aed01b82d3
These will be needed for implementing SAE-PK ECDSA signing and signature verification operations. Signed-off-by: Jouni Malinen <jouni@codeaurora.org>
933 lines
30 KiB
C
933 lines
30 KiB
C
/*
|
|
* Wrapper functions for crypto libraries
|
|
* Copyright (c) 2004-2017, Jouni Malinen <j@w1.fi>
|
|
*
|
|
* This software may be distributed under the terms of the BSD license.
|
|
* See README for more details.
|
|
*
|
|
* This file defines the cryptographic functions that need to be implemented
|
|
* for wpa_supplicant and hostapd. When TLS is not used, internal
|
|
* implementation of MD5, SHA1, and AES is used and no external libraries are
|
|
* required. When TLS is enabled (e.g., by enabling EAP-TLS or EAP-PEAP), the
|
|
* crypto library used by the TLS implementation is expected to be used for
|
|
* non-TLS needs, too, in order to save space by not implementing these
|
|
* functions twice.
|
|
*
|
|
* Wrapper code for using each crypto library is in its own file (crypto*.c)
|
|
* and one of these files is build and linked in to provide the functions
|
|
* defined here.
|
|
*/
|
|
|
|
#ifndef CRYPTO_H
|
|
#define CRYPTO_H
|
|
|
|
/**
|
|
* md4_vector - MD4 hash for data vector
|
|
* @num_elem: Number of elements in the data vector
|
|
* @addr: Pointers to the data areas
|
|
* @len: Lengths of the data blocks
|
|
* @mac: Buffer for the hash
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
|
|
|
|
/**
|
|
* md5_vector - MD5 hash for data vector
|
|
* @num_elem: Number of elements in the data vector
|
|
* @addr: Pointers to the data areas
|
|
* @len: Lengths of the data blocks
|
|
* @mac: Buffer for the hash
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
|
|
|
|
|
|
/**
|
|
* sha1_vector - SHA-1 hash for data vector
|
|
* @num_elem: Number of elements in the data vector
|
|
* @addr: Pointers to the data areas
|
|
* @len: Lengths of the data blocks
|
|
* @mac: Buffer for the hash
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len,
|
|
u8 *mac);
|
|
|
|
/**
|
|
* fips186_2-prf - NIST FIPS Publication 186-2 change notice 1 PRF
|
|
* @seed: Seed/key for the PRF
|
|
* @seed_len: Seed length in bytes
|
|
* @x: Buffer for PRF output
|
|
* @xlen: Output length in bytes
|
|
* Returns: 0 on success, -1 on failure
|
|
*
|
|
* This function implements random number generation specified in NIST FIPS
|
|
* Publication 186-2 for EAP-SIM. This PRF uses a function that is similar to
|
|
* SHA-1, but has different message padding.
|
|
*/
|
|
int __must_check fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x,
|
|
size_t xlen);
|
|
|
|
/**
|
|
* sha256_vector - SHA256 hash for data vector
|
|
* @num_elem: Number of elements in the data vector
|
|
* @addr: Pointers to the data areas
|
|
* @len: Lengths of the data blocks
|
|
* @mac: Buffer for the hash
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
|
|
u8 *mac);
|
|
|
|
/**
|
|
* sha384_vector - SHA384 hash for data vector
|
|
* @num_elem: Number of elements in the data vector
|
|
* @addr: Pointers to the data areas
|
|
* @len: Lengths of the data blocks
|
|
* @mac: Buffer for the hash
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len,
|
|
u8 *mac);
|
|
|
|
/**
|
|
* sha512_vector - SHA512 hash for data vector
|
|
* @num_elem: Number of elements in the data vector
|
|
* @addr: Pointers to the data areas
|
|
* @len: Lengths of the data blocks
|
|
* @mac: Buffer for the hash
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len,
|
|
u8 *mac);
|
|
|
|
/**
|
|
* des_encrypt - Encrypt one block with DES
|
|
* @clear: 8 octets (in)
|
|
* @key: 7 octets (in) (no parity bits included)
|
|
* @cypher: 8 octets (out)
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher);
|
|
|
|
/**
|
|
* aes_encrypt_init - Initialize AES for encryption
|
|
* @key: Encryption key
|
|
* @len: Key length in bytes (usually 16, i.e., 128 bits)
|
|
* Returns: Pointer to context data or %NULL on failure
|
|
*/
|
|
void * aes_encrypt_init(const u8 *key, size_t len);
|
|
|
|
/**
|
|
