f3c44a196f
This is preparation for being able to support hw_mode=any to select the best channel from any supported mode. Signed-off-by: Neo Jou <neojou@gmail.com>
1050 lines
31 KiB
C
1050 lines
31 KiB
C
/*
|
|
* ACS - Automatic Channel Selection module
|
|
* Copyright (c) 2011, Atheros Communications
|
|
* Copyright (c) 2013, Qualcomm Atheros, Inc.
|
|
*
|
|
* This software may be distributed under the terms of the BSD license.
|
|
* See README for more details.
|
|
*/
|
|
|
|
#include "utils/includes.h"
|
|
#include <math.h>
|
|
|
|
#include "utils/common.h"
|
|
#include "utils/list.h"
|
|
#include "common/ieee802_11_defs.h"
|
|
#include "common/hw_features_common.h"
|
|
#include "common/wpa_ctrl.h"
|
|
#include "drivers/driver.h"
|
|
#include "hostapd.h"
|
|
#include "ap_drv_ops.h"
|
|
#include "ap_config.h"
|
|
#include "hw_features.h"
|
|
#include "acs.h"
|
|
|
|
/*
|
|
* Automatic Channel Selection
|
|
* ===========================
|
|
*
|
|
* More info at
|
|
* ------------
|
|
* http://wireless.kernel.org/en/users/Documentation/acs
|
|
*
|
|
* How to use
|
|
* ----------
|
|
* - make sure you have CONFIG_ACS=y in hostapd's .config
|
|
* - use channel=0 or channel=acs to enable ACS
|
|
*
|
|
* How does it work
|
|
* ----------------
|
|
* 1. passive scans are used to collect survey data
|
|
* (it is assumed that scan trigger collection of survey data in driver)
|
|
* 2. interference factor is calculated for each channel
|
|
* 3. ideal channel is picked depending on channel width by using adjacent
|
|
* channel interference factors
|
|
*
|
|
* Known limitations
|
|
* -----------------
|
|
* - Current implementation depends heavily on the amount of time willing to
|
|
* spend gathering survey data during hostapd startup. Short traffic bursts
|
|
* may be missed and a suboptimal channel may be picked.
|
|
* - Ideal channel may end up overlapping a channel with 40 MHz intolerant BSS
|
|
*
|
|
* Todo / Ideas
|
|
* ------------
|
|
* - implement other interference computation methods
|
|
* - BSS/RSSI based
|
|
* - spectral scan based
|
|
* (should be possibly to hook this up with current ACS scans)
|
|
* - add wpa_supplicant support (for P2P)
|
|
* - collect a histogram of interference over time allowing more educated
|
|
* guess about an ideal channel (perhaps CSA could be used to migrate AP to a
|
|
* new "better" channel while running)
|
|
* - include neighboring BSS scan to avoid conflicts with 40 MHz intolerant BSSs
|
|
* when choosing the ideal channel
|
|
*
|
|
* Survey interference factor implementation details
|
|
* -------------------------------------------------
|
|
* Generic interference_factor in struct hostapd_channel_data is used.
|
|
*
|
|
* The survey interference factor is defined as the ratio of the
|
|
* observed busy time over the time we spent on the channel,
|
|
* this value is then amplified by the observed noise floor on
|
|
* the channel in comparison to the lowest noise floor observed
|
|
* on the entire band.
|
|
*
|
|
* This corresponds to:
|
|
* ---
|
|
* (busy time - tx time) / (active time - tx time) * 2^(chan_nf + band_min_nf)
|
|
* ---
|
|
*
|
|
* The coefficient of 2 reflects the way power in "far-field"
|
|
* radiation decreases as the square of distance from the antenna [1].
|
|
* What this does is it decreases the observed busy time ratio if the
|
|
* noise observed was low but increases it if the noise was high,
|
|
* proportionally to the way "far field" radiation changes over
|
|
* distance.
|
|
*
|
|
* If channel busy time is not available the fallback is to use channel RX time.
|
|
*
|
|
* Since noise floor is in dBm it is necessary to convert it into Watts so that
|
|
* combined channel interference (e.g., HT40, which uses two channels) can be
|
|
* calculated easily.
|
|
* ---
|
|
* (busy time - tx time) / (active time - tx time) *
|
|
* 2^(10^(chan_nf/10) + 10^(band_min_nf/10))
|
|
* ---
|
|
*
|
|
* However to account for cases where busy/rx time is 0 (channel load is then
|
|
* 0%) channel noise floor signal power is combined into the equation so a
|
|
* channel with lower noise floor is preferred. The equation becomes:
|
|
* ---
|
|
* 10^(chan_nf/5) + (busy time - tx time) / (active time - tx time) *
|
|
* 2^(10^(chan_nf/10) + 10^(band_min_nf/10))
|
|
* ---
|
|
*
|
|
* All this "interference factor" is purely subjective and only time
|
|
* will tell how usable this is. By using the minimum noise floor we
|
|
* remove any possible issues due to card calibration. The computation
|
|
* of the interference factor then is dependent on what the card itself
|
|
* picks up as the minimum noise, not an actual real possible card
|
|
* noise value.
|
|
*
|
|
* Total interference computation details
|
|
* --------------------------------------
|
|
* The above channel interference factor is calculated with no respect to
|
|
* target operational bandwidth.
|
|
*
|
|
* To find an ideal channel the above data is combined by taking into account
|
|
* the target operational bandwidth and selected band. E.g., on 2.4 GHz channels
|
|
* overlap with 20 MHz bandwidth, but there is no overlap for 20 MHz bandwidth
|
|
* on 5 GHz.
|
|
*
|
|
* Each valid and possible channel spec (i.e., channel + width) is taken and its
|
|
* interference factor is computed by summing up interferences of each channel
|
|
* it overlaps. The one with least total interference is picked up.
