hostap/src/ap/wpa_auth.c
Veerendranath Jakkam 5ecb45a41c OCV: Use more granular error codes for OCI validation failures
Enhance the return values of ocv_verify_tx_params with enum to indicate
different OCI verification failures to caller.

Signed-off-by: Veerendranath Jakkam <vjakkam@codeaurora.org>
2020-09-11 15:23:28 +03:00

5609 lines
151 KiB
C

/*
* IEEE 802.11 RSN / WPA Authenticator
* Copyright (c) 2004-2019, Jouni Malinen <j@w1.fi>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include "utils/includes.h"
#include "utils/common.h"
#include "utils/eloop.h"
#include "utils/state_machine.h"
#include "utils/bitfield.h"
#include "common/ieee802_11_defs.h"
#include "common/ocv.h"
#include "common/dpp.h"
#include "common/wpa_ctrl.h"
#include "crypto/aes.h"
#include "crypto/aes_wrap.h"
#include "crypto/aes_siv.h"
#include "crypto/crypto.h"
#include "crypto/sha1.h"
#include "crypto/sha256.h"
#include "crypto/sha384.h"
#include "crypto/random.h"
#include "eapol_auth/eapol_auth_sm.h"
#include "drivers/driver.h"
#include "ap_config.h"
#include "ieee802_11.h"
#include "wpa_auth.h"
#include "pmksa_cache_auth.h"
#include "wpa_auth_i.h"
#include "wpa_auth_ie.h"
#define STATE_MACHINE_DATA struct wpa_state_machine
#define STATE_MACHINE_DEBUG_PREFIX "WPA"
#define STATE_MACHINE_ADDR sm->addr
static void wpa_send_eapol_timeout(void *eloop_ctx, void *timeout_ctx);
static int wpa_sm_step(struct wpa_state_machine *sm);
static int wpa_verify_key_mic(int akmp, size_t pmk_len, struct wpa_ptk *PTK,
u8 *data, size_t data_len);
#ifdef CONFIG_FILS
static int wpa_aead_decrypt(struct wpa_state_machine *sm, struct wpa_ptk *ptk,
u8 *buf, size_t buf_len, u16 *_key_data_len);
static struct wpabuf * fils_prepare_plainbuf(struct wpa_state_machine *sm,
const struct wpabuf *hlp);
#endif /* CONFIG_FILS */
static void wpa_sm_call_step(void *eloop_ctx, void *timeout_ctx);
static void wpa_group_sm_step(struct wpa_authenticator *wpa_auth,
struct wpa_group *group);
static void wpa_request_new_ptk(struct wpa_state_machine *sm);
static int wpa_gtk_update(struct wpa_authenticator *wpa_auth,
struct wpa_group *group);
static int wpa_group_config_group_keys(struct wpa_authenticator *wpa_auth,
struct wpa_group *group);
static int wpa_derive_ptk(struct wpa_state_machine *sm, const u8 *snonce,
const u8 *pmk, unsigned int pmk_len,
struct wpa_ptk *ptk, int force_sha256);
static void wpa_group_free(struct wpa_authenticator *wpa_auth,
struct wpa_group *group);
static void wpa_group_get(struct wpa_authenticator *wpa_auth,
struct wpa_group *group);
static void wpa_group_put(struct wpa_authenticator *wpa_auth,
struct wpa_group *group);
static int ieee80211w_kde_len(struct wpa_state_machine *sm);
static u8 * ieee80211w_kde_add(struct wpa_state_machine *sm, u8 *pos);
static const u32 eapol_key_timeout_first = 100; /* ms */
static const u32 eapol_key_timeout_subseq = 1000; /* ms */
static const u32 eapol_key_timeout_first_group = 500; /* ms */
static const u32 eapol_key_timeout_no_retrans = 4000; /* ms */
/* TODO: make these configurable */
static const int dot11RSNAConfigPMKLifetime = 43200;
static const int dot11RSNAConfigPMKReauthThreshold = 70;
static const int dot11RSNAConfigSATimeout = 60;
static inline int wpa_auth_mic_failure_report(
struct wpa_authenticator *wpa_auth, const u8 *addr)
{
if (wpa_auth->cb->mic_failure_report)
return wpa_auth->cb->mic_failure_report(wpa_auth->cb_ctx, addr);
return 0;
}
static inline void wpa_auth_psk_failure_report(
struct wpa_authenticator *wpa_auth, const u8 *addr)
{
if (wpa_auth->cb->psk_failure_report)
wpa_auth->cb->psk_failure_report(wpa_auth->cb_ctx, addr);
}
static inline void wpa_auth_set_eapol(struct wpa_authenticator *wpa_auth,
const u8 *addr, wpa_eapol_variable var,
int value)
{
if (wpa_auth->cb->set_eapol)
wpa_auth->cb->set_eapol(wpa_auth->cb_ctx, addr, var, value);
}
static inline int wpa_auth_get_eapol(struct wpa_authenticator *wpa_auth,
const u8 *addr, wpa_eapol_variable var)
{
if (!wpa_auth->cb->get_eapol)
return -1;
return wpa_auth->cb->get_eapol(wpa_auth->cb_ctx, addr, var);
}
static inline const u8 * wpa_auth_get_psk(struct wpa_authenticator *wpa_auth,
const u8 *addr,
const u8 *p2p_dev_addr,
const u8 *prev_psk, size_t *psk_len,
int *vlan_id)
{
if (!wpa_auth->cb->get_psk)
return NULL;
return wpa_auth->cb->get_psk(wpa_auth->cb_ctx, addr, p2p_dev_addr,
prev_psk, psk_len, vlan_id);
}
static inline int wpa_auth_get_msk(struct wpa_authenticator *wpa_auth,
const u8 *addr, u8 *msk, size_t *len)
{
if (!wpa_auth->cb->get_msk)
return -1;
return wpa_auth->cb->get_msk(wpa_auth->cb_ctx, addr, msk, len);
}
static inline int wpa_auth_set_key(struct wpa_authenticator *wpa_auth,
int vlan_id,
enum wpa_alg alg, const u8 *addr, int idx,
u8 *key, size_t key_len,
enum key_flag key_flag)
{
if (!wpa_auth->cb->set_key)
return -1;
return wpa_auth->cb->set_key(wpa_auth->cb_ctx, vlan_id, alg, addr, idx,
key, key_len, key_flag);
}
static inline int wpa_auth_get_seqnum(struct wpa_authenticator *wpa_auth,
const u8 *addr, int idx, u8 *seq)
{
int res;
if (!wpa_auth->cb->get_seqnum)
return -1;
res = wpa_auth->cb->get_seqnum(wpa_auth->cb_ctx, addr, idx, seq);
#ifdef CONFIG_TESTING_OPTIONS
if (!addr && idx < 4 && wpa_auth->conf.gtk_rsc_override_set) {
wpa_printf(MSG_DEBUG,
"TESTING: Override GTK RSC %016llx --> %016llx",
(long long unsigned) WPA_GET_LE64(seq),
(long long unsigned)
WPA_GET_LE64(wpa_auth->conf.gtk_rsc_override));
os_memcpy(seq, wpa_auth->conf.gtk_rsc_override,
WPA_KEY_RSC_LEN);
}
if (!addr && idx >= 4 && idx <= 5 &&
wpa_auth->conf.igtk_rsc_override_set) {
wpa_printf(MSG_DEBUG,
"TESTING: Override IGTK RSC %016llx --> %016llx",
(long long unsigned) WPA_GET_LE64(seq),
(long long unsigned)
WPA_GET_LE64(wpa_auth->conf.igtk_rsc_override));
os_memcpy(seq, wpa_auth->conf.igtk_rsc_override,
WPA_KEY_RSC_LEN);
}
#endif /* CONFIG_TESTING_OPTIONS */
return res;
}
static inline int
wpa_auth_send_eapol(struct wpa_authenticator *wpa_auth, const u8 *addr,
const u8 *data, size_t data_len, int encrypt)
{
if (!wpa_auth->cb->send_eapol)
return -1;
return wpa_auth->cb->send_eapol(wpa_auth->cb_ctx, addr, data, data_len,
encrypt);
}
#ifdef CONFIG_MESH
static inline int wpa_auth_start_ampe(struct wpa_authenticator *wpa_auth,
const u8 *addr)
{
if (!wpa_auth->cb->start_ampe)
return -1;
return wpa_auth->cb->start_ampe(wpa_auth->cb_ctx, addr);
}
#endif /* CONFIG_MESH */
int wpa_auth_for_each_sta(struct wpa_authenticator *wpa_auth,
int (*cb)(struct wpa_state_machine *sm, void *ctx),
void *cb_ctx)
{
if (!wpa_auth->cb->for_each_sta)
return 0;
return wpa_auth->cb->for_each_sta(wpa_auth->cb_ctx, cb, cb_ctx);
}
int wpa_auth_for_each_auth(struct wpa_authenticator *wpa_auth,
int (*cb)(struct wpa_authenticator *a, void *ctx),
void *cb_ctx)
{
if (!wpa_auth->cb->for_each_auth)
return 0;
return wpa_auth->cb->for_each_auth(wpa_auth->cb_ctx, cb, cb_ctx);
}
void wpa_auth_logger(struct wpa_authenticator *wpa_auth, const u8 *addr,
logger_level level, const char *txt)
{
if (!wpa_auth->cb->logger)
return;
wpa_auth->cb->logger(wpa_auth->cb_ctx, addr, level, txt);
}
void wpa_auth_vlogger(struct wpa_authenticator *wpa_auth, const u8 *addr,
logger_level level, const char *fmt, ...)