* aes_encrypt - Encrypt one AES block
|
|
* @ctx: Context pointer from aes_encrypt_init()
|
|
* @plain: Plaintext data to be encrypted (16 bytes)
|
|
* @crypt: Buffer for the encrypted data (16 bytes)
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt);
|
|
|
|
/**
|
|
* aes_encrypt_deinit - Deinitialize AES encryption
|
|
* @ctx: Context pointer from aes_encrypt_init()
|
|
*/
|
|
void aes_encrypt_deinit(void *ctx);
|
|
|
|
/**
|
|
* aes_decrypt_init - Initialize AES for decryption
|
|
* @key: Decryption key
|
|
* @len: Key length in bytes (usually 16, i.e., 128 bits)
|
|
* Returns: Pointer to context data or %NULL on failure
|
|
*/
|
|
void * aes_decrypt_init(const u8 *key, size_t len);
|
|
|
|
/**
|
|
* aes_decrypt - Decrypt one AES block
|
|
* @ctx: Context pointer from aes_encrypt_init()
|
|
* @crypt: Encrypted data (16 bytes)
|
|
* @plain: Buffer for the decrypted data (16 bytes)
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain);
|
|
|
|
/**
|
|
* aes_decrypt_deinit - Deinitialize AES decryption
|
|
* @ctx: Context pointer from aes_encrypt_init()
|
|
*/
|
|
void aes_decrypt_deinit(void *ctx);
|
|
|
|
|
|
enum crypto_hash_alg {
|
|
CRYPTO_HASH_ALG_MD5, CRYPTO_HASH_ALG_SHA1,
|
|
CRYPTO_HASH_ALG_HMAC_MD5, CRYPTO_HASH_ALG_HMAC_SHA1,
|
|
CRYPTO_HASH_ALG_SHA256, CRYPTO_HASH_ALG_HMAC_SHA256,
|
|
CRYPTO_HASH_ALG_SHA384, CRYPTO_HASH_ALG_SHA512
|
|
};
|
|
|
|
struct crypto_hash;
|
|
|
|
/**
|
|
* crypto_hash_init - Initialize hash/HMAC function
|
|
* @alg: Hash algorithm
|
|
* @key: Key for keyed hash (e.g., HMAC) or %NULL if not needed
|
|
* @key_len: Length of the key in bytes
|
|
* Returns: Pointer to hash context to use with other hash functions or %NULL
|
|
* on failure
|
|
*
|
|
* This function is only used with internal TLSv1 implementation
|
|
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
|
|
* to implement this.
|
|
*/
|
|
struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
|
|
size_t key_len);
|
|
|
|
/**
|
|
* crypto_hash_update - Add data to hash calculation
|
|
* @ctx: Context pointer from crypto_hash_init()
|
|
* @data: Data buffer to add
|
|
* @len: Length of the buffer
|
|
*
|
|
* This function is only used with internal TLSv1 implementation
|
|
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
|
|
* to implement this.
|
|
*/
|
|
void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len);
|
|
|
|
/**
|
|
* crypto_hash_finish - Complete hash calculation
|
|
* @ctx: Context pointer from crypto_hash_init()
|
|
* @hash: Buffer for hash value or %NULL if caller is just freeing the hash
|
|
* context
|
|
* @len: Pointer to length of the buffer or %NULL if caller is just freeing the
|
|
* hash context; on return, this is set to the actual length of the hash value
|
|
* Returns: 0 on success, -1 if buffer is too small (len set to needed length),
|
|
* or -2 on other failures (including failed crypto_hash_update() operations)
|
|
*
|
|
* This function calculates the hash value and frees the context buffer that
|
|
* was used for hash calculation.
|
|
*
|
|
* This function is only used with internal TLSv1 implementation
|
|
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
|
|
* to implement this.
|
|
*/
|
|
int crypto_hash_finish(struct crypto_hash *ctx, u8 *hash, size_t *len);
|
|
|
|
|
|
enum crypto_cipher_alg {
|
|
CRYPTO_CIPHER_NULL = 0, CRYPTO_CIPHER_ALG_AES, CRYPTO_CIPHER_ALG_3DES,
|
|
CRYPTO_CIPHER_ALG_DES, CRYPTO_CIPHER_ALG_RC2, CRYPTO_CIPHER_ALG_RC4
|
|
};
|
|
|
|
struct crypto_cipher;
|
|
|
|
/**
|
|
* crypto_cipher_init - Initialize block/stream cipher function
|
|
* @alg: Cipher algorithm
|
|
* @iv: Initialization vector for block ciphers or %NULL for stream ciphers
|
|
* @key: Cipher key
|
|
* @key_len: Length of key in bytes
|
|
* Returns: Pointer to cipher context to use with other cipher functions or
|
|
* %NULL on failure
|
|
*
|
|
* This function is only used with internal TLSv1 implementation
|
|
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
|
|
* to implement this.
