BSSID for association frame
* @addr: MAC address of the station to associate
* @reassoc: flag to indicate re-association
* @status: association response status code
* @ie: assoc response ie buffer
* @len: ie buffer length
* Returns: 0 on success, -1 on failure
*
* This function indicates the driver to send (Re)Association
* Response frame to the station.
*/
int (*sta_assoc)(void *priv, const u8 *own_addr, const u8 *addr,
int reassoc, u16 status, const u8 *ie, size_t len);
/**
* sta_auth - Station authentication indication
* @priv: Private driver interface data
* @own_addr: Source address and BSSID for authentication frame
* @addr: MAC address of the station to associate
* @seq: authentication sequence number
* @status: authentication response status code
* @ie: authentication frame ie buffer
* @len: ie buffer length
*
* This function indicates the driver to send Authentication frame
* to the station.
*/
int (*sta_auth)(void *priv, const u8 *own_addr, const u8 *addr,
u16 seq, u16 status, const u8 *ie, size_t len);
/**
* add_tspec - Add traffic stream
* @priv: Private driver interface data
* @addr: MAC address of the station to associate
* @tspec_ie: tspec ie buffer
* @tspec_ielen: tspec ie length
* Returns: 0 on success, -1 on failure
*
* This function adds the traffic steam for the station
* and fills the medium_time in tspec_ie.
*/
int (*add_tspec)(void *priv, const u8 *addr, u8 *tspec_ie,
size_t tspec_ielen);
/**
* add_sta_node - Add a station node in the driver
* @priv: Private driver interface data
* @addr: MAC address of the station to add
* @auth_alg: authentication algorithm used by the station
* Returns: 0 on success, -1 on failure
*
* This function adds the station node in the driver, when
* the station gets added by FT-over-DS.
*/
int (*add_sta_node)(void *priv, const u8 *addr, u16 auth_alg);
/**
* sched_scan - Request the driver to initiate scheduled scan
* @priv: Private driver interface data
* @params: Scan parameters
* @interval: Interval between scan cycles in milliseconds
* Returns: 0 on success, -1 on failure
*
* This operation should be used for scheduled scan offload to
* the hardware. Every time scan results are available, the
* driver should report scan results event for wpa_supplicant
* which will eventually request the results with
* wpa_driver_get_scan_results2(). This operation is optional
* and if not provided or if it returns -1, we fall back to
* normal host-scheduled scans.
*/
int (*sched_scan)(void *priv, struct wpa_driver_scan_params *params,
u32 interval);
/**
* stop_sched_scan - Request the driver to stop a scheduled scan
* @priv: Private driver interface data
* Returns: 0 on success, -1 on failure
*
* This should cause the scheduled scan to be stopped and
* results should stop being sent. Must be supported if
* sched_scan is supported.
*/
int (*stop_sched_scan)(void *priv);
/**
* poll_client - Probe (null data or such) the given station
* @priv: Private driver interface data
* @own_addr: MAC address of sending interface
* @addr: MAC address of the station to probe
* @qos: Indicates whether station is QoS station
*
* This function is used to verify whether an associated station is
* still present. This function does not need to be implemented if the
* driver provides such inactivity polling mechanism.
*/
void (*poll_client)(void *priv, const u8 *own_addr,
const u8 *addr, int qos);
/**
* radio_disable - Disable/enable radio
* @priv: Private driver interface data
* @disabled: 1=disable 0=enable radio
* Returns: 0 on success, -1 on failure
*
* This optional command is for testing purposes. It can be used to
* disable the radio on a testbed device to simulate out-of-radio-range
* conditions.
*/
int (*radio_disable)(void *priv, int disabled);
/**
* switch_channel - Announce channel switch and migrate the GO to the
* given frequency
* @priv: Private driver interface data
* @freq: Frequency in MHz
* Returns: 0 on success, -1 on failure
*
* This function is used to move the GO to the legacy STA channel to
* avoid frequency conflict in single channel concurrency.
*/
int (*switch_channel)(void *priv, unsigned int freq);
/**
* start_dfs_cac - Listen for radar interference on the channel
* @priv: Private driver interface data
* @freq: Channel parameters
* Returns: 0 on success, -1 on failure
*/
int (*start_dfs_cac)(void *priv, struct hostapd_freq_params *freq);
/**
* stop_ap - Removes beacon from AP
* @priv: Private driver interface data
* Returns: 0 on success, -1 on failure (or if not supported)
*
* This optional function can be used to disable AP mode related
* configuration. Unlike deinit_ap, it does not change to station
* mode.
*/
int (*stop_ap)(void *priv);
/**
* get_survey - Retrieve survey data
* @priv: Private driver interface data
* @freq: If set, survey data for the specified frequency is only
* being requested. If not set, all survey data is requested.
* Returns: 0 on success, -1 on failure
*
* Use this to retrieve:
*
* - the observed channel noise floor
* - the amount of time we have spent on the channel
* - the amount of time during which we have spent on the channel that
* the radio has determined the medium is busy and we cannot
* transmit
* - the amount of time we have spent receiving data
* - the amount of time we have spent transmitting data
*
* This data can be used for spectrum heuristics. One example is
* Automatic Channel Selection (ACS). The channel survey data is
* kept on a linked list on the channel data, one entry is added
* for each survey. The min_nf of the channel is updated for each
* survey.