{
char *format;
int maxlen;
va_list ap;
if (!wpa_auth->cb->logger)
return;
maxlen = os_strlen(fmt) + 100;
format = os_malloc(maxlen);
if (!format)
return;
va_start(ap, fmt);
vsnprintf(format, maxlen, fmt, ap);
va_end(ap);
wpa_auth_logger(wpa_auth, addr, level, format);
os_free(format);
}
static void wpa_sta_disconnect(struct wpa_authenticator *wpa_auth,
const u8 *addr, u16 reason)
{
if (!wpa_auth->cb->disconnect)
return;
wpa_printf(MSG_DEBUG, "wpa_sta_disconnect STA " MACSTR " (reason %u)",
MAC2STR(addr), reason);
wpa_auth->cb->disconnect(wpa_auth->cb_ctx, addr, reason);
}
#ifdef CONFIG_OCV
static int wpa_channel_info(struct wpa_authenticator *wpa_auth,
struct wpa_channel_info *ci)
{
if (!wpa_auth->cb->channel_info)
return -1;
return wpa_auth->cb->channel_info(wpa_auth->cb_ctx, ci);
}
#endif /* CONFIG_OCV */
static int wpa_auth_update_vlan(struct wpa_authenticator *wpa_auth,
const u8 *addr, int vlan_id)
{
if (!wpa_auth->cb->update_vlan)
return -1;
return wpa_auth->cb->update_vlan(wpa_auth->cb_ctx, addr, vlan_id);
}
static void wpa_rekey_gmk(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_authenticator *wpa_auth = eloop_ctx;
if (random_get_bytes(wpa_auth->group->GMK, WPA_GMK_LEN)) {
wpa_printf(MSG_ERROR,
"Failed to get random data for WPA initialization.");
} else {
wpa_auth_logger(wpa_auth, NULL, LOGGER_DEBUG, "GMK rekeyd");
wpa_hexdump_key(MSG_DEBUG, "GMK",
wpa_auth->group->GMK, WPA_GMK_LEN);
}
if (wpa_auth->conf.wpa_gmk_rekey) {
eloop_register_timeout(wpa_auth->conf.wpa_gmk_rekey, 0,
wpa_rekey_gmk, wpa_auth, NULL);
}
}
static void wpa_rekey_gtk(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_authenticator *wpa_auth = eloop_ctx;
struct wpa_group *group, *next;
wpa_auth_logger(wpa_auth, NULL, LOGGER_DEBUG, "rekeying GTK");
group = wpa_auth->group;
while (group) {
wpa_group_get(wpa_auth, group);
group->GTKReKey = true;
do {
group->changed = false;
wpa_group_sm_step(wpa_auth, group);
} while (group->changed);
next = group->next;
wpa_group_put(wpa_auth, group);
group = next;
}
if (wpa_auth->conf.wpa_group_rekey) {
eloop_register_timeout(wpa_auth->conf.wpa_group_rekey,
0, wpa_rekey_gtk, wpa_auth, NULL);
}
}
static void wpa_rekey_ptk(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_authenticator *wpa_auth = eloop_ctx;
struct wpa_state_machine *sm = timeout_ctx;
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG, "rekeying PTK");
wpa_request_new_ptk(sm);
wpa_sm_step(sm);
}
void wpa_auth_set_ptk_rekey_timer(struct wpa_state_machine *sm)
{
if (sm && sm->wpa_auth->conf.wpa_ptk_rekey) {
wpa_printf(MSG_DEBUG, "WPA: Start PTK rekeying timer for "
MACSTR " (%d seconds)", MAC2STR(sm->addr),
sm->wpa_auth->conf.wpa_ptk_rekey);
eloop_cancel_timeout(wpa_rekey_ptk, sm->wpa_auth, sm);
eloop_register_timeout(sm->wpa_auth->conf.wpa_ptk_rekey, 0,
wpa_rekey_ptk, sm->wpa_auth, sm);
}
}
static int wpa_auth_pmksa_clear_cb(struct wpa_state_machine *sm, void *ctx)
{
if (sm->pmksa == ctx)
sm->pmksa = NULL;
return 0;
}
static void wpa_auth_pmksa_free_cb(struct rsn_pmksa_cache_entry *entry,
void *ctx)
{
struct wpa_authenticator *wpa_auth = ctx;
wpa_auth_for_each_sta(wpa_auth, wpa_auth_pmksa_clear_cb, entry);
}
static int wpa_group_init_gmk_and_counter(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
u8 buf[ETH_ALEN + 8 + sizeof(unsigned long)];
u8 rkey[32];
unsigned long ptr;
if (random_get_bytes(group->GMK, WPA_GMK_LEN) < 0)
return -1;
wpa_hexdump_key(MSG_DEBUG, "GMK", group->GMK, WPA_GMK_LEN);
/*
* Counter = PRF-256(Random number, "Init Counter",
* Local MAC Address || Time)
*/
os_memcpy(buf, wpa_auth->addr, ETH_ALEN);
wpa_get_ntp_timestamp(buf + ETH_ALEN);
ptr = (unsigned long) group;
os_memcpy(buf + ETH_ALEN + 8, &ptr, sizeof(ptr));
#ifdef TEST_FUZZ
os_memset(buf + ETH_ALEN, 0xab, 8);
os_memset(buf + ETH_ALEN + 8, 0xcd, sizeof(ptr));
#endif /* TEST_FUZZ */
if (random_get_bytes(rkey, sizeof(rkey)) < 0)
return -1;
if (sha1_prf(rkey, sizeof(rkey), "Init Counter", buf, sizeof(buf),
group->Counter, WPA_NONCE_LEN) < 0)
return -1;
wpa_hexdump_key(MSG_DEBUG, "Key Counter",
group->Counter, WPA_NONCE_LEN);
return 0;
}
static struct wpa_group * wpa_group_init(struct wpa_authenticator *wpa_auth,
int vlan_id, int delay_init)
{
struct wpa_group *group;
group = os_zalloc(sizeof(struct wpa_group));
if (!group)
return NULL;
group->GTKAuthenticator = true;
group->vlan_id = vlan_id;
group->GTK_len = wpa_cipher_key_len(wpa_auth->conf.wpa_group);
if (random_pool_ready() != 1) {
wpa_printf(MSG_INFO,
"WPA: Not enough entropy in random pool for secure operations - update keys later when the first station connects");
}
/*
* Set initial GMK/Counter value here. The actual values that will be
* used in negotiations will be set once the first station tries to
* connect. This allows more time for collecting additional randomness
* on embedded devices.
*/
if (wpa_group_init_gmk_and_counter(wpa_auth, group) < 0) {
wpa_printf(MSG_ERROR,
"Failed to get random data for WPA initialization.");
os_free(group);
return NULL;
}
group->GInit = true;
if (delay_init) {
wpa_printf(MSG_DEBUG,
"WPA: Delay group state machine start until Beacon frames have been configured");
/* Initialization is completed in wpa_init_keys(). */
} else {
wpa_group_sm_step(wpa_auth, group);
group->GInit = false;
wpa_group_sm_step(wpa_auth, group);
}
return group;
}
/**
* wpa_init - Initialize WPA authenticator
* @addr: Authenticator address
* @conf: Configuration for WPA authenticator
* @cb: Callback functions for WPA authenticator
* Returns: Pointer to WPA authenticator data or %NULL on failure
*/
struct wpa_authenticator * wpa_init(const u8 *addr,
struct wpa_auth_config *conf,
const struct wpa_auth_callbacks *cb,
void *cb_ctx)
{
struct wpa_authenticator *wpa_auth;
wpa_auth = os_zalloc(sizeof(struct wpa_authenticator));
if (!wpa_auth)
return NULL;
os_memcpy(wpa_auth->addr, addr, ETH_ALEN);
os_memcpy(&wpa_auth->conf, conf, sizeof(*conf));
wpa_auth->cb = cb;
wpa_auth->cb_ctx = cb_ctx;
if (wpa_auth_gen_wpa_ie(wpa_auth)) {
wpa_printf(MSG_ERROR, "Could not generate WPA IE.");
os_free(wpa_auth);
return NULL;
}
wpa_auth->group = wpa_group_init(wpa_auth, 0, 1);
if (!wpa_auth->group) {
os_free(wpa_auth->wpa_ie);
os_free(wpa_auth);
return NULL;
}
wpa_auth->pmksa = pmksa_cache_auth_init(wpa_auth_pmksa_free_cb,
wpa_auth);
if (!wpa_auth->pmksa) {
wpa_printf(MSG_ERROR, "PMKSA cache initialization failed.");
os_free(wpa_auth->group);
os_free(wpa_auth->wpa_ie);
os_free(wpa_auth);
return NULL;
}
#ifdef CONFIG_IEEE80211R_AP
wpa_auth->ft_pmk_cache = wpa_ft_pmk_cache_init();
if (!wpa_auth->ft_pmk_cache) {
wpa_printf(MSG_ERROR, "FT PMK cache initialization failed.");
os_free(wpa_auth->group);
os_free(wpa_auth->wpa_ie);
pmksa_cache_auth_deinit(wpa_auth->pmksa);
os_free(wpa_auth);
return NULL;
}
#endif /* CONFIG_IEEE80211R_AP */
if (wpa_auth->conf.wpa_gmk_rekey) {
eloop_register_timeout(wpa_auth->conf.wpa_gmk_rekey, 0,
wpa_rekey_gmk, wpa_auth, NULL);
}
if (wpa_auth->conf.wpa_group_rekey) {
eloop_register_timeout(wpa_auth->conf.wpa_group_rekey, 0,
wpa_rekey_gtk, wpa_auth, NULL);
}
#ifdef CONFIG_P2P
if (WPA_GET_BE32(conf->ip_addr_start)) {
int count = WPA_GET_BE32(conf->ip_addr_end) -
WPA_GET_BE32(conf->ip_addr_start) + 1;
if (count > 1000)
count = 1000;
if (count > 0)
wpa_auth->ip_pool = bitfield_alloc(count);
}
#endif /* CONFIG_P2P */
return wpa_auth;
}
int wpa_init_keys(struct wpa_authenticator *wpa_auth)
{
struct wpa_group *group = wpa_auth->group;
wpa_printf(MSG_DEBUG,
"WPA: Start group state machine to set initial keys");
wpa_group_sm_step(wpa_auth, group);
group->GInit = false;
wpa_group_sm_step(wpa_auth, group);
if (group->wpa_group_state == WPA_GROUP_FATAL_FAILURE)
return -1;
return 0;
}
/**
* wpa_deinit - Deinitialize WPA authenticator
* @wpa_auth: Pointer to WPA authenticator data from wpa_init()
*/
void wpa_deinit(struct wpa_authenticator *wpa_auth)
{
struct wpa_group *group, *prev;
eloop_cancel_timeout(wpa_rekey_gmk, wpa_auth, NULL);
eloop_cancel_timeout(wpa_rekey_gtk, wpa_auth, NULL);
pmksa_cache_auth_deinit(wpa_auth->pmksa);
#ifdef CONFIG_IEEE80211R_AP
wpa_ft_pmk_cache_deinit(wpa_auth->ft_pmk_cache);
wpa_auth->ft_pmk_cache = NULL;
wpa_ft_deinit(wpa_auth);
#endif /* CONFIG_IEEE80211R_AP */
#ifdef CONFIG_P2P
bitfield_free(wpa_auth->ip_pool);
#endif /* CONFIG_P2P */
os_free(wpa_auth->wpa_ie);
group = wpa_auth->group;
while (group) {
prev = group;
group = group->next;
os_free(prev);
}
os_free(wpa_auth);
}
/**
* wpa_reconfig - Update WPA authenticator configuration
* @wpa_auth: Pointer to WPA authenticator data from wpa_init()
* @conf: Configuration for WPA authenticator
*/
int wpa_reconfig(struct wpa_authenticator *wpa_auth,
struct wpa_auth_config *conf)
{
struct wpa_group *group;
if (!wpa_auth)
return 0;
os_memcpy(&wpa_auth->conf, conf, sizeof(*conf));
if (wpa_auth_gen_wpa_ie(wpa_auth)) {
wpa_printf(MSG_ERROR, "Could not generate WPA IE.");
return -1;
}
/*
* Reinitialize GTK to make sure it is suitable for the new
* configuration.