|
|
*/
|
|
struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
|
|
const u8 *iv, const u8 *key,
|
|
size_t key_len);
|
|
|
|
/**
|
|
* crypto_cipher_encrypt - Cipher encrypt
|
|
* @ctx: Context pointer from crypto_cipher_init()
|
|
* @plain: Plaintext to cipher
|
|
* @crypt: Resulting ciphertext
|
|
* @len: Length of the plaintext
|
|
* Returns: 0 on success, -1 on failure
|
|
*
|
|
* This function is only used with internal TLSv1 implementation
|
|
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
|
|
* to implement this.
|
|
*/
|
|
int __must_check crypto_cipher_encrypt(struct crypto_cipher *ctx,
|
|
const u8 *plain, u8 *crypt, size_t len);
|
|
|
|
/**
|
|
* crypto_cipher_decrypt - Cipher decrypt
|
|
* @ctx: Context pointer from crypto_cipher_init()
|
|
* @crypt: Ciphertext to decrypt
|
|
* @plain: Resulting plaintext
|
|
* @len: Length of the cipher text
|
|
* Returns: 0 on success, -1 on failure
|
|
*
|
|
* This function is only used with internal TLSv1 implementation
|
|
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
|
|
* to implement this.
|
|
*/
|
|
int __must_check crypto_cipher_decrypt(struct crypto_cipher *ctx,
|
|
const u8 *crypt, u8 *plain, size_t len);
|
|
|
|
/**
|
|
* crypto_cipher_decrypt - Free cipher context
|
|
* @ctx: Context pointer from crypto_cipher_init()
|
|
*
|
|
* This function is only used with internal TLSv1 implementation
|
|
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
|
|
* to implement this.
|
|
*/
|
|
void crypto_cipher_deinit(struct crypto_cipher *ctx);
|
|
|
|
|
|
struct crypto_public_key;
|
|
struct crypto_private_key;
|
|
|
|
/**
|
|
* crypto_public_key_import - Import an RSA public key
|
|
* @key: Key buffer (DER encoded RSA public key)
|
|
* @len: Key buffer length in bytes
|
|
* Returns: Pointer to the public key or %NULL on failure
|
|
*
|
|
* This function can just return %NULL if the crypto library supports X.509
|
|
* parsing. In that case, crypto_public_key_from_cert() is used to import the
|
|
* public key from a certificate.
|
|
*
|
|
* This function is only used with internal TLSv1 implementation
|
|
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
|
|
* to implement this.
|
|
*/
|
|
struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len);
|
|
|
|
struct crypto_public_key *
|
|
crypto_public_key_import_parts(const u8 *n, size_t n_len,
|
|
const u8 *e, size_t e_len);
|
|
|
|
/**
|
|
* crypto_private_key_import - Import an RSA private key
|
|
* @key: Key buffer (DER encoded RSA private key)
|
|
* @len: Key buffer length in bytes
|
|
* @passwd: Key encryption password or %NULL if key is not encrypted
|
|
* Returns: Pointer to the private key or %NULL on failure
|
|
*
|
|
* This function is only used with internal TLSv1 implementation
|
|
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
|
|
* to implement this.
|
|
*/
|
|
struct crypto_private_key * crypto_private_key_import(const u8 *key,
|
|
size_t len,
|
|
const char *passwd);
|
|
|
|
/**
|
|
* crypto_public_key_from_cert - Import an RSA public key from a certificate
|
|
* @buf: DER encoded X.509 certificate
|
|
* @len: Certificate buffer length in bytes
|
|
* Returns: Pointer to public key or %NULL on failure
|
|
*
|
|
* This function can just return %NULL if the crypto library does not support
|
|
* X.509 parsing. In that case, internal code will be used to parse the
|
|
* certificate and public key is imported using crypto_public_key_import().
|
|
*
|
|
* This function is only used with internal TLSv1 implementation
|
|
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
|
|
* to implement this.
|
|
*/
|
|
struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf,
|
|
size_t len);
|
|
|
|
/**
|
|
* crypto_public_key_encrypt_pkcs1_v15 - Public key encryption (PKCS #1 v1.5)
|
|
* @key: Public key
|
|
* @in: Plaintext buffer
|
|
* @inlen: Length of plaintext buffer in bytes
|
|
* @out: Output buffer for encrypted data
|
|
* @outlen: Length of output buffer in bytes; set to used length on success
|
|
* Returns: 0 on success, -1 on failure
|
|
*
|
|
* This function is only used with internal TLSv1 implementation
|
|
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
|
|
* to implement this.