|
|
*
|
|
* Note: This implies base channel interference factor must be non-negative
|
|
* allowing easy summing up.
|
|
*
|
|
* Example ACS analysis printout
|
|
* -----------------------------
|
|
*
|
|
* ACS: Trying survey-based ACS
|
|
* ACS: Survey analysis for channel 1 (2412 MHz)
|
|
* ACS: 1: min_nf=-113 interference_factor=0.0802469 nf=-113 time=162 busy=0 rx=13
|
|
* ACS: 2: min_nf=-113 interference_factor=0.0745342 nf=-113 time=161 busy=0 rx=12
|
|
* ACS: 3: min_nf=-113 interference_factor=0.0679012 nf=-113 time=162 busy=0 rx=11
|
|
* ACS: 4: min_nf=-113 interference_factor=0.0310559 nf=-113 time=161 busy=0 rx=5
|
|
* ACS: 5: min_nf=-113 interference_factor=0.0248447 nf=-113 time=161 busy=0 rx=4
|
|
* ACS: * interference factor average: 0.0557166
|
|
* ACS: Survey analysis for channel 2 (2417 MHz)
|
|
* ACS: 1: min_nf=-113 interference_factor=0.0185185 nf=-113 time=162 busy=0 rx=3
|
|
* ACS: 2: min_nf=-113 interference_factor=0.0246914 nf=-113 time=162 busy=0 rx=4
|
|
* ACS: 3: min_nf=-113 interference_factor=0.037037 nf=-113 time=162 busy=0 rx=6
|
|
* ACS: 4: min_nf=-113 interference_factor=0.149068 nf=-113 time=161 busy=0 rx=24
|
|
* ACS: 5: min_nf=-113 interference_factor=0.0248447 nf=-113 time=161 busy=0 rx=4
|
|
* ACS: * interference factor average: 0.050832
|
|
* ACS: Survey analysis for channel 3 (2422 MHz)
|
|
* ACS: 1: min_nf=-113 interference_factor=2.51189e-23 nf=-113 time=162 busy=0 rx=0
|
|
* ACS: 2: min_nf=-113 interference_factor=0.0185185 nf=-113 time=162 busy=0 rx=3
|
|
* ACS: 3: min_nf=-113 interference_factor=0.0186335 nf=-113 time=161 busy=0 rx=3
|
|
* ACS: 4: min_nf=-113 interference_factor=0.0186335 nf=-113 time=161 busy=0 rx=3
|
|
* ACS: 5: min_nf=-113 interference_factor=0.0186335 nf=-113 time=161 busy=0 rx=3
|
|
* ACS: * interference factor average: 0.0148838
|
|
* ACS: Survey analysis for channel 4 (2427 MHz)
|
|
* ACS: 1: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0
|
|
* ACS: 2: min_nf=-114 interference_factor=0.0555556 nf=-114 time=162 busy=0 rx=9
|
|
* ACS: 3: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=161 busy=0 rx=0
|
|
* ACS: 4: min_nf=-114 interference_factor=0.0186335 nf=-114 time=161 busy=0 rx=3
|
|
* ACS: 5: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1
|
|
* ACS: * interference factor average: 0.0160801
|
|
* ACS: Survey analysis for channel 5 (2432 MHz)
|
|
* ACS: 1: min_nf=-114 interference_factor=0.409938 nf=-113 time=161 busy=0 rx=66
|
|
* ACS: 2: min_nf=-114 interference_factor=0.0432099 nf=-113 time=162 busy=0 rx=7
|
|
* ACS: 3: min_nf=-114 interference_factor=0.0124224 nf=-113 time=161 busy=0 rx=2
|
|
* ACS: 4: min_nf=-114 interference_factor=0.677019 nf=-113 time=161 busy=0 rx=109
|
|
* ACS: 5: min_nf=-114 interference_factor=0.0186335 nf=-114 time=161 busy=0 rx=3
|
|
* ACS: * interference factor average: 0.232244
|
|
* ACS: Survey analysis for channel 6 (2437 MHz)
|
|
* ACS: 1: min_nf=-113 interference_factor=0.552795 nf=-113 time=161 busy=0 rx=89
|
|
* ACS: 2: min_nf=-113 interference_factor=0.0807453 nf=-112 time=161 busy=0 rx=13
|
|
* ACS: 3: min_nf=-113 interference_factor=0.0310559 nf=-113 time=161 busy=0 rx=5
|
|
* ACS: 4: min_nf=-113 interference_factor=0.434783 nf=-112 time=161 busy=0 rx=70
|
|
* ACS: 5: min_nf=-113 interference_factor=0.0621118 nf=-113 time=161 busy=0 rx=10
|
|
* ACS: * interference factor average: 0.232298
|
|
* ACS: Survey analysis for channel 7 (2442 MHz)
|
|
* ACS: 1: min_nf=-113 interference_factor=0.440994 nf=-112 time=161 busy=0 rx=71
|
|
* ACS: 2: min_nf=-113 interference_factor=0.385093 nf=-113 time=161 busy=0 rx=62
|
|
* ACS: 3: min_nf=-113 interference_factor=0.0372671 nf=-113 time=161 busy=0 rx=6
|
|
* ACS: 4: min_nf=-113 interference_factor=0.0372671 nf=-113 time=161 busy=0 rx=6
|
|
* ACS: 5: min_nf=-113 interference_factor=0.0745342 nf=-113 time=161 busy=0 rx=12
|
|
* ACS: * interference factor average: 0.195031
|
|
* ACS: Survey analysis for channel 8 (2447 MHz)
|
|
* ACS: 1: min_nf=-114 interference_factor=0.0496894 nf=-112 time=161 busy=0 rx=8
|
|
* ACS: 2: min_nf=-114 interference_factor=0.0496894 nf=-114 time=161 busy=0 rx=8
|
|
* ACS: 3: min_nf=-114 interference_factor=0.0372671 nf=-113 time=161 busy=0 rx=6
|
|
* ACS: 4: min_nf=-114 interference_factor=0.12963 nf=-113 time=162 busy=0 rx=21