*/
group = wpa_auth->group;
group->GTK_len = wpa_cipher_key_len(wpa_auth->conf.wpa_group);
group->GInit = true;
wpa_group_sm_step(wpa_auth, group);
group->GInit = false;
wpa_group_sm_step(wpa_auth, group);
return 0;
}
struct wpa_state_machine *
wpa_auth_sta_init(struct wpa_authenticator *wpa_auth, const u8 *addr,
const u8 *p2p_dev_addr)
{
struct wpa_state_machine *sm;
if (wpa_auth->group->wpa_group_state == WPA_GROUP_FATAL_FAILURE)
return NULL;
sm = os_zalloc(sizeof(struct wpa_state_machine));
if (!sm)
return NULL;
os_memcpy(sm->addr, addr, ETH_ALEN);
if (p2p_dev_addr)
os_memcpy(sm->p2p_dev_addr, p2p_dev_addr, ETH_ALEN);
sm->wpa_auth = wpa_auth;
sm->group = wpa_auth->group;
wpa_group_get(sm->wpa_auth, sm->group);
return sm;
}
int wpa_auth_sta_associated(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm)
{
if (!wpa_auth || !wpa_auth->conf.wpa || !sm)
return -1;
#ifdef CONFIG_IEEE80211R_AP
if (sm->ft_completed) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG,
"FT authentication already completed - do not start 4-way handshake");
/* Go to PTKINITDONE state to allow GTK rekeying */
sm->wpa_ptk_state = WPA_PTK_PTKINITDONE;
sm->Pair = true;
return 0;
}
#endif /* CONFIG_IEEE80211R_AP */
#ifdef CONFIG_FILS
if (sm->fils_completed) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG,
"FILS authentication already completed - do not start 4-way handshake");
/* Go to PTKINITDONE state to allow GTK rekeying */
sm->wpa_ptk_state = WPA_PTK_PTKINITDONE;
sm->Pair = true;
return 0;
}
#endif /* CONFIG_FILS */
if (sm->started) {
os_memset(&sm->key_replay, 0, sizeof(sm->key_replay));
sm->ReAuthenticationRequest = true;
return wpa_sm_step(sm);
}
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG,
"start authentication");
sm->started = 1;
sm->Init = true;
if (wpa_sm_step(sm) == 1)
return 1; /* should not really happen */
sm->Init = false;
sm->AuthenticationRequest = true;
return wpa_sm_step(sm);
}
void wpa_auth_sta_no_wpa(struct wpa_state_machine *sm)
{
/* WPA/RSN was not used - clear WPA state. This is needed if the STA
* reassociates back to the same AP while the previous entry for the
* STA has not yet been removed. */
if (!sm)
return;
sm->wpa_key_mgmt = 0;
}
static void wpa_free_sta_sm(struct wpa_state_machine *sm)
{
#ifdef CONFIG_P2P
if (WPA_GET_BE32(sm->ip_addr)) {
u32 start;
wpa_printf(MSG_DEBUG,
"P2P: Free assigned IP address %u.%u.%u.%u from "
MACSTR,
sm->ip_addr[0], sm->ip_addr[1],
sm->ip_addr[2], sm->ip_addr[3],
MAC2STR(sm->addr));
start = WPA_GET_BE32(sm->wpa_auth->conf.ip_addr_start);
bitfield_clear(sm->wpa_auth->ip_pool,
WPA_GET_BE32(sm->ip_addr) - start);
}
#endif /* CONFIG_P2P */
if (sm->GUpdateStationKeys) {
sm->group->GKeyDoneStations--;
sm->GUpdateStationKeys = false;
}
#ifdef CONFIG_IEEE80211R_AP
os_free(sm->assoc_resp_ftie);
wpabuf_free(sm->ft_pending_req_ies);
#endif /* CONFIG_IEEE80211R_AP */
os_free(sm->last_rx_eapol_key);
os_free(sm->wpa_ie);
os_free(sm->rsnxe);
wpa_group_put(sm->wpa_auth, sm->group);
#ifdef CONFIG_DPP2
wpabuf_clear_free(sm->dpp_z);
#endif /* CONFIG_DPP2 */
bin_clear_free(sm, sizeof(*sm));
}
void wpa_auth_sta_deinit(struct wpa_state_machine *sm)
{
struct wpa_authenticator *wpa_auth;
if (!sm)
return;
wpa_auth = sm->wpa_auth;
if (wpa_auth->conf.wpa_strict_rekey && sm->has_GTK) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG,
"strict rekeying - force GTK rekey since STA is leaving");
if (eloop_deplete_timeout(0, 500000, wpa_rekey_gtk,
wpa_auth, NULL) == -1)
eloop_register_timeout(0, 500000, wpa_rekey_gtk,
wpa_auth, NULL);
}
eloop_cancel_timeout(wpa_send_eapol_timeout, wpa_auth, sm);
sm->pending_1_of_4_timeout = 0;
eloop_cancel_timeout(wpa_sm_call_step, sm, NULL);
eloop_cancel_timeout(wpa_rekey_ptk, wpa_auth, sm);
#ifdef CONFIG_IEEE80211R_AP
wpa_ft_sta_deinit(sm);
#endif /* CONFIG_IEEE80211R_AP */
if (sm->in_step_loop) {
/* Must not free state machine while wpa_sm_step() is running.
* Freeing will be completed in the end of wpa_sm_step(). */
wpa_printf(MSG_DEBUG,
"WPA: Registering pending STA state machine deinit for "
MACSTR, MAC2STR(sm->addr));
sm->pending_deinit = 1;
} else
wpa_free_sta_sm(sm);
}
static void wpa_request_new_ptk(struct wpa_state_machine *sm)
{
if (!sm)
return;
if (!sm->use_ext_key_id && sm->wpa_auth->conf.wpa_deny_ptk0_rekey) {
wpa_printf(MSG_INFO,
"WPA: PTK0 rekey not allowed, disconnect " MACSTR,
MAC2STR(sm->addr));
sm->Disconnect = true;
/* Try to encourage the STA to reconnect */
sm->disconnect_reason =
WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA;
} else {
if (sm->use_ext_key_id)
sm->keyidx_active ^= 1; /* flip Key ID */
sm->PTKRequest = true;
sm->PTK_valid = 0;
}
}
static int wpa_replay_counter_valid(struct wpa_key_replay_counter *ctr,
const u8 *replay_counter)
{
int i;
for (i = 0; i < RSNA_MAX_EAPOL_RETRIES; i++) {
if (!ctr[i].valid)
break;
if (os_memcmp(replay_counter, ctr[i].counter,
WPA_REPLAY_COUNTER_LEN) == 0)
return 1;
}
return 0;
}
static void wpa_replay_counter_mark_invalid(struct wpa_key_replay_counter *ctr,
const u8 *replay_counter)
{
int i;
for (i = 0; i < RSNA_MAX_EAPOL_RETRIES; i++) {
if (ctr[i].valid &&
(!replay_counter ||
os_memcmp(replay_counter, ctr[i].counter,
WPA_REPLAY_COUNTER_LEN) == 0))
ctr[i].valid = false;
}
}
#ifdef CONFIG_IEEE80211R_AP
static int ft_check_msg_2_of_4(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm,
struct wpa_eapol_ie_parse *kde)
{
struct wpa_ie_data ie;
struct rsn_mdie *mdie;
if (wpa_parse_wpa_ie_rsn(kde->rsn_ie, kde->rsn_ie_len, &ie) < 0 ||
ie.num_pmkid != 1 || !ie.pmkid) {
wpa_printf(MSG_DEBUG,
"FT: No PMKR1Name in FT 4-way handshake message 2/4");
return -1;
}
os_memcpy(sm->sup_pmk_r1_name, ie.pmkid, PMKID_LEN);
wpa_hexdump(MSG_DEBUG, "FT: PMKR1Name from Supplicant",
sm->sup_pmk_r1_name, PMKID_LEN);
if (!kde->mdie || !kde->ftie) {
wpa_printf(MSG_DEBUG,
"FT: No %s in FT 4-way handshake message 2/4",
kde->mdie ? "FTIE" : "MDIE");
return -1;
}
mdie = (struct rsn_mdie *) (kde->mdie + 2);
if (kde->mdie[1] < sizeof(struct rsn_mdie) ||
os_memcmp(wpa_auth->conf.mobility_domain, mdie->mobility_domain,
MOBILITY_DOMAIN_ID_LEN) != 0) {
wpa_printf(MSG_DEBUG, "FT: MDIE mismatch");
return -1;
}
if (sm->assoc_resp_ftie &&
(kde->ftie[1] != sm->assoc_resp_ftie[1] ||
os_memcmp(kde->ftie, sm->assoc_resp_ftie,
2 + sm->assoc_resp_ftie[1]) != 0)) {
wpa_printf(MSG_DEBUG, "FT: FTIE mismatch");
wpa_hexdump(MSG_DEBUG, "FT: FTIE in EAPOL-Key msg 2/4",
kde->ftie, kde->ftie_len);
wpa_hexdump(MSG_DEBUG, "FT: FTIE in (Re)AssocResp",
sm->assoc_resp_ftie, 2 + sm->assoc_resp_ftie[1]);
return -1;
}
return 0;
}
#endif /* CONFIG_IEEE80211R_AP */
static int wpa_receive_error_report(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm, int group)
{
/* Supplicant reported a Michael MIC error */
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key Error Request (STA detected Michael MIC failure (group=%d))",
group);
if (group && wpa_auth->conf.wpa_group != WPA_CIPHER_TKIP) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"ignore Michael MIC failure report since group cipher is not TKIP");
} else if (!group && sm->pairwise != WPA_CIPHER_TKIP) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"ignore Michael MIC failure report since pairwise cipher is not TKIP");
} else {
if (wpa_auth_mic_failure_report(wpa_auth, sm->addr) > 0)
return 1; /* STA entry was removed */
sm->dot11RSNAStatsTKIPRemoteMICFailures++;
wpa_auth->dot11RSNAStatsTKIPRemoteMICFailures++;
}
/*
* Error report is not a request for a new key handshake, but since
* Authenticator may do it, let's change the keys now anyway.