|
|
*/
|
|
int __must_check crypto_public_key_encrypt_pkcs1_v15(
|
|
struct crypto_public_key *key, const u8 *in, size_t inlen,
|
|
u8 *out, size_t *outlen);
|
|
|
|
/**
|
|
* crypto_private_key_decrypt_pkcs1_v15 - Private key decryption (PKCS #1 v1.5)
|
|
* @key: Private key
|
|
* @in: Encrypted buffer
|
|
* @inlen: Length of encrypted buffer in bytes
|
|
* @out: Output buffer for encrypted data
|
|
* @outlen: Length of output buffer in bytes; set to used length on success
|
|
* Returns: 0 on success, -1 on failure
|
|
*
|
|
* This function is only used with internal TLSv1 implementation
|
|
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
|
|
* to implement this.
|
|
*/
|
|
int __must_check crypto_private_key_decrypt_pkcs1_v15(
|
|
struct crypto_private_key *key, const u8 *in, size_t inlen,
|
|
u8 *out, size_t *outlen);
|
|
|
|
/**
|
|
* crypto_private_key_sign_pkcs1 - Sign with private key (PKCS #1)
|
|
* @key: Private key from crypto_private_key_import()
|
|
* @in: Plaintext buffer
|
|
* @inlen: Length of plaintext buffer in bytes
|
|
* @out: Output buffer for encrypted (signed) data
|
|
* @outlen: Length of output buffer in bytes; set to used length on success
|
|
* Returns: 0 on success, -1 on failure
|
|
*
|
|
* This function is only used with internal TLSv1 implementation
|
|
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
|
|
* to implement this.
|
|
*/
|
|
int __must_check crypto_private_key_sign_pkcs1(struct crypto_private_key *key,
|
|
const u8 *in, size_t inlen,
|
|
u8 *out, size_t *outlen);
|
|
|
|
/**
|
|
* crypto_public_key_free - Free public key
|
|
* @key: Public key
|
|
*
|
|
* This function is only used with internal TLSv1 implementation
|
|
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
|
|
* to implement this.
|
|
*/
|
|
void crypto_public_key_free(struct crypto_public_key *key);
|
|
|
|
/**
|
|
* crypto_private_key_free - Free private key
|
|
* @key: Private key from crypto_private_key_import()
|
|
*
|
|
* This function is only used with internal TLSv1 implementation
|
|
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
|
|
* to implement this.
|
|
*/
|
|
void crypto_private_key_free(struct crypto_private_key *key);
|
|
|
|
/**
|
|
* crypto_public_key_decrypt_pkcs1 - Decrypt PKCS #1 signature
|
|
* @key: Public key
|
|
* @crypt: Encrypted signature data (using the private key)
|
|
* @crypt_len: Encrypted signature data length
|
|
* @plain: Buffer for plaintext (at least crypt_len bytes)
|
|
* @plain_len: Plaintext length (max buffer size on input, real len on output);
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int __must_check crypto_public_key_decrypt_pkcs1(
|
|
struct crypto_public_key *key, const u8 *crypt, size_t crypt_len,
|
|
u8 *plain, size_t *plain_len);
|
|
|
|
int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey,
|
|
u8 *pubkey);
|
|
int crypto_dh_derive_secret(u8 generator, const u8 *prime, size_t prime_len,
|
|
const u8 *order, size_t order_len,
|
|
const u8 *privkey, size_t privkey_len,
|
|
const u8 *pubkey, size_t pubkey_len,
|
|
u8 *secret, size_t *len);
|
|
|
|
/**
|
|
* crypto_global_init - Initialize crypto wrapper
|
|
*
|
|
* This function is only used with internal TLSv1 implementation
|
|
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
|
|
* to implement this.
|
|
*/
|
|
int __must_check crypto_global_init(void);
|
|
|
|
/**
|
|
* crypto_global_deinit - Deinitialize crypto wrapper
|
|
*
|
|
* This function is only used with internal TLSv1 implementation
|
|
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
|
|
* to implement this.
|
|
*/
|
|
void crypto_global_deinit(void);
|
|
|
|
/**
|
|
* crypto_mod_exp - Modular exponentiation of large integers
|
|
* @base: Base integer (big endian byte array)
|
|
* @base_len: Length of base integer in bytes
|
|
* @power: Power integer (big endian byte array)
|
|
* @power_len: Length of power integer in bytes
|
|
* @modulus: Modulus integer (big endian byte array)
|
|
* @modulus_len: Length of modulus integer in bytes
|
|
* @result: Buffer for the result
|
|
* @result_len: Result length (max buffer size on input, real len on output)
|
|
* Returns: 0 on success, -1 on failure
|
|
*
|
|
* This function calculates result = base ^ power mod modulus. modules_len is
|
|
* used as the maximum size of modulus buffer. It is set to the used size on
|
|
* success.
|
|
*
|
|
* This function is only used with internal TLSv1 implementation
|
|
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
|
|
* to implement this.