*/
int (*get_survey)(void *priv, unsigned int freq);
/**
* status - Get driver interface status information
* @priv: Private driver interface data
* @buf: Buffer for printing tou the status information
* @buflen: Maximum length of the buffer
* Returns: Length of written status information or -1 on failure
*/
int (*status)(void *priv, char *buf, size_t buflen);
};
/**
* enum wpa_event_type - Event type for wpa_supplicant_event() calls
*/
enum wpa_event_type {
/**
* EVENT_ASSOC - Association completed
*
* This event needs to be delivered when the driver completes IEEE
* 802.11 association or reassociation successfully.
* wpa_driver_ops::get_bssid() is expected to provide the current BSSID
* after this event has been generated. In addition, optional
* EVENT_ASSOCINFO may be generated just before EVENT_ASSOC to provide
* more information about the association. If the driver interface gets
* both of these events at the same time, it can also include the
* assoc_info data in EVENT_ASSOC call.
*/
EVENT_ASSOC,
/**
* EVENT_DISASSOC - Association lost
*
* This event should be called when association is lost either due to
* receiving deauthenticate or disassociate frame from the AP or when
* sending either of these frames to the current AP. If the driver
* supports separate deauthentication event, EVENT_DISASSOC should only
* be used for disassociation and EVENT_DEAUTH for deauthentication.
* In AP mode, union wpa_event_data::disassoc_info is required.
*/
EVENT_DISASSOC,
/**
* EVENT_MICHAEL_MIC_FAILURE - Michael MIC (TKIP) detected
*
* This event must be delivered when a Michael MIC error is detected by
* the local driver. Additional data for event processing is
* provided with union wpa_event_data::michael_mic_failure. This
* information is used to request new encyption key and to initiate
* TKIP countermeasures if needed.
*/
EVENT_MICHAEL_MIC_FAILURE,
/**
* EVENT_SCAN_RESULTS - Scan results available
*
* This event must be called whenever scan results are available to be
* fetched with struct wpa_driver_ops::get_scan_results(). This event
* is expected to be used some time after struct wpa_driver_ops::scan()
* is called. If the driver provides an unsolicited event when the scan
* has been completed, this event can be used to trigger
* EVENT_SCAN_RESULTS call. If such event is not available from the
* driver, the driver wrapper code is expected to use a registered
* timeout to generate EVENT_SCAN_RESULTS call after the time that the
* scan is expected to be completed. Optional information about
* completed scan can be provided with union wpa_event_data::scan_info.
*/
EVENT_SCAN_RESULTS,
/**
* EVENT_ASSOCINFO - Report optional extra information for association
*
* This event can be used to report extra association information for
* EVENT_ASSOC processing. This extra information includes IEs from
* association frames and Beacon/Probe Response frames in union
* wpa_event_data::assoc_info. EVENT_ASSOCINFO must be send just before
* EVENT_ASSOC. Alternatively, the driver interface can include
* assoc_info data in the EVENT_ASSOC call if it has all the
* information available at the same point.
*/
EVENT_ASSOCINFO,
/**
* EVENT_INTERFACE_STATUS - Report interface status changes
*
* This optional event can be used to report changes in interface
* status (interface added/removed) using union
* wpa_event_data::interface_status. This can be used to trigger
* wpa_supplicant to stop and re-start processing for the interface,
* e.g., when a cardbus card is ejected/inserted.
*/
EVENT_INTERFACE_STATUS,
/**
* EVENT_PMKID_CANDIDATE - Report a candidate AP for pre-authentication
*
* This event can be used to inform wpa_supplicant about candidates for
* RSN (WPA2) pre-authentication. If wpa_supplicant is not responsible
* for scan request (ap_scan=2 mode), this event is required for
* pre-authentication. If wpa_supplicant is performing scan request
* (ap_scan=1), this event is optional since scan results can be used
* to add pre-authentication candidates. union
* wpa_event_data::pmkid_candidate is used to report the BSSID of the
* candidate and priority of the candidate, e.g., based on the signal
* strength, in order to try to pre-authenticate first with candidates
* that are most likely targets for re-association.
*
* EVENT_PMKID_CANDIDATE can be called whenever the driver has updates
* on the candidate list. In addition, it can be called for the current
* AP and APs that have existing PMKSA cache entries. wpa_supplicant
* will automatically skip pre-authentication in cases where a valid
* PMKSA exists. When more than one candidate exists, this event should
* be generated once for each candidate.
*
* Driver will be notified about successful pre-authentication with
* struct wpa_driver_ops::add_pmkid() calls.
*/
EVENT_PMKID_CANDIDATE,
/**
* EVENT_STKSTART - Request STK handshake (MLME-STKSTART.request)
*
* This event can be used to inform wpa_supplicant about desire to set
* up secure direct link connection between two stations as defined in
* IEEE 802.11e with a new PeerKey mechanism that replaced the original
* STAKey negotiation. The caller will need to set peer address for the
* event.