|
|
* ACS: 5: min_nf=-114 interference_factor=0.166667 nf=-114 time=162 busy=0 rx=27
|
|
* ACS: * interference factor average: 0.0865885
|
|
* ACS: Survey analysis for channel 9 (2452 MHz)
|
|
* ACS: 1: min_nf=-114 interference_factor=0.0124224 nf=-114 time=161 busy=0 rx=2
|
|
* ACS: 2: min_nf=-114 interference_factor=0.0310559 nf=-114 time=161 busy=0 rx=5
|
|
* ACS: 3: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=161 busy=0 rx=0
|
|
* ACS: 4: min_nf=-114 interference_factor=0.00617284 nf=-114 time=162 busy=0 rx=1
|
|
* ACS: 5: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0
|
|
* ACS: * interference factor average: 0.00993022
|
|
* ACS: Survey analysis for channel 10 (2457 MHz)
|
|
* ACS: 1: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1
|
|
* ACS: 2: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1
|
|
* ACS: 3: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1
|
|
* ACS: 4: min_nf=-114 interference_factor=0.0493827 nf=-114 time=162 busy=0 rx=8
|
|
* ACS: 5: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0
|
|
* ACS: * interference factor average: 0.0136033
|
|
* ACS: Survey analysis for channel 11 (2462 MHz)
|
|
* ACS: 1: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=161 busy=0 rx=0
|
|
* ACS: 2: min_nf=-114 interference_factor=2.51189e-23 nf=-113 time=161 busy=0 rx=0
|
|
* ACS: 3: min_nf=-114 interference_factor=2.51189e-23 nf=-113 time=161 busy=0 rx=0
|
|
* ACS: 4: min_nf=-114 interference_factor=0.0432099 nf=-114 time=162 busy=0 rx=7
|
|
* ACS: 5: min_nf=-114 interference_factor=0.0925926 nf=-114 time=162 busy=0 rx=15
|
|
* ACS: * interference factor average: 0.0271605
|
|
* ACS: Survey analysis for channel 12 (2467 MHz)
|
|
* ACS: 1: min_nf=-114 interference_factor=0.0621118 nf=-113 time=161 busy=0 rx=10
|
|
* ACS: 2: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1
|
|
* ACS: 3: min_nf=-114 interference_factor=2.51189e-23 nf=-113 time=162 busy=0 rx=0
|
|
* ACS: 4: min_nf=-114 interference_factor=2.51189e-23 nf=-113 time=162 busy=0 rx=0
|
|
* ACS: 5: min_nf=-114 interference_factor=0.00617284 nf=-113 time=162 busy=0 rx=1
|
|
* ACS: * interference factor average: 0.0148992
|
|
* ACS: Survey analysis for channel 13 (2472 MHz)
|
|
* ACS: 1: min_nf=-114 interference_factor=0.0745342 nf=-114 time=161 busy=0 rx=12
|
|
* ACS: 2: min_nf=-114 interference_factor=0.0555556 nf=-114 time=162 busy=0 rx=9
|
|
* ACS: 3: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0
|
|
* ACS: 4: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0
|
|
* ACS: 5: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0
|
|
* ACS: * interference factor average: 0.0260179
|
|
* ACS: Survey analysis for selected bandwidth 20MHz
|
|
* ACS: * channel 1: total interference = 0.121432
|
|
* ACS: * channel 2: total interference = 0.137512
|
|
* ACS: * channel 3: total interference = 0.369757
|
|
* ACS: * channel 4: total interference = 0.546338
|
|
* ACS: * channel 5: total interference = 0.690538
|
|
* ACS: * channel 6: total interference = 0.762242
|
|
* ACS: * channel 7: total interference = 0.756092
|
|
* ACS: * channel 8: total interference = 0.537451
|
|
* ACS: * channel 9: total interference = 0.332313
|
|
* ACS: * channel 10: total interference = 0.152182
|
|
* ACS: * channel 11: total interference = 0.0916111
|
|
* ACS: * channel 12: total interference = 0.0816809
|
|
* ACS: * channel 13: total interference = 0.0680776
|
|
* ACS: Ideal channel is 13 (2472 MHz) with total interference factor of 0.0680776
|
|
*
|
|
* [1] http://en.wikipedia.org/wiki/Near_and_far_field
|
|
*/
|
|
|
|
|
|
static int acs_request_scan(struct hostapd_iface *iface);
|
|
static int acs_survey_is_sufficient(struct freq_survey *survey);
|
|
|
|
|
|
static void acs_clean_chan_surveys(struct hostapd_channel_data *chan)
|
|
{
|
|
struct freq_survey *survey, *tmp;
|
|
|
|
if (dl_list_empty(&chan->survey_list))
|
|
return;
|
|
|
|
dl_list_for_each_safe(survey, tmp, &chan->survey_list,
|
|
struct freq_survey, list) {
|
|
dl_list_del(&survey->list);
|
|
os_free(survey);
|
|
}
|
|
}
|
|
|
|
|
|
static void acs_cleanup_mode(struct hostapd_hw_modes *mode)
|
|
{
|
|
int i;
|
|
struct hostapd_channel_data *chan;
|
|
|
|
for (i = 0; i < mode->num_channels; i++) {
|
|