|
|
*/
|
|
int __must_check crypto_mod_exp(const u8 *base, size_t base_len,
|
|
const u8 *power, size_t power_len,
|
|
const u8 *modulus, size_t modulus_len,
|
|
u8 *result, size_t *result_len);
|
|
|
|
/**
|
|
* rc4_skip - XOR RC4 stream to given data with skip-stream-start
|
|
* @key: RC4 key
|
|
* @keylen: RC4 key length
|
|
* @skip: number of bytes to skip from the beginning of the RC4 stream
|
|
* @data: data to be XOR'ed with RC4 stream
|
|
* @data_len: buf length
|
|
* Returns: 0 on success, -1 on failure
|
|
*
|
|
* Generate RC4 pseudo random stream for the given key, skip beginning of the
|
|
* stream, and XOR the end result with the data buffer to perform RC4
|
|
* encryption/decryption.
|
|
*/
|
|
int rc4_skip(const u8 *key, size_t keylen, size_t skip,
|
|
u8 *data, size_t data_len);
|
|
|
|
/**
|
|
* crypto_get_random - Generate cryptographically strong pseudo-random bytes
|
|
* @buf: Buffer for data
|
|
* @len: Number of bytes to generate
|
|
* Returns: 0 on success, -1 on failure
|
|
*
|
|
* If the PRNG does not have enough entropy to ensure unpredictable byte
|
|
* sequence, this functions must return -1.
|
|
*/
|
|
int crypto_get_random(void *buf, size_t len);
|
|
|
|
|
|
/**
|
|
* struct crypto_bignum - bignum
|
|
*
|
|
* Internal data structure for bignum implementation. The contents is specific
|
|
* to the used crypto library.
|
|
*/
|
|
struct crypto_bignum;
|
|
|
|
/**
|
|
* crypto_bignum_init - Allocate memory for bignum
|
|
* Returns: Pointer to allocated bignum or %NULL on failure
|
|
*/
|
|
struct crypto_bignum * crypto_bignum_init(void);
|
|
|
|
/**
|
|
* crypto_bignum_init_set - Allocate memory for bignum and set the value
|
|
* @buf: Buffer with unsigned binary value
|
|
* @len: Length of buf in octets
|
|
* Returns: Pointer to allocated bignum or %NULL on failure
|
|
*/
|
|
struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len);
|
|
|
|
/**
|
|
* crypto_bignum_init_set - Allocate memory for bignum and set the value (uint)
|
|
* @val: Value to set
|
|
* Returns: Pointer to allocated bignum or %NULL on failure
|
|
*/
|
|
struct crypto_bignum * crypto_bignum_init_uint(unsigned int val);
|
|
|
|
/**
|
|
* crypto_bignum_deinit - Free bignum
|
|
* @n: Bignum from crypto_bignum_init() or crypto_bignum_init_set()
|
|
* @clear: Whether to clear the value from memory
|
|
*/
|
|
void crypto_bignum_deinit(struct crypto_bignum *n, int clear);
|
|
|
|
/**
|
|
* crypto_bignum_to_bin - Set binary buffer to unsigned bignum
|
|
* @a: Bignum
|
|
* @buf: Buffer for the binary number
|
|
* @len: Length of @buf in octets
|
|
* @padlen: Length in octets to pad the result to or 0 to indicate no padding
|
|
* Returns: Number of octets written on success, -1 on failure
|
|
*/
|
|
int crypto_bignum_to_bin(const struct crypto_bignum *a,
|
|
u8 *buf, size_t buflen, size_t padlen);
|
|
|
|
/**
|
|
* crypto_bignum_rand - Create a random number in range of modulus
|
|
* @r: Bignum; set to a random value
|
|
* @m: Bignum; modulus
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int crypto_bignum_rand(struct crypto_bignum *r, const struct crypto_bignum *m);
|
|
|
|
/**
|
|
* crypto_bignum_add - c = a + b
|
|
* @a: Bignum
|
|
* @b: Bignum
|
|
* @c: Bignum; used to store the result of a + b
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int crypto_bignum_add(const struct crypto_bignum *a,
|
|
const struct crypto_bignum *b,
|
|
struct crypto_bignum *c);
|
|
|
|
/**
|
|
* crypto_bignum_mod - c = a % b
|
|
* @a: Bignum
|
|
* @b: Bignum
|
|
* @c: Bignum; used to store the result of a % b
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int crypto_bignum_mod(const struct crypto_bignum *a,
|
|
const struct crypto_bignum *b,
|
|
struct crypto_bignum *c);
|
|
|
|
/**
|
|
* crypto_bignum_exptmod - Modular exponentiation: d = a^b (mod c)
|
|
* @a: Bignum; base
|
|
* @b: Bignum; exponent
|
|
* @c: Bignum; modulus