*/
EVENT_STKSTART,
/**
* EVENT_TDLS - Request TDLS operation
*
* This event can be used to request a TDLS operation to be performed.
*/
EVENT_TDLS,
/**
* EVENT_FT_RESPONSE - Report FT (IEEE 802.11r) response IEs
*
* The driver is expected to report the received FT IEs from
* FT authentication sequence from the AP. The FT IEs are included in
* the extra information in union wpa_event_data::ft_ies.
*/
EVENT_FT_RESPONSE,
/**
* EVENT_IBSS_RSN_START - Request RSN authentication in IBSS
*
* The driver can use this event to inform wpa_supplicant about a STA
* in an IBSS with which protected frames could be exchanged. This
* event starts RSN authentication with the other STA to authenticate
* the STA and set up encryption keys with it.
*/
EVENT_IBSS_RSN_START,
/**
* EVENT_AUTH - Authentication result
*
* This event should be called when authentication attempt has been
* completed. This is only used if the driver supports separate
* authentication step (struct wpa_driver_ops::authenticate).
* Information about authentication result is included in
* union wpa_event_data::auth.
*/
EVENT_AUTH,
/**
* EVENT_DEAUTH - Authentication lost
*
* This event should be called when authentication is lost either due
* to receiving deauthenticate frame from the AP or when sending that
* frame to the current AP.
* In AP mode, union wpa_event_data::deauth_info is required.
*/
EVENT_DEAUTH,
/**
* EVENT_ASSOC_REJECT - Association rejected
*
* This event should be called when (re)association attempt has been
* rejected by the AP. Information about the association response is
* included in union wpa_event_data::assoc_reject.
*/
EVENT_ASSOC_REJECT,
/**
* EVENT_AUTH_TIMED_OUT - Authentication timed out
*/
EVENT_AUTH_TIMED_OUT,
/**
* EVENT_ASSOC_TIMED_OUT - Association timed out
*/
EVENT_ASSOC_TIMED_OUT,
/**
* EVENT_FT_RRB_RX - FT (IEEE 802.11r) RRB frame received
*/
EVENT_FT_RRB_RX,
/**
* EVENT_WPS_BUTTON_PUSHED - Report hardware push button press for WPS
*/
EVENT_WPS_BUTTON_PUSHED,
/**
* EVENT_TX_STATUS - Report TX status
*/
EVENT_TX_STATUS,
/**
* EVENT_RX_FROM_UNKNOWN - Report RX from unknown STA
*/
EVENT_RX_FROM_UNKNOWN,
/**
* EVENT_RX_MGMT - Report RX of a management frame
*/
EVENT_RX_MGMT,
/**
* EVENT_RX_ACTION - Action frame received
*
* This event is used to indicate when an Action frame has been
* received. Information about the received frame is included in
* union wpa_event_data::rx_action.
*/
EVENT_RX_ACTION,
/**
* EVENT_REMAIN_ON_CHANNEL - Remain-on-channel duration started
*
* This event is used to indicate when the driver has started the
* requested remain-on-channel duration. Information about the
* operation is included in union wpa_event_data::remain_on_channel.
*/
EVENT_REMAIN_ON_CHANNEL,
/**
* EVENT_CANCEL_REMAIN_ON_CHANNEL - Remain-on-channel timed out
*
* This event is used to indicate when the driver has completed
* remain-on-channel duration, i.e., may noot be available on the
* requested channel anymore. Information about the
* operation is included in union wpa_event_data::remain_on_channel.
*/
EVENT_CANCEL_REMAIN_ON_CHANNEL,
/**
* EVENT_MLME_RX - Report reception of frame for MLME (test use only)
*
* This event is used only by driver_test.c and userspace MLME.
*/
EVENT_MLME_RX,
/**
* EVENT_RX_PROBE_REQ - Indicate received Probe Request frame
*
* This event is used to indicate when a Probe Request frame has been
* received. Information about the received frame is included in
* union wpa_event_data::rx_probe_req. The driver is required to report
* these events only after successfully completed probe_req_report()
* commands to request the events (i.e., report parameter is non-zero)
* in station mode. In AP mode, Probe Request frames should always be
* reported.
*/
EVENT_RX_PROBE_REQ,
/**
* EVENT_NEW_STA - New wired device noticed
*
* This event is used to indicate that a new device has been detected
* in a network that does not use association-like functionality (i.e.,
* mainly wired Ethernet). This can be used to start EAPOL
* authenticator when receiving a frame from a device. The address of
* the device is included in union wpa_event_data::new_sta.
*/
EVENT_NEW_STA,
/**
* EVENT_EAPOL_RX - Report received EAPOL frame
*
* When in AP mode with hostapd, this event is required to be used to
* deliver the receive EAPOL frames from the driver. With
* %wpa_supplicant, this event is used only if the send_eapol() handler
* is used to override the use of l2_packet for EAPOL frame TX.
*/
EVENT_EAPOL_RX,
/**
* EVENT_SIGNAL_CHANGE - Indicate change in signal strength
*
* This event is used to indicate changes in the signal strength
* observed in frames received from the current AP if signal strength
* monitoring has been enabled with signal_monitor().