*/
wpa_request_new_ptk(sm);
return 0;
}
static int wpa_try_alt_snonce(struct wpa_state_machine *sm, u8 *data,
size_t data_len)
{
struct wpa_ptk PTK;
int ok = 0;
const u8 *pmk = NULL;
size_t pmk_len;
int vlan_id = 0;
os_memset(&PTK, 0, sizeof(PTK));
for (;;) {
if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt) &&
!wpa_key_mgmt_sae(sm->wpa_key_mgmt)) {
pmk = wpa_auth_get_psk(sm->wpa_auth, sm->addr,
sm->p2p_dev_addr, pmk, &pmk_len,
&vlan_id);
if (!pmk)
break;
#ifdef CONFIG_IEEE80211R_AP
if (wpa_key_mgmt_ft_psk(sm->wpa_key_mgmt)) {
os_memcpy(sm->xxkey, pmk, pmk_len);
sm->xxkey_len = pmk_len;
}
#endif /* CONFIG_IEEE80211R_AP */
} else {
pmk = sm->PMK;
pmk_len = sm->pmk_len;
}
if (wpa_derive_ptk(sm, sm->alt_SNonce, pmk, pmk_len, &PTK, 0) <
0)
break;
if (wpa_verify_key_mic(sm->wpa_key_mgmt, pmk_len, &PTK,
data, data_len) == 0) {
if (sm->PMK != pmk) {
os_memcpy(sm->PMK, pmk, pmk_len);
sm->pmk_len = pmk_len;
}
ok = 1;
break;
}
if (!wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt) ||
wpa_key_mgmt_sae(sm->wpa_key_mgmt))
break;
}
if (!ok) {
wpa_printf(MSG_DEBUG,
"WPA: Earlier SNonce did not result in matching MIC");
return -1;
}
wpa_printf(MSG_DEBUG,
"WPA: Earlier SNonce resulted in matching MIC");
sm->alt_snonce_valid = 0;
if (vlan_id && wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt) &&
wpa_auth_update_vlan(sm->wpa_auth, sm->addr, vlan_id) < 0)
return -1;
os_memcpy(sm->SNonce, sm->alt_SNonce, WPA_NONCE_LEN);
os_memcpy(&sm->PTK, &PTK, sizeof(PTK));
forced_memzero(&PTK, sizeof(PTK));
sm->PTK_valid = true;
return 0;
}
void wpa_receive(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm,
u8 *data, size_t data_len)
{
struct ieee802_1x_hdr *hdr;
struct wpa_eapol_key *key;
u16 key_info, key_data_length;
enum { PAIRWISE_2, PAIRWISE_4, GROUP_2, REQUEST } msg;
char *msgtxt;
struct wpa_eapol_ie_parse kde;
const u8 *key_data;
size_t keyhdrlen, mic_len;
u8 *mic;
if (!wpa_auth || !wpa_auth->conf.wpa || !sm)
return;
wpa_hexdump(MSG_MSGDUMP, "WPA: RX EAPOL data", data, data_len);
mic_len = wpa_mic_len(sm->wpa_key_mgmt, sm->pmk_len);
keyhdrlen = sizeof(*key) + mic_len + 2;
if (data_len < sizeof(*hdr) + keyhdrlen) {
wpa_printf(MSG_DEBUG, "WPA: Ignore too short EAPOL-Key frame");
return;
}
hdr = (struct ieee802_1x_hdr *) data;
key = (struct wpa_eapol_key *) (hdr + 1);
mic = (u8 *) (key + 1);
key_info = WPA_GET_BE16(key->key_info);
key_data = mic + mic_len + 2;
key_data_length = WPA_GET_BE16(mic + mic_len);
wpa_printf(MSG_DEBUG, "WPA: Received EAPOL-Key from " MACSTR
" key_info=0x%x type=%u mic_len=%zu key_data_length=%u",
MAC2STR(sm->addr), key_info, key->type,
mic_len, key_data_length);
wpa_hexdump(MSG_MSGDUMP,
"WPA: EAPOL-Key header (ending before Key MIC)",
key, sizeof(*key));
wpa_hexdump(MSG_MSGDUMP, "WPA: EAPOL-Key Key MIC",
mic, mic_len);
if (key_data_length > data_len - sizeof(*hdr) - keyhdrlen) {
wpa_printf(MSG_INFO,
"WPA: Invalid EAPOL-Key frame - key_data overflow (%d > %zu)",
key_data_length,
data_len - sizeof(*hdr) - keyhdrlen);
return;
}
if (sm->wpa == WPA_VERSION_WPA2) {
if (key->type == EAPOL_KEY_TYPE_WPA) {
/*
* Some deployed station implementations seem to send
* msg 4/4 with incorrect type value in WPA2 mode.
*/
wpa_printf(MSG_DEBUG,
"Workaround: Allow EAPOL-Key with unexpected WPA type in RSN mode");
} else if (key->type != EAPOL_KEY_TYPE_RSN) {
wpa_printf(MSG_DEBUG,
"Ignore EAPOL-Key with unexpected type %d in RSN mode",
key->type);
return;
}
} else {
if (key->type != EAPOL_KEY_TYPE_WPA) {
wpa_printf(MSG_DEBUG,
"Ignore EAPOL-Key with unexpected type %d in WPA mode",
key->type);
return;
}
}
wpa_hexdump(MSG_DEBUG, "WPA: Received Key Nonce", key->key_nonce,
WPA_NONCE_LEN);
wpa_hexdump(MSG_DEBUG, "WPA: Received Replay Counter",
key->replay_counter, WPA_REPLAY_COUNTER_LEN);
/* FIX: verify that the EAPOL-Key frame was encrypted if pairwise keys
* are set */
if (key_info & WPA_KEY_INFO_SMK_MESSAGE) {
wpa_printf(MSG_DEBUG, "WPA: Ignore SMK message");
return;
}
if (key_info & WPA_KEY_INFO_REQUEST) {
msg = REQUEST;
msgtxt = "Request";
} else if (!(key_info & WPA_KEY_INFO_KEY_TYPE)) {
msg = GROUP_2;
msgtxt = "2/2 Group";
} else if (key_data_length == 0 ||
(mic_len == 0 && (key_info & WPA_KEY_INFO_ENCR_KEY_DATA) &&
key_data_length == AES_BLOCK_SIZE)) {
msg = PAIRWISE_4;
msgtxt = "4/4 Pairwise";
} else {
msg = PAIRWISE_2;
msgtxt = "2/4 Pairwise";
}
if (msg == REQUEST || msg == PAIRWISE_2 || msg == PAIRWISE_4 ||
msg == GROUP_2) {
u16 ver = key_info & WPA_KEY_INFO_TYPE_MASK;
if (sm->pairwise == WPA_CIPHER_CCMP ||
sm->pairwise == WPA_CIPHER_GCMP) {
if (wpa_use_cmac(sm->wpa_key_mgmt) &&
!wpa_use_akm_defined(sm->wpa_key_mgmt) &&
ver != WPA_KEY_INFO_TYPE_AES_128_CMAC) {
wpa_auth_logger(wpa_auth, sm->addr,
LOGGER_WARNING,
"advertised support for AES-128-CMAC, but did not use it");
return;
}
if (!wpa_use_cmac(sm->wpa_key_mgmt) &&
!wpa_use_akm_defined(sm->wpa_key_mgmt) &&
ver != WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) {
wpa_auth_logger(wpa_auth, sm->addr,
LOGGER_WARNING,
"did not use HMAC-SHA1-AES with CCMP/GCMP");
return;
}
}
if (wpa_use_akm_defined(sm->wpa_key_mgmt) &&
ver != WPA_KEY_INFO_TYPE_AKM_DEFINED) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_WARNING,
"did not use EAPOL-Key descriptor version 0 as required for AKM-defined cases");
return;
}
}
if (key_info & WPA_KEY_INFO_REQUEST) {
if (sm->req_replay_counter_used &&
os_memcmp(key->replay_counter, sm->req_replay_counter,
WPA_REPLAY_COUNTER_LEN) <= 0) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_WARNING,
"received EAPOL-Key request with replayed counter");
return;
}
}
if (!(key_info & WPA_KEY_INFO_REQUEST) &&
!wpa_replay_counter_valid(sm->key_replay, key->replay_counter)) {
int i;
if (msg == PAIRWISE_2 &&
wpa_replay_counter_valid(sm->prev_key_replay,
key->replay_counter) &&
sm->wpa_ptk_state == WPA_PTK_PTKINITNEGOTIATING &&
os_memcmp(sm->SNonce, key->key_nonce, WPA_NONCE_LEN) != 0)
{
/*
* Some supplicant implementations (e.g., Windows XP
* WZC) update SNonce for each EAPOL-Key 2/4. This
* breaks the workaround on accepting any of the
* pending requests, so allow the SNonce to be updated
* even if we have already sent out EAPOL-Key 3/4.