|
|
* @d: Bignum; used to store the result of a^b (mod c)
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int crypto_bignum_exptmod(const struct crypto_bignum *a,
|
|
const struct crypto_bignum *b,
|
|
const struct crypto_bignum *c,
|
|
struct crypto_bignum *d);
|
|
|
|
/**
|
|
* crypto_bignum_inverse - Inverse a bignum so that a * c = 1 (mod b)
|
|
* @a: Bignum
|
|
* @b: Bignum
|
|
* @c: Bignum; used to store the result
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int crypto_bignum_inverse(const struct crypto_bignum *a,
|
|
const struct crypto_bignum *b,
|
|
struct crypto_bignum *c);
|
|
|
|
/**
|
|
* crypto_bignum_sub - c = a - b
|
|
* @a: Bignum
|
|
* @b: Bignum
|
|
* @c: Bignum; used to store the result of a - b
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int crypto_bignum_sub(const struct crypto_bignum *a,
|
|
const struct crypto_bignum *b,
|
|
struct crypto_bignum *c);
|
|
|
|
/**
|
|
* crypto_bignum_div - c = a / b
|
|
* @a: Bignum
|
|
* @b: Bignum
|
|
* @c: Bignum; used to store the result of a / b
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int crypto_bignum_div(const struct crypto_bignum *a,
|
|
const struct crypto_bignum *b,
|
|
struct crypto_bignum *c);
|
|
|
|
/**
|
|
* crypto_bignum_addmod - d = a + b (mod c)
|
|
* @a: Bignum
|
|
* @b: Bignum
|
|
* @c: Bignum
|
|
* @d: Bignum; used to store the result of (a + b) % c
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int crypto_bignum_addmod(const struct crypto_bignum *a,
|
|
const struct crypto_bignum *b,
|
|
const struct crypto_bignum *c,
|
|
struct crypto_bignum *d);
|
|
|
|
/**
|
|
* crypto_bignum_mulmod - d = a * b (mod c)
|
|
* @a: Bignum
|
|
* @b: Bignum
|
|
* @c: Bignum
|
|
* @d: Bignum; used to store the result of (a * b) % c
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int crypto_bignum_mulmod(const struct crypto_bignum *a,
|
|
const struct crypto_bignum *b,
|
|
const struct crypto_bignum *c,
|
|
struct crypto_bignum *d);
|
|
|
|
/**
|
|
* crypto_bignum_sqrmod - c = a^2 (mod b)
|
|
* @a: Bignum
|
|
* @b: Bignum
|
|
* @c: Bignum; used to store the result of a^2 % b
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int crypto_bignum_sqrmod(const struct crypto_bignum *a,
|
|
const struct crypto_bignum *b,
|
|
struct crypto_bignum *c);
|
|
|
|
/**
|
|
* crypto_bignum_rshift - r = a >> n
|
|
* @a: Bignum
|
|
* @n: Number of bits
|
|
* @r: Bignum; used to store the result of a >> n
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int crypto_bignum_rshift(const struct crypto_bignum *a, int n,
|
|
struct crypto_bignum *r);
|
|
|
|
/**
|
|
* crypto_bignum_cmp - Compare two bignums
|
|
* @a: Bignum
|
|
* @b: Bignum
|
|
* Returns: -1 if a < b, 0 if a == b, or 1 if a > b
|
|
*/
|
|
int crypto_bignum_cmp(const struct crypto_bignum *a,
|
|
const struct crypto_bignum *b);
|
|
|
|
/**
|
|
* crypto_bignum_is_zero - Is the given bignum zero
|
|
* @a: Bignum
|
|
* Returns: 1 if @a is zero or 0 if not
|
|
*/
|
|
int crypto_bignum_is_zero(const struct crypto_bignum *a);
|
|
|
|
/**
|
|
* crypto_bignum_is_one - Is the given bignum one
|
|
* @a: Bignum
|
|
* Returns: 1 if @a is one or 0 if not
|
|
*/
|
|
int crypto_bignum_is_one(const struct crypto_bignum *a);
|
|
|
|
/**
|
|
* crypto_bignum_is_odd - Is the given bignum odd
|
|
* @a: Bignum
|
|
* Returns: 1 if @a is odd or 0 if not
|
|
*/
|
|
int crypto_bignum_is_odd(const struct crypto_bignum *a);
|
|
|
|
/**
|
|
* crypto_bignum_legendre - Compute the Legendre symbol (a/p)
|
|
* @a: Bignum
|
|
* @p: Bignum
|
|
* Returns: Legendre symbol -1,0,1 on success; -2 on calculation failure
|
|
*/
|
|
int crypto_bignum_legendre(const struct crypto_bignum *a,
|
|
const struct crypto_bignum *p);
|
|
|
|
/**
|
|
* struct crypto_ec - Elliptic curve context
|
|
*
|
|
* Internal data structure for EC implementation. The contents is specific
|
|
* to the used crypto library.