*/
EVENT_SIGNAL_CHANGE,
/**
* EVENT_INTERFACE_ENABLED - Notify that interface was enabled
*
* This event is used to indicate that the interface was enabled after
* having been previously disabled, e.g., due to rfkill.
*/
EVENT_INTERFACE_ENABLED,
/**
* EVENT_INTERFACE_DISABLED - Notify that interface was disabled
*
* This event is used to indicate that the interface was disabled,
* e.g., due to rfkill.
*/
EVENT_INTERFACE_DISABLED,
/**
* EVENT_CHANNEL_LIST_CHANGED - Channel list changed
*
* This event is used to indicate that the channel list has changed,
* e.g., because of a regulatory domain change triggered by scan
* results including an AP advertising a country code.
*/
EVENT_CHANNEL_LIST_CHANGED,
/**
* EVENT_INTERFACE_UNAVAILABLE - Notify that interface is unavailable
*
* This event is used to indicate that the driver cannot maintain this
* interface in its operation mode anymore. The most likely use for
* this is to indicate that AP mode operation is not available due to
* operating channel would need to be changed to a DFS channel when
* the driver does not support radar detection and another virtual
* interfaces caused the operating channel to change. Other similar
* resource conflicts could also trigger this for station mode
* interfaces.
*/
EVENT_INTERFACE_UNAVAILABLE,
/**
* EVENT_BEST_CHANNEL
*
* Driver generates this event whenever it detects a better channel
* (e.g., based on RSSI or channel use). This information can be used
* to improve channel selection for a new AP/P2P group.
*/
EVENT_BEST_CHANNEL,
/**
* EVENT_UNPROT_DEAUTH - Unprotected Deauthentication frame received
*
* This event should be called when a Deauthentication frame is dropped
* due to it not being protected (MFP/IEEE 802.11w).
* union wpa_event_data::unprot_deauth is required to provide more
* details of the frame.
*/
EVENT_UNPROT_DEAUTH,
/**
* EVENT_UNPROT_DISASSOC - Unprotected Disassociation frame received
*
* This event should be called when a Disassociation frame is dropped
* due to it not being protected (MFP/IEEE 802.11w).
* union wpa_event_data::unprot_disassoc is required to provide more
* details of the frame.
*/
EVENT_UNPROT_DISASSOC,
/**
* EVENT_STATION_LOW_ACK
*
* Driver generates this event whenever it detected that a particular
* station was lost. Detection can be through massive transmission
* failures for example.
*/
EVENT_STATION_LOW_ACK,
/**
* EVENT_P2P_DEV_FOUND - Report a discovered P2P device
*
* This event is used only if the driver implements P2P management
* internally. Event data is stored in
* union wpa_event_data::p2p_dev_found.
*/
EVENT_P2P_DEV_FOUND,
/**
* EVENT_P2P_GO_NEG_REQ_RX - Report reception of GO Negotiation Request
*
* This event is used only if the driver implements P2P management
* internally. Event data is stored in
* union wpa_event_data::p2p_go_neg_req_rx.
*/
EVENT_P2P_GO_NEG_REQ_RX,
/**
* EVENT_P2P_GO_NEG_COMPLETED - Report completion of GO Negotiation
*
* This event is used only if the driver implements P2P management
* internally. Event data is stored in
* union wpa_event_data::p2p_go_neg_completed.
*/
EVENT_P2P_GO_NEG_COMPLETED,
EVENT_P2P_PROV_DISC_REQUEST,
EVENT_P2P_PROV_DISC_RESPONSE,
EVENT_P2P_SD_REQUEST,
EVENT_P2P_SD_RESPONSE,
/**
* EVENT_IBSS_PEER_LOST - IBSS peer not reachable anymore
*/
EVENT_IBSS_PEER_LOST,
/**
* EVENT_DRIVER_GTK_REKEY - Device/driver did GTK rekey
*
* This event carries the new replay counter to notify wpa_supplicant
* of the current EAPOL-Key Replay Counter in case the driver/firmware
* completed Group Key Handshake while the host (including
* wpa_supplicant was sleeping).
*/
EVENT_DRIVER_GTK_REKEY,
/**
* EVENT_SCHED_SCAN_STOPPED - Scheduled scan was stopped
*/
EVENT_SCHED_SCAN_STOPPED,
/**
* EVENT_DRIVER_CLIENT_POLL_OK - Station responded to poll
*
* This event indicates that the station responded to the poll
* initiated with @poll_client.
*/
EVENT_DRIVER_CLIENT_POLL_OK,
/**
* EVENT_EAPOL_TX_STATUS - notify of EAPOL TX status
*/
EVENT_EAPOL_TX_STATUS,
/**
* EVENT_CH_SWITCH - AP or GO decided to switch channels
*
* Described in wpa_event_data.ch_switch
* */
EVENT_CH_SWITCH,
/**
* EVENT_WNM - Request WNM operation
*
* This event can be used to request a WNM operation to be performed.