chan = &mode->channels[i];
|
|
|
|
if (chan->flag & HOSTAPD_CHAN_SURVEY_LIST_INITIALIZED)
|
|
acs_clean_chan_surveys(chan);
|
|
|
|
dl_list_init(&chan->survey_list);
|
|
chan->flag |= HOSTAPD_CHAN_SURVEY_LIST_INITIALIZED;
|
|
chan->min_nf = 0;
|
|
}
|
|
}
|
|
|
|
|
|
void acs_cleanup(struct hostapd_iface *iface)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < iface->num_hw_features; i++)
|
|
acs_cleanup_mode(&iface->hw_features[i]);
|
|
|
|
iface->chans_surveyed = 0;
|
|
iface->acs_num_completed_scans = 0;
|
|
}
|
|
|
|
|
|
static void acs_fail(struct hostapd_iface *iface)
|
|
{
|
|
wpa_printf(MSG_ERROR, "ACS: Failed to start");
|
|
acs_cleanup(iface);
|
|
hostapd_disable_iface(iface);
|
|
}
|
|
|
|
|
|
static long double
|
|
acs_survey_interference_factor(struct freq_survey *survey, s8 min_nf)
|
|
{
|
|
long double factor, busy, total;
|
|
|
|
if (survey->filled & SURVEY_HAS_CHAN_TIME_BUSY)
|
|
busy = survey->channel_time_busy;
|
|
else if (survey->filled & SURVEY_HAS_CHAN_TIME_RX)
|
|
busy = survey->channel_time_rx;
|
|
else {
|
|
/* This shouldn't really happen as survey data is checked in
|
|
* acs_sanity_check() */
|
|
wpa_printf(MSG_ERROR, "ACS: Survey data missing");
|
|
return 0;
|
|
}
|
|
|
|
total = survey->channel_time;
|
|
|
|
if (survey->filled & SURVEY_HAS_CHAN_TIME_TX) {
|
|
busy -= survey->channel_time_tx;
|
|
total -= survey->channel_time_tx;
|
|
}
|
|
|
|
/* TODO: figure out the best multiplier for noise floor base */
|
|
factor = pow(10, survey->nf / 5.0L) +
|
|
(total ? (busy / total) : 0) *
|
|
pow(2, pow(10, (long double) survey->nf / 10.0L) -
|
|
pow(10, (long double) min_nf / 10.0L));
|
|
|
|
return factor;
|
|
}
|
|
|
|
|
|
static void
|
|
acs_survey_chan_interference_factor(struct hostapd_iface *iface,
|
|
struct hostapd_channel_data *chan)
|
|
{
|
|
struct freq_survey *survey;
|
|
unsigned int i = 0;
|
|
long double int_factor = 0;
|
|
unsigned count = 0;
|
|
|
|
if (dl_list_empty(&chan->survey_list) ||
|
|
(chan->flag & HOSTAPD_CHAN_DISABLED))
|
|
return;
|
|
|
|
chan->interference_factor = 0;
|
|
|
|
dl_list_for_each(survey, &chan->survey_list, struct freq_survey, list)
|
|
{
|
|
i++;
|
|
|
|
if (!acs_survey_is_sufficient(survey)) {
|
|
wpa_printf(MSG_DEBUG, "ACS: %d: insufficient data", i);
|
|
continue;
|
|
}
|
|
|
|
count++;
|
|
int_factor = acs_survey_interference_factor(survey,
|
|
iface->lowest_nf);
|
|
chan->interference_factor += int_factor;
|
|
wpa_printf(MSG_DEBUG, "ACS: %d: min_nf=%d interference_factor=%Lg nf=%d time=%lu busy=%lu rx=%lu",
|
|
i, chan->min_nf, int_factor,
|
|
survey->nf, (unsigned long) survey->channel_time,
|
|
(unsigned long) survey->channel_time_busy,
|
|
(unsigned long) survey->channel_time_rx);
|
|
}
|
|
|
|
if (count)
|
|
chan->interference_factor /= count;
|
|
}
|
|
|
|
|
|
static int acs_usable_ht40_chan(const struct hostapd_channel_data *chan)
|
|
{
|
|
const int allowed[] = { 36, 44, 52, 60, 100, 108, 116, 124, 132, 149,
|
|
157, 184, 192 };
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(allowed); i++)
|
|
if (chan->chan == allowed[i])
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int acs_usable_vht80_chan(const struct hostapd_channel_data *chan)
|
|
{
|
|
const int allowed[] = { 36, 52, 100, 116, 132, 149 };
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(allowed); i++)
|
|
if (chan->chan == allowed[i])
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int acs_usable_vht160_chan(const struct hostapd_channel_data *chan)
|
|
{
|
|
const int allowed[] = { 36, 100 };
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(allowed); i++)
|
|
if (chan->chan == allowed[i])
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int acs_survey_is_sufficient(struct freq_survey *survey)
|
|
{
|
|
if (!(survey->filled & SURVEY_HAS_NF)) {
|
|
wpa_printf(MSG_INFO, "ACS: Survey is missing noise floor");
|
|
return 0;
|
|
}
|
|
|
|
if (!(survey->filled & SURVEY_HAS_CHAN_TIME)) {
|
|
wpa_printf(MSG_INFO, "ACS: Survey is missing channel time");
|
|
return 0;
|
|
}
|
|
|
|
if (!(survey->filled & SURVEY_HAS_CHAN_TIME_BUSY) &&
|
|
!(survey->filled & SURVEY_HAS_CHAN_TIME_RX)) {
|
|
wpa_printf(MSG_INFO,
|
|
"ACS: Survey is missing RX and busy time (at least one is required)");