|
|
*/
|
|
struct crypto_ec;
|
|
|
|
/**
|
|
* crypto_ec_init - Initialize elliptic curve context
|
|
* @group: Identifying number for the ECC group (IANA "Group Description"
|
|
* attribute registrty for RFC 2409)
|
|
* Returns: Pointer to EC context or %NULL on failure
|
|
*/
|
|
struct crypto_ec * crypto_ec_init(int group);
|
|
|
|
/**
|
|
* crypto_ec_deinit - Deinitialize elliptic curve context
|
|
* @e: EC context from crypto_ec_init()
|
|
*/
|
|
void crypto_ec_deinit(struct crypto_ec *e);
|
|
|
|
/**
|
|
* crypto_ec_prime_len - Get length of the prime in octets
|
|
* @e: EC context from crypto_ec_init()
|
|
* Returns: Length of the prime defining the group
|
|
*/
|
|
size_t crypto_ec_prime_len(struct crypto_ec *e);
|
|
|
|
/**
|
|
* crypto_ec_prime_len_bits - Get length of the prime in bits
|
|
* @e: EC context from crypto_ec_init()
|
|
* Returns: Length of the prime defining the group in bits
|
|
*/
|
|
size_t crypto_ec_prime_len_bits(struct crypto_ec *e);
|
|
|
|
/**
|
|
* crypto_ec_order_len - Get length of the order in octets
|
|
* @e: EC context from crypto_ec_init()
|
|
* Returns: Length of the order defining the group
|
|
*/
|
|
size_t crypto_ec_order_len(struct crypto_ec *e);
|
|
|
|
/**
|
|
* crypto_ec_get_prime - Get prime defining an EC group
|
|
* @e: EC context from crypto_ec_init()
|
|
* Returns: Prime (bignum) defining the group
|
|
*/
|
|
const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e);
|
|
|
|
/**
|
|
* crypto_ec_get_order - Get order of an EC group
|
|
* @e: EC context from crypto_ec_init()
|
|
* Returns: Order (bignum) of the group
|
|
*/
|
|
const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e);
|
|
|
|
const struct crypto_bignum * crypto_ec_get_a(struct crypto_ec *e);
|
|
const struct crypto_bignum * crypto_ec_get_b(struct crypto_ec *e);
|
|
|
|
/**
|
|
* struct crypto_ec_point - Elliptic curve point
|
|
*
|
|
* Internal data structure for EC implementation to represent a point. The
|
|
* contents is specific to the used crypto library.
|
|
*/
|
|
struct crypto_ec_point;
|
|
|
|
/**
|
|
* crypto_ec_point_init - Initialize data for an EC point
|
|
* @e: EC context from crypto_ec_init()
|
|
* Returns: Pointer to EC point data or %NULL on failure
|
|
*/
|
|
struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e);
|
|
|
|
/**
|
|
* crypto_ec_point_deinit - Deinitialize EC point data
|
|
* @p: EC point data from crypto_ec_point_init()
|
|
* @clear: Whether to clear the EC point value from memory
|
|
*/
|
|
void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear);
|
|
|
|
/**
|
|
* crypto_ec_point_x - Copies the x-ordinate point into big number
|
|
* @e: EC context from crypto_ec_init()
|
|
* @p: EC point data
|
|
* @x: Big number to set to the copy of x-ordinate
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int crypto_ec_point_x(struct crypto_ec *e, const struct crypto_ec_point *p,
|
|
struct crypto_bignum *x);
|
|
|
|
/**
|
|
* crypto_ec_point_to_bin - Write EC point value as binary data
|
|
* @e: EC context from crypto_ec_init()
|
|
* @p: EC point data from crypto_ec_point_init()
|
|
* @x: Buffer for writing the binary data for x coordinate or %NULL if not used
|
|
* @y: Buffer for writing the binary data for y coordinate or %NULL if not used
|
|
* Returns: 0 on success, -1 on failure
|
|
*
|
|
* This function can be used to write an EC point as binary data in a format
|
|
* that has the x and y coordinates in big endian byte order fields padded to
|
|
* the length of the prime defining the group.
|
|
*/
|
|
int crypto_ec_point_to_bin(struct crypto_ec *e,
|
|
const struct crypto_ec_point *point, u8 *x, u8 *y);
|
|
|
|
/**
|
|
* crypto_ec_point_from_bin - Create EC point from binary data
|
|
* @e: EC context from crypto_ec_init()
|
|
* @val: Binary data to read the EC point from
|
|
* Returns: Pointer to EC point data or %NULL on failure
|
|
*
|
|
* This function readers x and y coordinates of the EC point from the provided
|
|
* buffer assuming the values are in big endian byte order with fields padded to
|
|
* the length of the prime defining the group.