*/
EVENT_WNM,
/**
* EVENT_CONNECT_FAILED_REASON - Connection failure reason in AP mode
*
* This event indicates that the driver reported a connection failure
* with the specified client (for example, max client reached, etc.) in
* AP mode.
*/
EVENT_CONNECT_FAILED_REASON,
/**
* EVENT_RADAR_DETECTED - Notify of radar detection
*
* A radar has been detected on the supplied frequency, hostapd should
* react accordingly (e.g., change channel).
*/
EVENT_DFS_RADAR_DETECTED,
/**
* EVENT_CAC_FINISHED - Notify that channel availability check has been completed
*
* After a successful CAC, the channel can be marked clear and used.
*/
EVENT_DFS_CAC_FINISHED,
/**
* EVENT_CAC_ABORTED - Notify that channel availability check has been aborted
*
* The CAC was not successful, and the channel remains in the previous
* state. This may happen due to a radar beeing detected or other
* external influences.
*/
EVENT_DFS_CAC_ABORTED,
/**
* EVENT_DFS_CAC_NOP_FINISHED - Notify that non-occupancy period is over
*
* The channel which was previously unavailable is now available again.
*/
EVENT_DFS_NOP_FINISHED,
/*
* EVENT_SURVEY - Received survey data
*
* This event gets triggered when a driver query is issued for survey
* data and the requested data becomes available. The returned data is
* stored in struct survey_results. The results provide at most one
* survey entry for each frequency and at minimum will provide one survey
* entry for one frequency. The survey data can be os_malloc()'d and
* then os_free()'d, so the event callback must only copy data.
*/
EVENT_SURVEY
};
/**
* struct freq_survey - Channel survey info
*
* @ifidx: Interface index in which this survey was observed
* @freq: Center of frequency of the surveyed channel
* @nf: Channel noise floor in dBm
* @channel_time: Amount of time in ms the radio spent on the channel
* @channel_time_busy: Amount of time in ms the radio detected some signal
* that indicated to the radio the channel was not clear
* @channel_time_rx: Amount of time the radio spent receiving data
* @channel_time_tx: Amount of time the radio spent transmitting data
* @filled: bitmask indicating which fields have been reported, see
* SURVEY_HAS_* defines.
* @list: Internal list pointers
*/
struct freq_survey {
u32 ifidx;
unsigned int freq;
s8 nf;
u64 channel_time;
u64 channel_time_busy;
u64 channel_time_rx;
u64 channel_time_tx;
unsigned int filled;
struct dl_list list;
};
#define SURVEY_HAS_NF BIT(0)
#define SURVEY_HAS_CHAN_TIME BIT(1)
#define SURVEY_HAS_CHAN_TIME_BUSY BIT(2)
#define SURVEY_HAS_CHAN_TIME_RX BIT(3)
#define SURVEY_HAS_CHAN_TIME_TX BIT(4)
/**
* union wpa_event_data - Additional data for wpa_supplicant_event() calls
*/
union wpa_event_data {
/**
* struct assoc_info - Data for EVENT_ASSOC and EVENT_ASSOCINFO events
*
* This structure is optional for EVENT_ASSOC calls and required for
* EVENT_ASSOCINFO calls. By using EVENT_ASSOC with this data, the
* driver interface does not need to generate separate EVENT_ASSOCINFO
* calls.
*/
struct assoc_info {
/**
* reassoc - Flag to indicate association or reassociation
*/
int reassoc;
/**
* req_ies - (Re)Association Request IEs
*
* If the driver generates WPA/RSN IE, this event data must be
* returned for WPA handshake to have needed information. If
* wpa_supplicant-generated WPA/RSN IE is used, this
* information event is optional.
*
* This should start with the first IE (fixed fields before IEs
* are not included).
*/
const u8 *req_ies;
/**
* req_ies_len - Length of req_ies in bytes
*/
size_t req_ies_len;
/**
* resp_ies - (Re)Association Response IEs
*
* Optional association data from the driver. This data is not
* required WPA, but may be useful for some protocols and as
* such, should be reported if this is available to the driver
* interface.
*
* This should start with the first IE (fixed fields before IEs
* are not included).
*/
const u8 *resp_ies;
/**
* resp_ies_len - Length of resp_ies in bytes
*/
size_t resp_ies_len;
/**
* beacon_ies - Beacon or Probe Response IEs
*
* Optional Beacon/ProbeResp data: IEs included in Beacon or
* Probe Response frames from the current AP (i.e., the one
* that the client just associated with). This information is
* used to update WPA/RSN IE for the AP. If this field is not
* set, the results from previous scan will be used. If no
* data for the new AP is found, scan results will be requested
* again (without scan request). At this point, the driver is
* expected to provide WPA/RSN IE for the AP (if WPA/WPA2 is
* used).
*
* This should start with the first IE (fixed fields before IEs
* are not included).