*/
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_DEBUG,
"Process SNonce update from STA based on retransmitted EAPOL-Key 1/4");
sm->update_snonce = 1;
os_memcpy(sm->alt_SNonce, sm->SNonce, WPA_NONCE_LEN);
sm->alt_snonce_valid = true;
os_memcpy(sm->alt_replay_counter,
sm->key_replay[0].counter,
WPA_REPLAY_COUNTER_LEN);
goto continue_processing;
}
if (msg == PAIRWISE_4 && sm->alt_snonce_valid &&
sm->wpa_ptk_state == WPA_PTK_PTKINITNEGOTIATING &&
os_memcmp(key->replay_counter, sm->alt_replay_counter,
WPA_REPLAY_COUNTER_LEN) == 0) {
/*
* Supplicant may still be using the old SNonce since
* there was two EAPOL-Key 2/4 messages and they had
* different SNonce values.
*/
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_DEBUG,
"Try to process received EAPOL-Key 4/4 based on old Replay Counter and SNonce from an earlier EAPOL-Key 1/4");
goto continue_processing;
}
if (msg == PAIRWISE_2 &&
wpa_replay_counter_valid(sm->prev_key_replay,
key->replay_counter) &&
sm->wpa_ptk_state == WPA_PTK_PTKINITNEGOTIATING) {
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_DEBUG,
"ignore retransmitted EAPOL-Key %s - SNonce did not change",
msgtxt);
} else {
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_DEBUG,
"received EAPOL-Key %s with unexpected replay counter",
msgtxt);
}
for (i = 0; i < RSNA_MAX_EAPOL_RETRIES; i++) {
if (!sm->key_replay[i].valid)
break;
wpa_hexdump(MSG_DEBUG, "pending replay counter",
sm->key_replay[i].counter,
WPA_REPLAY_COUNTER_LEN);
}
wpa_hexdump(MSG_DEBUG, "received replay counter",
key->replay_counter, WPA_REPLAY_COUNTER_LEN);
return;
}
continue_processing:
#ifdef CONFIG_FILS
if (sm->wpa == WPA_VERSION_WPA2 && mic_len == 0 &&
!(key_info & WPA_KEY_INFO_ENCR_KEY_DATA)) {
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_DEBUG,
"WPA: Encr Key Data bit not set even though AEAD cipher is supposed to be used - drop frame");
return;
}
#endif /* CONFIG_FILS */
switch (msg) {
case PAIRWISE_2:
if (sm->wpa_ptk_state != WPA_PTK_PTKSTART &&
sm->wpa_ptk_state != WPA_PTK_PTKCALCNEGOTIATING &&
(!sm->update_snonce ||
sm->wpa_ptk_state != WPA_PTK_PTKINITNEGOTIATING)) {
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key msg 2/4 in invalid state (%d) - dropped",
sm->wpa_ptk_state);
return;
}
random_add_randomness(key->key_nonce, WPA_NONCE_LEN);
if (sm->group->reject_4way_hs_for_entropy) {
/*
* The system did not have enough entropy to generate
* strong random numbers. Reject the first 4-way
* handshake(s) and collect some entropy based on the
* information from it. Once enough entropy is
* available, the next atempt will trigger GMK/Key
* Counter update and the station will be allowed to
* continue.
*/
wpa_printf(MSG_DEBUG,
"WPA: Reject 4-way handshake to collect more entropy for random number generation");
random_mark_pool_ready();
wpa_sta_disconnect(wpa_auth, sm->addr,
WLAN_REASON_PREV_AUTH_NOT_VALID);
return;
}
break;
case PAIRWISE_4:
if (sm->wpa_ptk_state != WPA_PTK_PTKINITNEGOTIATING ||
!sm->PTK_valid) {
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key msg 4/4 in invalid state (%d) - dropped",
sm->wpa_ptk_state);
return;
}
break;
case GROUP_2:
if (sm->wpa_ptk_group_state != WPA_PTK_GROUP_REKEYNEGOTIATING
|| !sm->PTK_valid) {
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key msg 2/2 in invalid state (%d) - dropped",
sm->wpa_ptk_group_state);
return;
}
break;
case REQUEST:
break;
}
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_DEBUG,
"received EAPOL-Key frame (%s)", msgtxt);
if (key_info & WPA_KEY_INFO_ACK) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received invalid EAPOL-Key: Key Ack set");
return;
}
if (!wpa_key_mgmt_fils(sm->wpa_key_mgmt) &&
!(key_info & WPA_KEY_INFO_MIC)) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received invalid EAPOL-Key: Key MIC not set");
return;
}
#ifdef CONFIG_FILS
if (wpa_key_mgmt_fils(sm->wpa_key_mgmt) &&
(key_info & WPA_KEY_INFO_MIC)) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received invalid EAPOL-Key: Key MIC set");
return;
}
#endif /* CONFIG_FILS */
sm->MICVerified = false;
if (sm->PTK_valid && !sm->update_snonce) {
if (mic_len &&
wpa_verify_key_mic(sm->wpa_key_mgmt, sm->pmk_len, &sm->PTK,
data, data_len) &&
(msg != PAIRWISE_4 || !sm->alt_snonce_valid ||
wpa_try_alt_snonce(sm, data, data_len))) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key with invalid MIC");
#ifdef TEST_FUZZ
wpa_printf(MSG_INFO,
"TEST: Ignore Key MIC failure for fuzz testing");
goto continue_fuzz;
#endif /* TEST_FUZZ */
return;
}
#ifdef CONFIG_FILS
if (!mic_len &&
wpa_aead_decrypt(sm, &sm->PTK, data, data_len,
&key_data_length) < 0) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key with invalid MIC");
#ifdef TEST_FUZZ
wpa_printf(MSG_INFO,
"TEST: Ignore Key MIC failure for fuzz testing");
goto continue_fuzz;
#endif /* TEST_FUZZ */
return;
}
#endif /* CONFIG_FILS */
#ifdef TEST_FUZZ
continue_fuzz:
#endif /* TEST_FUZZ */
sm->MICVerified = true;
eloop_cancel_timeout(wpa_send_eapol_timeout, wpa_auth, sm);
sm->pending_1_of_4_timeout = 0;
}
if (key_info & WPA_KEY_INFO_REQUEST) {
if (sm->MICVerified) {
sm->req_replay_counter_used = 1;
os_memcpy(sm->req_replay_counter, key->replay_counter,
WPA_REPLAY_COUNTER_LEN);
} else {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key request with invalid MIC");
return;
}
/*
* TODO: should decrypt key data field if encryption was used;
* even though MAC address KDE is not normally encrypted,
* supplicant is allowed to encrypt it.
*/
if (key_info & WPA_KEY_INFO_ERROR) {
if (wpa_receive_error_report(
wpa_auth, sm,
!(key_info & WPA_KEY_INFO_KEY_TYPE)) > 0)
return; /* STA entry was removed */
} else if (key_info & WPA_KEY_INFO_KEY_TYPE) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key Request for new 4-Way Handshake");
wpa_request_new_ptk(sm);
} else if (key_data_length > 0 &&
wpa_parse_kde_ies(key_data, key_data_length,
&kde) == 0 &&
kde.mac_addr) {
} else {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key Request for GTK rekeying");
eloop_cancel_timeout(wpa_rekey_gtk, wpa_auth, NULL);
wpa_rekey_gtk(wpa_auth, NULL);
}
} else {
/* Do not allow the same key replay counter to be reused. */
wpa_replay_counter_mark_invalid(sm->key_replay,
key->replay_counter);
if (msg == PAIRWISE_2) {
/*
* Maintain a copy of the pending EAPOL-Key frames in
* case the EAPOL-Key frame was retransmitted. This is
* needed to allow EAPOL-Key msg 2/4 reply to another
* pending msg 1/4 to update the SNonce to work around
* unexpected supplicant behavior.
*/
os_memcpy(sm->prev_key_replay, sm->key_replay,
sizeof(sm->key_replay));
} else {
os_memset(sm->prev_key_replay, 0,
sizeof(sm->prev_key_replay));
}
/*
* Make sure old valid counters are not accepted anymore and
* do not get copied again.
*/
wpa_replay_counter_mark_invalid(sm->key_replay, NULL);
}
os_free(sm->last_rx_eapol_key);
sm->last_rx_eapol_key = os_memdup(data, data_len);
if (!sm->last_rx_eapol_key)
return;
sm->last_rx_eapol_key_len = data_len;
sm->rx_eapol_key_secure = !!(key_info & WPA_KEY_INFO_SECURE);
sm->EAPOLKeyReceived = true;
sm->EAPOLKeyPairwise = !!(key_info & WPA_KEY_INFO_KEY_TYPE);
sm->EAPOLKeyRequest = !!(key_info & WPA_KEY_INFO_REQUEST);
os_memcpy(sm->SNonce, key->key_nonce, WPA_NONCE_LEN);
wpa_sm_step(sm);
}
static int wpa_gmk_to_gtk(const u8 *gmk, const char *label, const u8 *addr,
const u8 *gnonce, u8 *gtk, size_t gtk_len)
{
u8 data[ETH_ALEN + WPA_NONCE_LEN + 8 + WPA_GTK_MAX_LEN];
u8 *pos;
int ret = 0;
/* GTK = PRF-X(GMK, "Group key expansion",
* AA || GNonce || Time || random data)
* The example described in the IEEE 802.11 standard uses only AA and
* GNonce as inputs here. Add some more entropy since this derivation
* is done only at the Authenticator and as such, does not need to be
* exactly same.