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int acs_survey_list_is_sufficient(struct hostapd_channel_data *chan)
|
|
{
|
|
struct freq_survey *survey;
|
|
int ret = -1;
|
|
|
|
dl_list_for_each(survey, &chan->survey_list, struct freq_survey, list)
|
|
{
|
|
if (acs_survey_is_sufficient(survey)) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
ret = 0;
|
|
}
|
|
|
|
if (ret == -1)
|
|
ret = 1; /* no survey list entries */
|
|
|
|
if (!ret) {
|
|
wpa_printf(MSG_INFO,
|
|
"ACS: Channel %d has insufficient survey data",
|
|
chan->chan);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int acs_surveys_are_sufficient_mode(struct hostapd_hw_modes *mode)
|
|
{
|
|
int i;
|
|
struct hostapd_channel_data *chan;
|
|
|
|
for (i = 0; i < mode->num_channels; i++) {
|
|
chan = &mode->channels[i];
|
|
if (!(chan->flag & HOSTAPD_CHAN_DISABLED) &&
|
|
acs_survey_list_is_sufficient(chan))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int acs_surveys_are_sufficient(struct hostapd_iface *iface)
|
|
{
|
|
int i;
|
|
struct hostapd_hw_modes *mode;
|
|
|
|
for (i = 0; i < iface->num_hw_features; i++) {
|
|
mode = &iface->hw_features[i];
|
|
if (!hostapd_hw_skip_mode(iface, mode) &&
|
|
acs_surveys_are_sufficient_mode(mode))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int acs_usable_chan(struct hostapd_channel_data *chan)
|
|
{
|
|
return !dl_list_empty(&chan->survey_list) &&
|
|
!(chan->flag & HOSTAPD_CHAN_DISABLED) &&
|
|
acs_survey_list_is_sufficient(chan);
|
|
}
|
|
|
|
|
|
static int is_in_chanlist(struct hostapd_iface *iface,
|
|
struct hostapd_channel_data *chan)
|
|
{
|
|
if (!iface->conf->acs_ch_list.num)
|
|
return 1;
|
|
|
|
return freq_range_list_includes(&iface->conf->acs_ch_list, chan->chan);
|
|
}
|
|
|
|
|
|
static void acs_survey_mode_interference_factor(
|
|
struct hostapd_iface *iface, struct hostapd_hw_modes *mode)
|
|
{
|
|
int i;
|
|
struct hostapd_channel_data *chan;
|
|
|
|
for (i = 0; i < mode->num_channels; i++) {
|
|
chan = &mode->channels[i];
|
|
|
|
if (!acs_usable_chan(chan))
|
|
continue;
|
|
|
|
if (!is_in_chanlist(iface, chan))
|
|
continue;
|
|
|
|
wpa_printf(MSG_DEBUG, "ACS: Survey analysis for channel %d (%d MHz)",
|
|
chan->chan, chan->freq);
|
|
|
|
acs_survey_chan_interference_factor(iface, chan);
|
|
|
|
wpa_printf(MSG_DEBUG, "ACS: * interference factor average: %Lg",
|
|
chan->interference_factor);
|
|
}
|
|
}
|
|
|
|
|
|
static void acs_survey_all_chans_interference_factor(
|
|
struct hostapd_iface *iface)
|
|
{
|
|
int i;
|
|
struct hostapd_hw_modes *mode;
|
|
|
|
for (i = 0; i < iface->num_hw_features; i++) {
|
|
mode = &iface->hw_features[i];
|
|
if (!hostapd_hw_skip_mode(iface, mode))
|
|
acs_survey_mode_interference_factor(iface, mode);
|
|
}
|
|
}
|
|
|
|
|
|
static struct hostapd_channel_data *
|
|
acs_find_chan_mode(struct hostapd_hw_modes *mode, int freq)
|
|
{
|
|
struct hostapd_channel_data *chan;
|
|
int i;
|
|
|
|
for (i = 0; i < mode->num_channels; i++) {
|
|
chan = &mode->channels[i];
|
|
|
|
if (chan->flag & HOSTAPD_CHAN_DISABLED)
|
|
continue;
|
|
|
|
if (chan->freq == freq)
|
|
return chan;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static struct hostapd_channel_data *
|
|
acs_find_chan(struct hostapd_iface *iface, int freq)
|
|
{
|
|
int i;
|
|
struct hostapd_hw_modes *mode;
|
|
struct hostapd_channel_data *chan;
|
|
|
|
for (i = 0; i < iface->num_hw_features; i++) {
|
|
mode = &iface->hw_features[i];
|
|
if (!hostapd_hw_skip_mode(iface, mode)) {
|
|
chan = acs_find_chan_mode(mode, freq);
|
|
if (chan)
|
|
return chan;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static int is_24ghz_mode(enum hostapd_hw_mode mode)
|
|
{
|
|
return mode == HOSTAPD_MODE_IEEE80211B ||
|
|
mode == HOSTAPD_MODE_IEEE80211G;
|
|
}
|
|
|
|
|
|
static int is_common_24ghz_chan(int chan)
|
|
{
|
|
return chan == 1 || chan == 6 || chan == 11;
|
|
}
|
|
|
|
|
|
#ifndef ACS_ADJ_WEIGHT
|
|
#define ACS_ADJ_WEIGHT 0.85
|
|
#endif /* ACS_ADJ_WEIGHT */
|
|
|
|
#ifndef ACS_NEXT_ADJ_WEIGHT
|
|
#define ACS_NEXT_ADJ_WEIGHT 0.55
|
|
#endif /* ACS_NEXT_ADJ_WEIGHT */
|
|
|
|
#ifndef ACS_24GHZ_PREFER_1_6_11
|
|
/*
|
|
* Select commonly used channels 1, 6, 11 by default even if a neighboring
|
|
* channel has a smaller interference factor as long as it is not better by more
|
|
* than this multiplier.