*/
const u8 *beacon_ies;
/**
* beacon_ies_len - Length of beacon_ies */
size_t beacon_ies_len;
/**
* freq - Frequency of the operational channel in MHz
*/
unsigned int freq;
/**
* addr - Station address (for AP mode)
*/
const u8 *addr;
} assoc_info;
/**
* struct disassoc_info - Data for EVENT_DISASSOC events
*/
struct disassoc_info {
/**
* addr - Station address (for AP mode)
*/
const u8 *addr;
/**
* reason_code - Reason Code (host byte order) used in
* Deauthentication frame
*/
u16 reason_code;
/**
* ie - Optional IE(s) in Disassociation frame
*/
const u8 *ie;
/**
* ie_len - Length of ie buffer in octets
*/
size_t ie_len;
/**
* locally_generated - Whether the frame was locally generated
*/
int locally_generated;
} disassoc_info;
/**
* struct deauth_info - Data for EVENT_DEAUTH events
*/
struct deauth_info {
/**
* addr - Station address (for AP mode)
*/
const u8 *addr;
/**
* reason_code - Reason Code (host byte order) used in
* Deauthentication frame
*/
u16 reason_code;
/**
* ie - Optional IE(s) in Deauthentication frame
*/
const u8 *ie;
/**
* ie_len - Length of ie buffer in octets
*/
size_t ie_len;
/**
* locally_generated - Whether the frame was locally generated
*/
int locally_generated;
} deauth_info;
/**
* struct michael_mic_failure - Data for EVENT_MICHAEL_MIC_FAILURE
*/
struct michael_mic_failure {
int unicast;
const u8 *src;
} michael_mic_failure;
/**
* struct interface_status - Data for EVENT_INTERFACE_STATUS
*/
struct interface_status {
char ifname[100];
enum {
EVENT_INTERFACE_ADDED, EVENT_INTERFACE_REMOVED
} ievent;
} interface_status;
/**
* struct pmkid_candidate - Data for EVENT_PMKID_CANDIDATE
*/
struct pmkid_candidate {
/** BSSID of the PMKID candidate */
u8 bssid[ETH_ALEN];
/** Smaller the index, higher the priority */
int index;
/** Whether RSN IE includes pre-authenticate flag */
int preauth;
} pmkid_candidate;
/**
* struct stkstart - Data for EVENT_STKSTART
*/
struct stkstart {
u8 peer[ETH_ALEN];
} stkstart;
/**
* struct tdls - Data for EVENT_TDLS
*/
struct tdls {
u8 peer[ETH_ALEN];
enum {
TDLS_REQUEST_SETUP,
TDLS_REQUEST_TEARDOWN
} oper;
u16 reason_code; /* for teardown */
} tdls;
/**
* struct wnm - Data for EVENT_WNM
*/
struct wnm {
u8 addr[ETH_ALEN];
enum {
WNM_OPER_SLEEP,
} oper;
enum {
WNM_SLEEP_ENTER,
WNM_SLEEP_EXIT
} sleep_action;
int sleep_intval;
u16 reason_code;
u8 *buf;
u16 buf_len;
} wnm;
/**
* struct ft_ies - FT information elements (EVENT_FT_RESPONSE)
*
* During FT (IEEE 802.11r) authentication sequence, the driver is
* expected to use this event to report received FT IEs (MDIE, FTIE,
* RSN IE, TIE, possible resource request) to the supplicant. The FT
* IEs for the next message will be delivered through the
* struct wpa_driver_ops::update_ft_ies() callback.
*/
struct ft_ies {
const u8 *ies;
size_t ies_len;
int ft_action;
u8 target_ap[ETH_ALEN];
/** Optional IE(s), e.g., WMM TSPEC(s), for RIC-Request */
const u8 *ric_ies;
/** Length of ric_ies buffer in octets */
size_t ric_ies_len;
} ft_ies;
/**
* struct ibss_rsn_start - Data for EVENT_IBSS_RSN_START
*/
struct ibss_rsn_start {
u8 peer[ETH_ALEN];
} ibss_rsn_start;
/**
* struct auth_info - Data for EVENT_AUTH events
*/
struct auth_info {
u8 peer[ETH_ALEN];
u8 bssid[ETH_ALEN];
u16 auth_type;
u16 auth_transaction;
u16 status_code;
const u8 *ies;
size_t ies_len;
} auth;
/**
* struct assoc_reject - Data for EVENT_ASSOC_REJECT events
*/
struct assoc_reject {
/**
* bssid - BSSID of the AP that rejected association
*/
const u8 *bssid;
/**
* resp_ies - (Re)Association Response IEs
*
* Optional association data from the driver. This data is not
* required WPA, but may be useful for some protocols and as
* such, should be reported if this is available to the driver
* interface.
*
* This should start with the first IE (fixed fields before IEs
* are not included).