*/
os_memset(data, 0, sizeof(data));
os_memcpy(data, addr, ETH_ALEN);
os_memcpy(data + ETH_ALEN, gnonce, WPA_NONCE_LEN);
pos = data + ETH_ALEN + WPA_NONCE_LEN;
wpa_get_ntp_timestamp(pos);
#ifdef TEST_FUZZ
os_memset(pos, 0xef, 8);
#endif /* TEST_FUZZ */
pos += 8;
if (random_get_bytes(pos, gtk_len) < 0)
ret = -1;
#ifdef CONFIG_SHA384
if (sha384_prf(gmk, WPA_GMK_LEN, label, data, sizeof(data),
gtk, gtk_len) < 0)
ret = -1;
#else /* CONFIG_SHA384 */
#ifdef CONFIG_SHA256
if (sha256_prf(gmk, WPA_GMK_LEN, label, data, sizeof(data),
gtk, gtk_len) < 0)
ret = -1;
#else /* CONFIG_SHA256 */
if (sha1_prf(gmk, WPA_GMK_LEN, label, data, sizeof(data),
gtk, gtk_len) < 0)
ret = -1;
#endif /* CONFIG_SHA256 */
#endif /* CONFIG_SHA384 */
forced_memzero(data, sizeof(data));
return ret;
}
static void wpa_send_eapol_timeout(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_authenticator *wpa_auth = eloop_ctx;
struct wpa_state_machine *sm = timeout_ctx;
sm->pending_1_of_4_timeout = 0;
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG, "EAPOL-Key timeout");
sm->TimeoutEvt = true;
wpa_sm_step(sm);
}
void __wpa_send_eapol(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm, int key_info,
const u8 *key_rsc, const u8 *nonce,
const u8 *kde, size_t kde_len,
int keyidx, int encr, int force_version)
{
struct wpa_auth_config *conf = &wpa_auth->conf;
struct ieee802_1x_hdr *hdr;
struct wpa_eapol_key *key;
size_t len, mic_len, keyhdrlen;
int alg;
int key_data_len, pad_len = 0;
u8 *buf, *pos;
int version, pairwise;
int i;
u8 *key_mic, *key_data;
mic_len = wpa_mic_len(sm->wpa_key_mgmt, sm->pmk_len);
keyhdrlen = sizeof(*key) + mic_len + 2;
len = sizeof(struct ieee802_1x_hdr) + keyhdrlen;
if (force_version)
version = force_version;
else if (wpa_use_akm_defined(sm->wpa_key_mgmt))
version = WPA_KEY_INFO_TYPE_AKM_DEFINED;
else if (wpa_use_cmac(sm->wpa_key_mgmt))
version = WPA_KEY_INFO_TYPE_AES_128_CMAC;
else if (sm->pairwise != WPA_CIPHER_TKIP)
version = WPA_KEY_INFO_TYPE_HMAC_SHA1_AES;
else
version = WPA_KEY_INFO_TYPE_HMAC_MD5_RC4;
pairwise = !!(key_info & WPA_KEY_INFO_KEY_TYPE);
wpa_printf(MSG_DEBUG,
"WPA: Send EAPOL(version=%d secure=%d mic=%d ack=%d install=%d pairwise=%d kde_len=%zu keyidx=%d encr=%d)",
version,
(key_info & WPA_KEY_INFO_SECURE) ? 1 : 0,
(key_info & WPA_KEY_INFO_MIC) ? 1 : 0,
(key_info & WPA_KEY_INFO_ACK) ? 1 : 0,
(key_info & WPA_KEY_INFO_INSTALL) ? 1 : 0,
pairwise, kde_len, keyidx, encr);
key_data_len = kde_len;
if ((version == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES ||
wpa_use_aes_key_wrap(sm->wpa_key_mgmt) ||
version == WPA_KEY_INFO_TYPE_AES_128_CMAC) && encr) {
pad_len = key_data_len % 8;
if (pad_len)
pad_len = 8 - pad_len;
key_data_len += pad_len + 8;
}
len += key_data_len;
if (!mic_len && encr)
len += AES_BLOCK_SIZE;
hdr = os_zalloc(len);
if (!hdr)
return;
hdr->version = conf->eapol_version;
hdr->type = IEEE802_1X_TYPE_EAPOL_KEY;
hdr->length = host_to_be16(len - sizeof(*hdr));
key = (struct wpa_eapol_key *) (hdr + 1);
key_mic = (u8 *) (key + 1);
key_data = ((u8 *) (hdr + 1)) + keyhdrlen;
key->type = sm->wpa == WPA_VERSION_WPA2 ?
EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA;
key_info |= version;
if (encr && sm->wpa == WPA_VERSION_WPA2)
key_info |= WPA_KEY_INFO_ENCR_KEY_DATA;
if (sm->wpa != WPA_VERSION_WPA2)
key_info |= keyidx << WPA_KEY_INFO_KEY_INDEX_SHIFT;
WPA_PUT_BE16(key->key_info, key_info);
alg = pairwise ? sm->pairwise : conf->wpa_group;
if (sm->wpa == WPA_VERSION_WPA2 && !pairwise)
WPA_PUT_BE16(key->key_length, 0);
else
WPA_PUT_BE16(key->key_length, wpa_cipher_key_len(alg));
for (i = RSNA_MAX_EAPOL_RETRIES - 1; i > 0; i--) {
sm->key_replay[i].valid = sm->key_replay[i - 1].valid;
os_memcpy(sm->key_replay[i].counter,
sm->key_replay[i - 1].counter,
WPA_REPLAY_COUNTER_LEN);
}
inc_byte_array(sm->key_replay[0].counter, WPA_REPLAY_COUNTER_LEN);
os_memcpy(key->replay_counter, sm->key_replay[0].counter,
WPA_REPLAY_COUNTER_LEN);
wpa_hexdump(MSG_DEBUG, "WPA: Replay Counter",
key->replay_counter, WPA_REPLAY_COUNTER_LEN);
sm->key_replay[0].valid = true;
if (nonce)
os_memcpy(key->key_nonce, nonce, WPA_NONCE_LEN);
if (key_rsc)
os_memcpy(key->key_rsc, key_rsc, WPA_KEY_RSC_LEN);
if (kde && !encr) {
os_memcpy(key_data, kde, kde_len);
WPA_PUT_BE16(key_mic + mic_len, kde_len);
#ifdef CONFIG_FILS
} else if (!mic_len && kde) {
const u8 *aad[1];
size_t aad_len[1];
WPA_PUT_BE16(key_mic, AES_BLOCK_SIZE + kde_len);
wpa_hexdump_key(MSG_DEBUG, "Plaintext EAPOL-Key Key Data",
kde, kde_len);
wpa_hexdump_key(MSG_DEBUG, "WPA: KEK",
sm->PTK.kek, sm->PTK.kek_len);
/* AES-SIV AAD from EAPOL protocol version field (inclusive) to
* to Key Data (exclusive). */
aad[0] = (u8 *) hdr;
aad_len[0] = key_mic + 2 - (u8 *) hdr;
if (aes_siv_encrypt(sm->PTK.kek, sm->PTK.kek_len, kde, kde_len,
1, aad, aad_len, key_mic + 2) < 0) {
wpa_printf(MSG_DEBUG, "WPA: AES-SIV encryption failed");
return;
}
wpa_hexdump(MSG_DEBUG, "WPA: Encrypted Key Data from SIV",
key_mic + 2, AES_BLOCK_SIZE + kde_len);
#endif /* CONFIG_FILS */
} else if (encr && kde) {
buf = os_zalloc(key_data_len);
if (!buf) {
os_free(hdr);
return;
}
pos = buf;
os_memcpy(pos, kde, kde_len);
pos += kde_len;
if (pad_len)
*pos++ = 0xdd;
wpa_hexdump_key(MSG_DEBUG, "Plaintext EAPOL-Key Key Data",
buf, key_data_len);
if (version == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES ||
wpa_use_aes_key_wrap(sm->wpa_key_mgmt) ||
version == WPA_KEY_INFO_TYPE_AES_128_CMAC) {
wpa_printf(MSG_DEBUG,
"WPA: Encrypt Key Data using AES-WRAP (KEK length %zu)",
sm->PTK.kek_len);
if (aes_wrap(sm->PTK.kek, sm->PTK.kek_len,
(key_data_len - 8) / 8, buf, key_data)) {
os_free(hdr);
os_free(buf);
return;
}
WPA_PUT_BE16(key_mic + mic_len, key_data_len);
#ifndef CONFIG_NO_RC4
} else if (sm->PTK.kek_len == 16) {
u8 ek[32];
wpa_printf(MSG_DEBUG,
"WPA: Encrypt Key Data using RC4");
os_memcpy(key->key_iv,
sm->group->Counter + WPA_NONCE_LEN - 16, 16);
inc_byte_array(sm->group->Counter, WPA_NONCE_LEN);
os_memcpy(ek, key->key_iv, 16);
os_memcpy(ek + 16, sm->PTK.kek, sm->PTK.kek_len);
os_memcpy(key_data, buf, key_data_len);
rc4_skip(ek, 32, 256, key_data, key_data_len);
WPA_PUT_BE16(key_mic + mic_len, key_data_len);
#endif /* CONFIG_NO_RC4 */
} else {
os_free(hdr);
os_free(buf);
return;
}
os_free(buf);
}
if (key_info & WPA_KEY_INFO_MIC) {
if (!sm->PTK_valid || !mic_len) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG,
"PTK not valid when sending EAPOL-Key frame");
os_free(hdr);
return;
}
if (wpa_eapol_key_mic(sm->PTK.kck, sm->PTK.kck_len,
sm->wpa_key_mgmt, version,
(u8 *) hdr, len, key_mic) < 0) {
os_free(hdr);
return;
}
#ifdef CONFIG_TESTING_OPTIONS
if (!pairwise &&
conf->corrupt_gtk_rekey_mic_probability > 0.0 &&
drand48() < conf->corrupt_gtk_rekey_mic_probability) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"Corrupting group EAPOL-Key Key MIC");
key_mic[0]++;
}
#endif /* CONFIG_TESTING_OPTIONS */
}
wpa_auth_set_eapol(wpa_auth, sm->addr, WPA_EAPOL_inc_EapolFramesTx, 1);
wpa_auth_send_eapol(wpa_auth, sm->addr, (u8 *) hdr, len,
sm->pairwise_set);
os_free(hdr);
}
static void wpa_send_eapol(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm, int key_info,
const u8 *key_rsc, const u8 *nonce,
const u8 *kde, size_t kde_len,
int keyidx, int encr)
{
int timeout_ms;
int pairwise = key_info & WPA_KEY_INFO_KEY_TYPE;
u32 ctr;
if (!sm)
return;