|
|
*/
|
|
#define ACS_24GHZ_PREFER_1_6_11 0.8
|
|
#endif /* ACS_24GHZ_PREFER_1_6_11 */
|
|
|
|
/*
|
|
* At this point it's assumed chan->interference_factor has been computed.
|
|
* This function should be reusable regardless of interference computation
|
|
* option (survey, BSS, spectral, ...). chan->interference factor must be
|
|
* summable (i.e., must be always greater than zero).
|
|
*/
|
|
static struct hostapd_channel_data *
|
|
acs_find_ideal_chan(struct hostapd_iface *iface)
|
|
{
|
|
struct hostapd_channel_data *chan, *adj_chan, *ideal_chan = NULL,
|
|
*rand_chan = NULL;
|
|
long double factor, ideal_factor = 0;
|
|
int i, j;
|
|
int n_chans = 1;
|
|
u32 bw;
|
|
unsigned int k;
|
|
|
|
/* TODO: HT40- support */
|
|
|
|
if (iface->conf->ieee80211n &&
|
|
iface->conf->secondary_channel == -1) {
|
|
wpa_printf(MSG_ERROR, "ACS: HT40- is not supported yet. Please try HT40+");
|
|
return NULL;
|
|
}
|
|
|
|
if (iface->conf->ieee80211n &&
|
|
iface->conf->secondary_channel)
|
|
n_chans = 2;
|
|
|
|
if (iface->conf->ieee80211ac || iface->conf->ieee80211ax) {
|
|
switch (hostapd_get_oper_chwidth(iface->conf)) {
|
|
case CHANWIDTH_80MHZ:
|
|
n_chans = 4;
|
|
break;
|
|
case CHANWIDTH_160MHZ:
|
|
n_chans = 8;
|
|
break;
|
|
}
|
|
}
|
|
|
|
bw = num_chan_to_bw(n_chans);
|
|
|
|
/* TODO: VHT/HE80+80. Update acs_adjust_center_freq() too. */
|
|
|
|
wpa_printf(MSG_DEBUG,
|
|
"ACS: Survey analysis for selected bandwidth %d MHz", bw);
|
|
|
|
for (i = 0; i < iface->current_mode->num_channels; i++) {
|
|
double total_weight;
|
|
struct acs_bias *bias, tmp_bias;
|
|
|
|
chan = &iface->current_mode->channels[i];
|
|
|
|
/* Since in the current ACS implementation the first channel is
|
|
* always a primary channel, skip channels not available as
|
|
* primary until more sophisticated channel selection is
|
|
* implemented. */
|
|
if (!chan_pri_allowed(chan))
|
|
continue;
|
|
|
|
if (!is_in_chanlist(iface, chan))
|
|
continue;
|
|
|
|
if (!chan_bw_allowed(chan, bw, 1, 1)) {
|
|
wpa_printf(MSG_DEBUG,
|
|
"ACS: Channel %d: BW %u is not supported",
|
|
chan->chan, bw);
|
|
continue;
|
|
}
|
|
|
|
/* HT40 on 5 GHz has a limited set of primary channels as per
|
|
* 11n Annex J */
|
|
if (iface->current_mode->mode == HOSTAPD_MODE_IEEE80211A &&
|
|
iface->conf->ieee80211n &&
|
|
iface->conf->secondary_channel &&
|
|
!acs_usable_ht40_chan(chan)) {
|
|
wpa_printf(MSG_DEBUG, "ACS: Channel %d: not allowed as primary channel for HT40",
|
|
chan->chan);
|
|
continue;
|
|
}
|
|
|
|
if (iface->current_mode->mode == HOSTAPD_MODE_IEEE80211A &&
|
|
(iface->conf->ieee80211ac || iface->conf->ieee80211ax)) {
|
|
if (hostapd_get_oper_chwidth(iface->conf) ==
|
|
CHANWIDTH_80MHZ &&
|
|
!acs_usable_vht80_chan(chan)) {
|
|
wpa_printf(MSG_DEBUG,
|
|
"ACS: Channel %d: not allowed as primary channel for VHT80",
|
|
chan->chan);
|
|
continue;
|
|
}
|
|
|
|
if (hostapd_get_oper_chwidth(iface->conf) ==
|
|
CHANWIDTH_160MHZ &&
|
|
!acs_usable_vht160_chan(chan)) {
|
|
wpa_printf(MSG_DEBUG,
|
|
"ACS: Channel %d: not allowed as primary channel for VHT160",
|
|
chan->chan);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
factor = 0;
|
|
if (acs_usable_chan(chan))
|
|
factor = chan->interference_factor;
|
|
total_weight = 1;
|
|
|
|
for (j = 1; j < n_chans; j++) {
|
|
adj_chan = acs_find_chan(iface, chan->freq + (j * 20));
|
|
if (!adj_chan)
|
|
break;
|
|
|
|
if (!chan_bw_allowed(adj_chan, bw, 1, 0)) {
|
|
wpa_printf(MSG_DEBUG,
|
|
"ACS: PRI Channel %d: secondary channel %d BW %u is not supported",
|
|
chan->chan, adj_chan->chan, bw);
|
|
break;
|
|
}
|
|
|
|
if (acs_usable_chan(adj_chan)) {
|
|
factor += adj_chan->interference_factor;
|
|
total_weight += 1;
|
|
}
|
|
}
|
|
|
|
if (j != n_chans) {
|
|
wpa_printf(MSG_DEBUG, "ACS: Channel %d: not enough bandwidth",
|
|
chan->chan);
|
|
continue;
|
|
}
|
|
|
|