*/
const u8 *resp_ies;
/**
* resp_ies_len - Length of resp_ies in bytes
*/
size_t resp_ies_len;
/**
* status_code - Status Code from (Re)association Response
*/
u16 status_code;
} assoc_reject;
struct timeout_event {
u8 addr[ETH_ALEN];
} timeout_event;
/**
* struct ft_rrb_rx - Data for EVENT_FT_RRB_RX events
*/
struct ft_rrb_rx {
const u8 *src;
const u8 *data;
size_t data_len;
} ft_rrb_rx;
/**
* struct tx_status - Data for EVENT_TX_STATUS events
*/
struct tx_status {
u16 type;
u16 stype;
const u8 *dst;
const u8 *data;
size_t data_len;
int ack;
} tx_status;
/**
* struct rx_from_unknown - Data for EVENT_RX_FROM_UNKNOWN events
*/
struct rx_from_unknown {
const u8 *bssid;
const u8 *addr;
int wds;
} rx_from_unknown;
/**
* struct rx_mgmt - Data for EVENT_RX_MGMT events
*/
struct rx_mgmt {
const u8 *frame;
size_t frame_len;
u32 datarate;
int ssi_signal; /* dBm */
} rx_mgmt;
/**
* struct rx_action - Data for EVENT_RX_ACTION events
*/
struct rx_action {
/**
* da - Destination address of the received Action frame
*/
const u8 *da;
/**
* sa - Source address of the received Action frame
*/
const u8 *sa;
/**
* bssid - Address 3 of the received Action frame
*/
const u8 *bssid;
/**
* category - Action frame category
*/
u8 category;
/**
* data - Action frame body after category field
*/
const u8 *data;
/**
* len - Length of data in octets
*/
size_t len;
/**
* freq - Frequency (in MHz) on which the frame was received
*/
int freq;
} rx_action;
/**
* struct remain_on_channel - Data for EVENT_REMAIN_ON_CHANNEL events
*
* This is also used with EVENT_CANCEL_REMAIN_ON_CHANNEL events.
*/
struct remain_on_channel {
/**
* freq - Channel frequency in MHz
*/
unsigned int freq;
/**
* duration - Duration to remain on the channel in milliseconds
*/
unsigned int duration;
} remain_on_channel;
/**
* struct scan_info - Optional data for EVENT_SCAN_RESULTS events
* @aborted: Whether the scan was aborted
* @freqs: Scanned frequencies in MHz (%NULL = all channels scanned)
* @num_freqs: Number of entries in freqs array
* @ssids: Scanned SSIDs (%NULL or zero-length SSID indicates wildcard
* SSID)
* @num_ssids: Number of entries in ssids array
*/
struct scan_info {
int aborted;
const int *freqs;
size_t num_freqs;
struct wpa_driver_scan_ssid ssids[WPAS_MAX_SCAN_SSIDS];
size_t num_ssids;
} scan_info;
/**
* struct mlme_rx - Data for EVENT_MLME_RX events
*/
struct mlme_rx {
const u8 *buf;
size_t len;
int freq;
int channel;
int ssi;
} mlme_rx;
/**
* struct rx_probe_req - Data for EVENT_RX_PROBE_REQ events
*/
struct rx_probe_req {
/**
* sa - Source address of the received Probe Request frame
*/
const u8 *sa;
/**
* da - Destination address of the received Probe Request frame
* or %NULL if not available
*/
const u8 *da;
/**
* bssid - BSSID of the received Probe Request frame or %NULL
* if not available
*/
const u8 *bssid;
/**
* ie - IEs from the Probe Request body
*/
const u8 *ie;
/**
* ie_len - Length of ie buffer in octets
*/
size_t ie_len;
/**
* signal - signal strength in dBm (or 0 if not available)
*/
int ssi_signal;
} rx_probe_req;
/**
* struct new_sta - Data for EVENT_NEW_STA events
*/
struct new_sta {
const u8 *addr;
} new_sta;
/**
* struct eapol_rx - Data for EVENT_EAPOL_RX events
*/
struct eapol_rx {
const u8 *src;
const u8 *data;
size_t data_len;
} eapol_rx;
/**
* signal_change - Data for EVENT_SIGNAL_CHANGE events
*/
struct wpa_signal_info signal_change;
/**
* struct best_channel - Data for EVENT_BEST_CHANNEL events
* @freq_24: Best 2.4 GHz band channel frequency in MHz
* @freq_5: Best 5 GHz band channel frequency in MHz
* @freq_overall: Best channel frequency in MHz
*
* 0 can be used to indicate no preference in either band.