|
|
*/
|
|
struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
|
|
const u8 *val);
|
|
|
|
/**
|
|
* crypto_ec_point_add - c = a + b
|
|
* @e: EC context from crypto_ec_init()
|
|
* @a: Bignum
|
|
* @b: Bignum
|
|
* @c: Bignum; used to store the result of a + b
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
|
|
const struct crypto_ec_point *b,
|
|
struct crypto_ec_point *c);
|
|
|
|
/**
|
|
* crypto_ec_point_mul - res = b * p
|
|
* @e: EC context from crypto_ec_init()
|
|
* @p: EC point
|
|
* @b: Bignum
|
|
* @res: EC point; used to store the result of b * p
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
|
|
const struct crypto_bignum *b,
|
|
struct crypto_ec_point *res);
|
|
|
|
/**
|
|
* crypto_ec_point_invert - Compute inverse of an EC point
|
|
* @e: EC context from crypto_ec_init()
|
|
* @p: EC point to invert (and result of the operation)
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p);
|
|
|
|
/**
|
|
* crypto_ec_point_solve_y_coord - Solve y coordinate for an x coordinate
|
|
* @e: EC context from crypto_ec_init()
|
|
* @p: EC point to use for the returning the result
|
|
* @x: x coordinate
|
|
* @y_bit: y-bit (0 or 1) for selecting the y value to use
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
|
|
struct crypto_ec_point *p,
|
|
const struct crypto_bignum *x, int y_bit);
|
|
|
|
/**
|
|
* crypto_ec_point_compute_y_sqr - Compute y^2 = x^3 + ax + b
|
|
* @e: EC context from crypto_ec_init()
|
|
* @x: x coordinate
|
|
* Returns: y^2 on success, %NULL failure
|
|
*/
|
|
struct crypto_bignum *
|
|
crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
|
|
const struct crypto_bignum *x);
|
|
|
|
/**
|
|
* crypto_ec_point_is_at_infinity - Check whether EC point is neutral element
|
|
* @e: EC context from crypto_ec_init()
|
|
* @p: EC point
|
|
* Returns: 1 if the specified EC point is the neutral element of the group or
|
|
* 0 if not
|
|
*/
|
|
int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
|
|
const struct crypto_ec_point *p);
|
|
|
|
/**
|
|
* crypto_ec_point_is_on_curve - Check whether EC point is on curve
|
|
* @e: EC context from crypto_ec_init()
|
|
* @p: EC point
|
|
* Returns: 1 if the specified EC point is on the curve or 0 if not
|
|
*/
|
|
int crypto_ec_point_is_on_curve(struct crypto_ec *e,
|
|
const struct crypto_ec_point *p);
|
|
|
|
/**
|
|
* crypto_ec_point_cmp - Compare two EC points
|
|
* @e: EC context from crypto_ec_init()
|
|
* @a: EC point
|
|
* @b: EC point
|
|
* Returns: 0 on equal, non-zero otherwise
|
|
*/
|
|
int crypto_ec_point_cmp(const struct crypto_ec *e,
|
|
const struct crypto_ec_point *a,
|
|
const struct crypto_ec_point *b);
|
|
|
|
struct crypto_ecdh;
|
|
|
|
struct crypto_ecdh * crypto_ecdh_init(int group);
|
|
struct wpabuf * crypto_ecdh_get_pubkey(struct crypto_ecdh *ecdh, int inc_y);
|
|
struct wpabuf * crypto_ecdh_set_peerkey(struct crypto_ecdh *ecdh, int inc_y,
|
|
const u8 *key, size_t len);
|
|
void crypto_ecdh_deinit(struct crypto_ecdh *ecdh);
|
|
size_t crypto_ecdh_prime_len(struct crypto_ecdh *ecdh);
|
|
|
|
struct crypto_ec_key;
|
|
|
|
struct crypto_ec_key * crypto_ec_key_parse_priv(const u8 *der, size_t der_len);
|
|
struct crypto_ec_key * crypto_ec_key_parse_pub(const u8 *der, size_t der_len);
|
|
void crypto_ec_key_deinit(struct crypto_ec_key *key);
|
|
struct wpabuf * crypto_ec_key_get_subject_public_key(struct crypto_ec_key *key);
|
|
struct wpabuf * crypto_ec_key_sign(struct crypto_ec_key *key, const u8 *data,
|
|
size_t len);
|
|
int crypto_ec_key_verify_signature(struct crypto_ec_key *key, const u8 *data,
|
|
size_t len, const u8 *sig, size_t sig_len);
|
|
int crypto_ec_key_group(struct crypto_ec_key *key);
|
|
|
|
#endif /* CRYPTO_H */
|