/* 2.4 GHz has overlapping 20 MHz channels. Include adjacent
|
|
* channel interference factor. */
|
|
if (is_24ghz_mode(iface->current_mode->mode)) {
|
|
for (j = 0; j < n_chans; j++) {
|
|
adj_chan = acs_find_chan(iface, chan->freq +
|
|
(j * 20) - 5);
|
|
if (adj_chan && acs_usable_chan(adj_chan)) {
|
|
factor += ACS_ADJ_WEIGHT *
|
|
adj_chan->interference_factor;
|
|
total_weight += ACS_ADJ_WEIGHT;
|
|
}
|
|
|
|
adj_chan = acs_find_chan(iface, chan->freq +
|
|
(j * 20) - 10);
|
|
if (adj_chan && acs_usable_chan(adj_chan)) {
|
|
factor += ACS_NEXT_ADJ_WEIGHT *
|
|
adj_chan->interference_factor;
|
|
total_weight += ACS_NEXT_ADJ_WEIGHT;
|
|
}
|
|
|
|
adj_chan = acs_find_chan(iface, chan->freq +
|
|
(j * 20) + 5);
|
|
if (adj_chan && acs_usable_chan(adj_chan)) {
|
|
factor += ACS_ADJ_WEIGHT *
|
|
adj_chan->interference_factor;
|
|
total_weight += ACS_ADJ_WEIGHT;
|
|
}
|
|
|
|
adj_chan = acs_find_chan(iface, chan->freq +
|
|
(j * 20) + 10);
|
|
if (adj_chan && acs_usable_chan(adj_chan)) {
|
|
factor += ACS_NEXT_ADJ_WEIGHT *
|
|
adj_chan->interference_factor;
|
|
total_weight += ACS_NEXT_ADJ_WEIGHT;
|
|
}
|
|
}
|
|
}
|
|
|
|
factor /= total_weight;
|
|
|
|
bias = NULL;
|
|
if (iface->conf->acs_chan_bias) {
|
|
for (k = 0; k < iface->conf->num_acs_chan_bias; k++) {
|
|
bias = &iface->conf->acs_chan_bias[k];
|
|
if (bias->channel == chan->chan)
|
|
break;
|
|
bias = NULL;
|
|
}
|
|
} else if (is_24ghz_mode(iface->current_mode->mode) &&
|
|
is_common_24ghz_chan(chan->chan)) {
|
|
tmp_bias.channel = chan->chan;
|
|
tmp_bias.bias = ACS_24GHZ_PREFER_1_6_11;
|
|
bias = &tmp_bias;
|
|
}
|
|
|
|
if (bias) {
|
|
factor *= bias->bias;
|
|
wpa_printf(MSG_DEBUG,
|
|
"ACS: * channel %d: total interference = %Lg (%f bias)",
|
|
chan->chan, factor, bias->bias);
|
|
} else {
|
|
wpa_printf(MSG_DEBUG,
|
|
"ACS: * channel %d: total interference = %Lg",
|
|
chan->chan, factor);
|
|
}
|
|
|
|
if (acs_usable_chan(chan) &&
|
|
(!ideal_chan || factor < ideal_factor)) {
|
|
ideal_factor = factor;
|
|
ideal_chan = chan;
|
|
}
|
|
|
|
/* This channel would at least be usable */
|
|
if (!rand_chan)
|
|
rand_chan = chan;
|
|
}
|
|
|
|
if (ideal_chan) {
|
|
wpa_printf(MSG_DEBUG, "ACS: Ideal channel is %d (%d MHz) with total interference factor of %Lg",
|
|
ideal_chan->chan, ideal_chan->freq, ideal_factor);
|
|
return ideal_chan;
|
|
}
|
|
|
|
return rand_chan;
|
|
}
|
|
|
|
|
|
static void acs_adjust_center_freq(struct hostapd_iface *iface)
|
|
{
|
|
int offset;
|
|
|
|
wpa_printf(MSG_DEBUG, "ACS: Adjusting VHT center frequency");
|
|
|
|
switch (hostapd_get_oper_chwidth(iface->conf)) {
|
|
case CHANWIDTH_USE_HT:
|
|
offset = 2 * iface->conf->secondary_channel;
|
|
break;
|
|
case CHANWIDTH_80MHZ:
|
|
offset = 6;
|
|
break;
|
|
case CHANWIDTH_160MHZ:
|
|
offset = 14;
|
|
break;
|
|
default:
|
|
/* TODO: How can this be calculated? Adjust
|
|
* acs_find_ideal_chan() */
|
|
wpa_printf(MSG_INFO,
|
|
"ACS: Only VHT20/40/80/160 is supported now");
|
|
return;
|
|
}
|
|
|
|
hostapd_set_oper_centr_freq_seg0_idx(iface->conf,
|
|
iface->conf->channel + offset);
|
|
}
|
|
|
|
|
|
static int acs_study_survey_based(struct hostapd_iface *iface)
|
|
{
|
|
wpa_printf(MSG_DEBUG, "ACS: Trying survey-based ACS");
|
|
|
|
if (!iface->chans_surveyed) {
|
|
wpa_printf(MSG_ERROR, "ACS: Unable to collect survey data");
|
|
return -1;
|
|
}
|
|
|
|
if (!acs_surveys_are_sufficient(iface)) {
|
|
wpa_printf(MSG_ERROR, "ACS: Surveys have insufficient data");
|
|
return -1;
|
|
}
|
|
|
|
acs_survey_all_chans_interference_factor(iface);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int acs_study_options(struct hostapd_iface *iface)
|
|
{
|
|
if (acs_study_survey_based(iface) == 0)
|
|
return 0;
|
|
|
|
/* TODO: If no surveys are available/sufficient this is a good
|
|
* place to fallback to BSS-based ACS */
|
|
|
|
return -1;
|
|
}
|
|
|
|
|
|