*/
struct best_channel {
int freq_24;
int freq_5;
int freq_overall;
} best_chan;
struct unprot_deauth {
const u8 *sa;
const u8 *da;
u16 reason_code;
} unprot_deauth;
struct unprot_disassoc {
const u8 *sa;
const u8 *da;
u16 reason_code;
} unprot_disassoc;
/**
* struct low_ack - Data for EVENT_STATION_LOW_ACK events
* @addr: station address
*/
struct low_ack {
u8 addr[ETH_ALEN];
} low_ack;
/**
* struct p2p_dev_found - Data for EVENT_P2P_DEV_FOUND
*/
struct p2p_dev_found {
const u8 *addr;
const u8 *dev_addr;
const u8 *pri_dev_type;
const char *dev_name;
u16 config_methods;
u8 dev_capab;
u8 group_capab;
} p2p_dev_found;
/**
* struct p2p_go_neg_req_rx - Data for EVENT_P2P_GO_NEG_REQ_RX
*/
struct p2p_go_neg_req_rx {
const u8 *src;
u16 dev_passwd_id;
} p2p_go_neg_req_rx;
/**
* struct p2p_go_neg_completed - Data for EVENT_P2P_GO_NEG_COMPLETED
*/
struct p2p_go_neg_completed {
struct p2p_go_neg_results *res;
} p2p_go_neg_completed;
struct p2p_prov_disc_req {
const u8 *peer;
u16 config_methods;
const u8 *dev_addr;
const u8 *pri_dev_type;
const char *dev_name;
u16 supp_config_methods;
u8 dev_capab;
u8 group_capab;
} p2p_prov_disc_req;
struct p2p_prov_disc_resp {
const u8 *peer;
u16 config_methods;
} p2p_prov_disc_resp;
struct p2p_sd_req {
int freq;
const u8 *sa;
u8 dialog_token;
u16 update_indic;
const u8 *tlvs;
size_t tlvs_len;
} p2p_sd_req;
struct p2p_sd_resp {
const u8 *sa;
u16 update_indic;
const u8 *tlvs;
size_t tlvs_len;
} p2p_sd_resp;
/**
* struct ibss_peer_lost - Data for EVENT_IBSS_PEER_LOST
*/
struct ibss_peer_lost {
u8 peer[ETH_ALEN];
} ibss_peer_lost;
/**
* struct driver_gtk_rekey - Data for EVENT_DRIVER_GTK_REKEY
*/
struct driver_gtk_rekey {
const u8 *bssid;
const u8 *replay_ctr;
} driver_gtk_rekey;
/**
* struct client_poll - Data for EVENT_DRIVER_CLIENT_POLL_OK events
* @addr: station address
*/
struct client_poll {
u8 addr[ETH_ALEN];
} client_poll;
/**
* struct eapol_tx_status
* @dst: Original destination
* @data: Data starting with IEEE 802.1X header (!)
* @data_len: Length of data
* @ack: Indicates ack or lost frame
*
* This corresponds to hapd_send_eapol if the frame sent
* there isn't just reported as EVENT_TX_STATUS.
*/
struct eapol_tx_status {
const u8 *dst;
const u8 *data;
int data_len;
int ack;
} eapol_tx_status;
/**
* struct ch_switch
* @freq: Frequency of new channel in MHz
* @ht_enabled: Whether this is an HT channel
* @ch_offset: Secondary channel offset
*/
struct ch_switch {
int freq;
int ht_enabled;
int ch_offset;
} ch_switch;
/**
* struct connect_failed - Data for EVENT_CONNECT_FAILED_REASON
* @addr: Remote client address
* @code: Reason code for connection failure
*/
struct connect_failed_reason {
u8 addr[ETH_ALEN];
enum {
MAX_CLIENT_REACHED,
BLOCKED_CLIENT
} code;
} connect_failed_reason;
/**
* struct dfs_event - Data for radar detected events
* @freq: Frequency of the channel in MHz
*/
struct dfs_event {
int freq;
int ht_enabled;
int chan_offset;
enum chan_width chan_width;
int cf1;
int cf2;
} dfs_event;
/**
* survey_results - Survey result data for EVENT_SURVEY
* @freq_filter: Requested frequency survey filter, 0 if request
* was for all survey data
* @survey_list: Linked list of survey data
*/
struct survey_results {
unsigned int freq_filter;
struct dl_list survey_list; /* struct freq_survey */
} survey_results;
};
/**
* wpa_supplicant_event - Report a driver event for wpa_supplicant
* @ctx: Context pointer (wpa_s); this is the ctx variable registered
* with struct wpa_driver_ops::init()
* @event: event type (defined above)
* @data: possible extra data for the event
*
* Driver wrapper code should call this function whenever an event is received
* from the driver.
*/
void wpa_supplicant_event(void *ctx, enum wpa_event_type event,
union wpa_event_data *data);
/*
* The following inline functions are provided for convenience to simplify
* event indication for some of the common events.
*/
static inline void drv_event_assoc(void *ctx, const u8 *addr, const u8 *ie,
size_t ielen, int reassoc)
{
union wpa_event_data event;
os_memset(&event, 0, sizeof(event));
event.assoc_info.reassoc = reassoc;
event.assoc_info.req_ies = ie;
event.assoc_info.req_ies_len = ielen;
event.assoc_info.addr = addr;
wpa_supplicant_event(ctx, EVENT_ASSOC, &event);
}
static inline void drv_event_disassoc(void *ctx, const u8 *addr)
{
union wpa_event_data event;
os_memset(&event, 0, sizeof(event));
event.disassoc_info.addr = addr;
wpa_supplicant_event(ctx, EVENT_DISASSOC, &event);
}
static inline void drv_event_eapol_rx(void *ctx, const u8 *src, const u8 *data,
size_t data_len)
{
union wpa_event_data event;
os_memset(&event, 0, sizeof(event));
event.eapol_rx.src = src;
event.eapol_rx.data = data;
event.eapol_rx.data_len = data_len;
wpa_supplicant_event(ctx, EVENT_EAPOL_RX, &event);
}
/* driver_common.c */
void wpa_scan_results_free(struct wpa_scan_results *res);
/* Convert wpa_event_type to a string for logging */
const char * event_to_string(enum wpa_event_type event);
#endif /* DRIVER_H */