__wpa_send_eapol(wpa_auth, sm, key_info, key_rsc, nonce, kde, kde_len,
keyidx, encr, 0);
ctr = pairwise ? sm->TimeoutCtr : sm->GTimeoutCtr;
if (ctr == 1 && wpa_auth->conf.tx_status)
timeout_ms = pairwise ? eapol_key_timeout_first :
eapol_key_timeout_first_group;
else
timeout_ms = eapol_key_timeout_subseq;
if (wpa_auth->conf.wpa_disable_eapol_key_retries &&
(!pairwise || (key_info & WPA_KEY_INFO_MIC)))
timeout_ms = eapol_key_timeout_no_retrans;
if (pairwise && ctr == 1 && !(key_info & WPA_KEY_INFO_MIC))
sm->pending_1_of_4_timeout = 1;
#ifdef TEST_FUZZ
timeout_ms = 1;
#endif /* TEST_FUZZ */
wpa_printf(MSG_DEBUG,
"WPA: Use EAPOL-Key timeout of %u ms (retry counter %u)",
timeout_ms, ctr);
eloop_register_timeout(timeout_ms / 1000, (timeout_ms % 1000) * 1000,
wpa_send_eapol_timeout, wpa_auth, sm);
}
static int wpa_verify_key_mic(int akmp, size_t pmk_len, struct wpa_ptk *PTK,
u8 *data, size_t data_len)
{
struct ieee802_1x_hdr *hdr;
struct wpa_eapol_key *key;
u16 key_info;
int ret = 0;
u8 mic[WPA_EAPOL_KEY_MIC_MAX_LEN], *mic_pos;
size_t mic_len = wpa_mic_len(akmp, pmk_len);
if (data_len < sizeof(*hdr) + sizeof(*key))
return -1;
hdr = (struct ieee802_1x_hdr *) data;
key = (struct wpa_eapol_key *) (hdr + 1);
mic_pos = (u8 *) (key + 1);
key_info = WPA_GET_BE16(key->key_info);
os_memcpy(mic, mic_pos, mic_len);
os_memset(mic_pos, 0, mic_len);
if (wpa_eapol_key_mic(PTK->kck, PTK->kck_len, akmp,
key_info & WPA_KEY_INFO_TYPE_MASK,
data, data_len, mic_pos) ||
os_memcmp_const(mic, mic_pos, mic_len) != 0)
ret = -1;
os_memcpy(mic_pos, mic, mic_len);
return ret;
}
void wpa_remove_ptk(struct wpa_state_machine *sm)
{
sm->PTK_valid = false;
os_memset(&sm->PTK, 0, sizeof(sm->PTK));
if (wpa_auth_set_key(sm->wpa_auth, 0, WPA_ALG_NONE, sm->addr, 0, NULL,
0, KEY_FLAG_PAIRWISE))
wpa_printf(MSG_DEBUG,
"RSN: PTK removal from the driver failed");
if (sm->use_ext_key_id &&
wpa_auth_set_key(sm->wpa_auth, 0, WPA_ALG_NONE, sm->addr, 1, NULL,
0, KEY_FLAG_PAIRWISE))
wpa_printf(MSG_DEBUG,
"RSN: PTK Key ID 1 removal from the driver failed");
sm->pairwise_set = false;
eloop_cancel_timeout(wpa_rekey_ptk, sm->wpa_auth, sm);
}
int wpa_auth_sm_event(struct wpa_state_machine *sm, enum wpa_event event)
{
int remove_ptk = 1;
if (!sm)
return -1;
wpa_auth_vlogger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"event %d notification", event);
switch (event) {
case WPA_AUTH:
#ifdef CONFIG_MESH
/* PTKs are derived through AMPE */
if (wpa_auth_start_ampe(sm->wpa_auth, sm->addr)) {
/* not mesh */
break;
}
return 0;
#endif /* CONFIG_MESH */
case WPA_ASSOC:
break;
case WPA_DEAUTH:
case WPA_DISASSOC:
sm->DeauthenticationRequest = true;
#ifdef CONFIG_IEEE80211R_AP
os_memset(sm->PMK, 0, sizeof(sm->PMK));
sm->pmk_len = 0;
os_memset(sm->xxkey, 0, sizeof(sm->xxkey));
sm->xxkey_len = 0;
os_memset(sm->pmk_r1, 0, sizeof(sm->pmk_r1));
sm->pmk_r1_len = 0;
#endif /* CONFIG_IEEE80211R_AP */
break;
case WPA_REAUTH:
case WPA_REAUTH_EAPOL:
if (!sm->started) {
/*
* When using WPS, we may end up here if the STA
* manages to re-associate without the previous STA
* entry getting removed. Consequently, we need to make
* sure that the WPA state machines gets initialized
* properly at this point.
*/
wpa_printf(MSG_DEBUG,
"WPA state machine had not been started - initialize now");
sm->started = 1;
sm->Init = true;
if (wpa_sm_step(sm) == 1)
return 1; /* should not really happen */
sm->Init = false;
sm->AuthenticationRequest = true;
break;
}
if (!sm->use_ext_key_id &&
sm->wpa_auth->conf.wpa_deny_ptk0_rekey) {
wpa_printf(MSG_INFO,
"WPA: PTK0 rekey not allowed, disconnect "
MACSTR, MAC2STR(sm->addr));
sm->Disconnect = true;
/* Try to encourage the STA to reconnect */
sm->disconnect_reason =
WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA;
break;
}
if (sm->use_ext_key_id)
sm->keyidx_active ^= 1; /* flip Key ID */
if (sm->GUpdateStationKeys) {
/*
* Reauthentication cancels the pending group key
* update for this STA.
*/
sm->group->GKeyDoneStations--;
sm->GUpdateStationKeys = false;
sm->PtkGroupInit = true;
}
sm->ReAuthenticationRequest = true;
break;
case WPA_ASSOC_FT:
#ifdef CONFIG_IEEE80211R_AP
wpa_printf(MSG_DEBUG,
"FT: Retry PTK configuration after association");
wpa_ft_install_ptk(sm, 1);
/* Using FT protocol, not WPA auth state machine */
sm->ft_completed = 1;
wpa_auth_set_ptk_rekey_timer(sm);
return 0;
#else /* CONFIG_IEEE80211R_AP */
break;
#endif /* CONFIG_IEEE80211R_AP */
case WPA_ASSOC_FILS:
#ifdef CONFIG_FILS
wpa_printf(MSG_DEBUG,
"FILS: TK configuration after association");
fils_set_tk(sm);
sm->fils_completed = 1;
return 0;
#else /* CONFIG_FILS */
break;
#endif /* CONFIG_FILS */
case WPA_DRV_STA_REMOVED:
sm->tk_already_set = false;
return 0;
}
#ifdef CONFIG_IEEE80211R_AP
sm->ft_completed = 0;
#endif /* CONFIG_IEEE80211R_AP */
if (sm->mgmt_frame_prot && event == WPA_AUTH)
remove_ptk = 0;
#ifdef CONFIG_FILS
if (wpa_key_mgmt_fils(sm->wpa_key_mgmt) &&
(event == WPA_AUTH || event == WPA_ASSOC))
remove_ptk = 0;
#endif /* CONFIG_FILS */
if (remove_ptk) {
sm->PTK_valid = false;
os_memset(&sm->PTK, 0, sizeof(sm->PTK));
if (event != WPA_REAUTH_EAPOL)
wpa_remove_ptk(sm);
}
if (sm->in_step_loop) {
/*
* wpa_sm_step() is already running - avoid recursive call to
* it by making the existing loop process the new update.
*/
sm->changed = true;
return 0;
}
return wpa_sm_step(sm);
}
SM_STATE(WPA_PTK, INITIALIZE)
{
SM_ENTRY_MA(WPA_PTK, INITIALIZE, wpa_ptk);
if (sm->Init) {
/* Init flag is not cleared here, so avoid busy
* loop by claiming nothing changed. */
sm->changed = false;
}
sm->keycount = 0;
if (sm->GUpdateStationKeys)
sm->group->GKeyDoneStations--;
sm->GUpdateStationKeys = false;
if (sm->wpa == WPA_VERSION_WPA)
sm->PInitAKeys = false;
if (1 /* Unicast cipher supported AND (ESS OR ((IBSS or WDS) and
* Local AA > Remote AA)) */) {
sm->Pair = true;
}
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portEnabled, 0);
wpa_remove_ptk(sm);
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portValid, 0);
sm->TimeoutCtr = 0;
if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt) ||
sm->wpa_key_mgmt == WPA_KEY_MGMT_DPP ||
sm->wpa_key_mgmt == WPA_KEY_MGMT_OWE) {
wpa_auth_set_eapol(sm->wpa_auth, sm->addr,
WPA_EAPOL_authorized, 0);
}
}
SM_STATE(WPA_PTK, DISCONNECT)
{
u16 reason = sm->disconnect_reason;
SM_ENTRY_MA(WPA_PTK, DISCONNECT, wpa_ptk);
sm->Disconnect = false;
sm->disconnect_reason = 0;
if (!reason)
reason = WLAN_REASON_PREV_AUTH_NOT_VALID;
wpa_sta_disconnect(sm->wpa_auth, sm->addr, reason);
}
SM_STATE(WPA_PTK, DISCONNECTED)
{
SM_ENTRY_MA(WPA_PTK, DISCONNECTED, wpa_ptk);
sm->DeauthenticationRequest = false;
}
SM_STATE(WPA_PTK, AUTHENTICATION)
{
SM_ENTRY_MA(WPA_PTK, AUTHENTICATION, wpa_ptk);
os_memset(&sm->PTK, 0, sizeof(sm->PTK));
sm->PTK_valid = false;
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portControl_Auto,
1);
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portEnabled, 1);
sm->AuthenticationRequest = false;
}
static void wpa_group_ensure_init(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
if (group->first_sta_seen)
return;
/*
* System has run bit further than at the time hostapd was started
* potentially very early during boot up. This provides better chances
* of collecting more randomness on embedded systems. Re-initialize the
* GMK and Counter here to improve their strength if there was not
* enough entropy available immediately after system startup.