static void acs_study(struct hostapd_iface *iface)
|
|
{
|
|
struct hostapd_channel_data *ideal_chan;
|
|
int err;
|
|
|
|
err = acs_study_options(iface);
|
|
if (err < 0) {
|
|
wpa_printf(MSG_ERROR, "ACS: All study options have failed");
|
|
goto fail;
|
|
}
|
|
|
|
ideal_chan = acs_find_ideal_chan(iface);
|
|
if (!ideal_chan) {
|
|
wpa_printf(MSG_ERROR, "ACS: Failed to compute ideal channel");
|
|
err = -1;
|
|
goto fail;
|
|
}
|
|
|
|
iface->conf->channel = ideal_chan->chan;
|
|
iface->freq = ideal_chan->freq;
|
|
|
|
if (iface->conf->ieee80211ac || iface->conf->ieee80211ax)
|
|
acs_adjust_center_freq(iface);
|
|
|
|
err = 0;
|
|
fail:
|
|
/*
|
|
* hostapd_setup_interface_complete() will return -1 on failure,
|
|
* 0 on success and 0 is HOSTAPD_CHAN_VALID :)
|
|
*/
|
|
if (hostapd_acs_completed(iface, err) == HOSTAPD_CHAN_VALID) {
|
|
acs_cleanup(iface);
|
|
return;
|
|
}
|
|
|
|
/* This can possibly happen if channel parameters (secondary
|
|
* channel, center frequencies) are misconfigured */
|
|
wpa_printf(MSG_ERROR, "ACS: Possibly channel configuration is invalid, please report this along with your config file.");
|
|
acs_fail(iface);
|
|
}
|
|
|
|
|
|
static void acs_scan_complete(struct hostapd_iface *iface)
|
|
{
|
|
int err;
|
|
|
|
iface->scan_cb = NULL;
|
|
|
|
wpa_printf(MSG_DEBUG, "ACS: Using survey based algorithm (acs_num_scans=%d)",
|
|
iface->conf->acs_num_scans);
|
|
|
|
err = hostapd_drv_get_survey(iface->bss[0], 0);
|
|
if (err) {
|
|
wpa_printf(MSG_ERROR, "ACS: Failed to get survey data");
|
|
goto fail;
|
|
}
|
|
|
|
if (++iface->acs_num_completed_scans < iface->conf->acs_num_scans) {
|
|
err = acs_request_scan(iface);
|
|
if (err) {
|
|
wpa_printf(MSG_ERROR, "ACS: Failed to request scan");
|
|
goto fail;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
acs_study(iface);
|
|
return;
|
|
fail:
|
|
hostapd_acs_completed(iface, 1);
|
|
acs_fail(iface);
|
|
}
|
|
|
|
|
|
static int acs_request_scan(struct hostapd_iface *iface)
|
|
{
|
|
struct wpa_driver_scan_params params;
|
|
struct hostapd_channel_data *chan;
|
|
int i, *freq;
|
|
|
|
os_memset(¶ms, 0, sizeof(params));
|
|
params.freqs = os_calloc(iface->current_mode->num_channels + 1,
|
|
sizeof(params.freqs[0]));
|
|
if (params.freqs == NULL)
|
|
return -1;
|
|
|
|
freq = params.freqs;
|
|
for (i = 0; i < iface->current_mode->num_channels; i++) {
|
|
chan = &iface->current_mode->channels[i];
|
|
if (chan->flag & HOSTAPD_CHAN_DISABLED)
|
|
continue;
|
|
|
|
if (!is_in_chanlist(iface, chan))
|
|
continue;
|
|
|
|
*freq++ = chan->freq;
|
|
}
|
|
*freq = 0;
|
|
|
|
if (params.freqs == freq) {
|
|
wpa_printf(MSG_ERROR, "ACS: No available channels found");
|
|
os_free(params.freqs);
|
|
return -1;
|
|
}
|
|
|
|
iface->scan_cb = acs_scan_complete;
|
|
|
|
wpa_printf(MSG_DEBUG, "ACS: Scanning %d / %d",
|
|
iface->acs_num_completed_scans + 1,
|
|
iface->conf->acs_num_scans);
|
|
|
|
if (hostapd_driver_scan(iface->bss[0], ¶ms) < 0) {
|
|
wpa_printf(MSG_ERROR, "ACS: Failed to request initial scan");
|
|
acs_cleanup(iface);
|
|
os_free(params.freqs);
|
|
return -1;
|
|
}
|
|
|
|
os_free(params.freqs);
|
|
return 0;
|
|
}
|
|
|
|
|
|
enum hostapd_chan_status acs_init(struct hostapd_iface *iface)
|
|
{
|
|
wpa_printf(MSG_INFO, "ACS: Automatic channel selection started, this may take a bit");
|
|
|
|
if (iface->drv_flags & WPA_DRIVER_FLAGS_ACS_OFFLOAD) {
|
|
wpa_printf(MSG_INFO, "ACS: Offloading to driver");
|
|
if (hostapd_drv_do_acs(iface->bss[0]))
|
|
return HOSTAPD_CHAN_INVALID;
|
|
return HOSTAPD_CHAN_ACS;
|
|
}
|
|
|
|
if (!iface->current_mode)
|
|
return HOSTAPD_CHAN_INVALID;
|
|
|
|
acs_cleanup(iface);
|
|
|
|
if (acs_request_scan(iface) < 0)
|
|
return HOSTAPD_CHAN_INVALID;
|
|
|
|
hostapd_set_state(iface, HAPD_IFACE_ACS);
|
|
wpa_msg(iface->bss[0]->msg_ctx, MSG_INFO, ACS_EVENT_STARTED);
|
|
|
|
return HOSTAPD_CHAN_ACS;
|
|
}
|