*/
wpa_printf(MSG_DEBUG,
"WPA: Re-initialize GMK/Counter on first station");
if (random_pool_ready() != 1) {
wpa_printf(MSG_INFO,
"WPA: Not enough entropy in random pool to proceed - reject first 4-way handshake");
group->reject_4way_hs_for_entropy = true;
} else {
group->first_sta_seen = true;
group->reject_4way_hs_for_entropy = false;
}
if (wpa_group_init_gmk_and_counter(wpa_auth, group) < 0 ||
wpa_gtk_update(wpa_auth, group) < 0 ||
wpa_group_config_group_keys(wpa_auth, group) < 0) {
wpa_printf(MSG_INFO, "WPA: GMK/GTK setup failed");
group->first_sta_seen = false;
group->reject_4way_hs_for_entropy = true;
}
}
SM_STATE(WPA_PTK, AUTHENTICATION2)
{
SM_ENTRY_MA(WPA_PTK, AUTHENTICATION2, wpa_ptk);
wpa_group_ensure_init(sm->wpa_auth, sm->group);
sm->ReAuthenticationRequest = false;
/*
* Definition of ANonce selection in IEEE Std 802.11i-2004 is somewhat
* ambiguous. The Authenticator state machine uses a counter that is
* incremented by one for each 4-way handshake. However, the security
* analysis of 4-way handshake points out that unpredictable nonces
* help in preventing precomputation attacks. Instead of the state
* machine definition, use an unpredictable nonce value here to provide
* stronger protection against potential precomputation attacks.
*/
if (random_get_bytes(sm->ANonce, WPA_NONCE_LEN)) {
wpa_printf(MSG_ERROR,
"WPA: Failed to get random data for ANonce.");
sm->Disconnect = true;
return;
}
wpa_hexdump(MSG_DEBUG, "WPA: Assign ANonce", sm->ANonce,
WPA_NONCE_LEN);
/* IEEE 802.11i does not clear TimeoutCtr here, but this is more
* logical place than INITIALIZE since AUTHENTICATION2 can be
* re-entered on ReAuthenticationRequest without going through
* INITIALIZE. */
sm->TimeoutCtr = 0;
}
static int wpa_auth_sm_ptk_update(struct wpa_state_machine *sm)
{
if (random_get_bytes(sm->ANonce, WPA_NONCE_LEN)) {
wpa_printf(MSG_ERROR,
"WPA: Failed to get random data for ANonce");
sm->Disconnect = true;
return -1;
}
wpa_hexdump(MSG_DEBUG, "WPA: Assign new ANonce", sm->ANonce,
WPA_NONCE_LEN);
sm->TimeoutCtr = 0;
return 0;
}
SM_STATE(WPA_PTK, INITPMK)
{
u8 msk[2 * PMK_LEN];
size_t len = 2 * PMK_LEN;
SM_ENTRY_MA(WPA_PTK, INITPMK, wpa_ptk);
#ifdef CONFIG_IEEE80211R_AP
sm->xxkey_len = 0;
#endif /* CONFIG_IEEE80211R_AP */
if (sm->pmksa) {
wpa_printf(MSG_DEBUG, "WPA: PMK from PMKSA cache");
os_memcpy(sm->PMK, sm->pmksa->pmk, sm->pmksa->pmk_len);
sm->pmk_len = sm->pmksa->pmk_len;
#ifdef CONFIG_DPP
} else if (sm->wpa_key_mgmt == WPA_KEY_MGMT_DPP) {
wpa_printf(MSG_DEBUG,
"DPP: No PMKSA cache entry for STA - reject connection");
sm->Disconnect = true;
sm->disconnect_reason = WLAN_REASON_INVALID_PMKID;
return;
#endif /* CONFIG_DPP */
} else if (wpa_auth_get_msk(sm->wpa_auth, sm->addr, msk, &len) == 0) {
unsigned int pmk_len;
if (wpa_key_mgmt_sha384(sm->wpa_key_mgmt))
pmk_len = PMK_LEN_SUITE_B_192;
else
pmk_len = PMK_LEN;
wpa_printf(MSG_DEBUG,
"WPA: PMK from EAPOL state machine (MSK len=%zu PMK len=%u)",
len, pmk_len);
if (len < pmk_len) {
wpa_printf(MSG_DEBUG,
"WPA: MSK not long enough (%zu) to create PMK (%u)",
len, pmk_len);
sm->Disconnect = true;
return;
}
os_memcpy(sm->PMK, msk, pmk_len);
sm->pmk_len = pmk_len;
#ifdef CONFIG_IEEE80211R_AP
if (len >= 2 * PMK_LEN) {
if (wpa_key_mgmt_sha384(sm->wpa_key_mgmt)) {
os_memcpy(sm->xxkey, msk, SHA384_MAC_LEN);
sm->xxkey_len = SHA384_MAC_LEN;
} else {
os_memcpy(sm->xxkey, msk + PMK_LEN, PMK_LEN);
sm->xxkey_len = PMK_LEN;
}
}
#endif /* CONFIG_IEEE80211R_AP */
} else {
wpa_printf(MSG_DEBUG, "WPA: Could not get PMK, get_msk: %p",
sm->wpa_auth->cb->get_msk);
sm->Disconnect = true;
return;
}
forced_memzero(msk, sizeof(msk));
sm->req_replay_counter_used = 0;
/* IEEE 802.11i does not set keyRun to false, but not doing this
* will break reauthentication since EAPOL state machines may not be
* get into AUTHENTICATING state that clears keyRun before WPA state
* machine enters AUTHENTICATION2 state and goes immediately to INITPMK
* state and takes PMK from the previously used AAA Key. This will
* eventually fail in 4-Way Handshake because Supplicant uses PMK
* derived from the new AAA Key. Setting keyRun = false here seems to
* be good workaround for this issue. */
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_keyRun, false);
}
SM_STATE(WPA_PTK, INITPSK)
{
const u8 *psk;
size_t psk_len;
SM_ENTRY_MA(WPA_PTK, INITPSK, wpa_ptk);
psk = wpa_auth_get_psk(sm->wpa_auth, sm->addr, sm->p2p_dev_addr, NULL,
&psk_len, NULL);
if (psk) {
os_memcpy(sm->PMK, psk, psk_len);
sm->pmk_len = psk_len;
#ifdef CONFIG_IEEE80211R_AP
os_memcpy(sm->xxkey, psk, PMK_LEN);
sm->xxkey_len = PMK_LEN;
#endif /* CONFIG_IEEE80211R_AP */
}
#ifdef CONFIG_SAE
if (wpa_auth_uses_sae(sm) && sm->pmksa) {
wpa_printf(MSG_DEBUG, "SAE: PMK from PMKSA cache");
os_memcpy(sm->PMK, sm->pmksa->pmk, sm->pmksa->pmk_len);
sm->pmk_len = sm->pmksa->pmk_len;
#ifdef CONFIG_IEEE80211R_AP
os_memcpy(sm->xxkey, sm->pmksa->pmk, sm->pmksa->pmk_len);
sm->xxkey_len = sm->pmksa->pmk_len;
#endif /* CONFIG_IEEE80211R_AP */
}
#endif /* CONFIG_SAE */
sm->req_replay_counter_used = 0;
}
SM_STATE(WPA_PTK, PTKSTART)
{
u8 buf[2 + RSN_SELECTOR_LEN + PMKID_LEN], *pmkid = NULL;
size_t pmkid_len = 0;
SM_ENTRY_MA(WPA_PTK, PTKSTART, wpa_ptk);
sm->PTKRequest = false;
sm->TimeoutEvt = false;
sm->alt_snonce_valid = false;
sm->TimeoutCtr++;
if (sm->TimeoutCtr > sm->wpa_auth->conf.wpa_pairwise_update_count) {
/* No point in sending the EAPOL-Key - we will disconnect
* immediately following this. */
return;
}
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"sending 1/4 msg of 4-Way Handshake");
/*
* For infrastructure BSS cases, it is better for the AP not to include
* the PMKID KDE in EAPOL-Key msg 1/4 since it could be used to initiate
* offline search for the passphrase/PSK without having to be able to
* capture a 4-way handshake from a STA that has access to the network.
*
* For IBSS cases, addition of PMKID KDE could be considered even with
* WPA2-PSK cases that use multiple PSKs, but only if there is a single
* possible PSK for this STA. However, this should not be done unless
* there is support for using that information on the supplicant side.
* The concern about exposing PMKID unnecessarily in infrastructure BSS
* cases would also apply here, but at least in the IBSS case, this
* would cover a potential real use case.
*/
if (sm->wpa == WPA_VERSION_WPA2 &&
(wpa_key_mgmt_wpa_ieee8021x(sm->wpa_key_mgmt) ||
(sm->wpa_key_mgmt == WPA_KEY_MGMT_OWE && sm->pmksa) ||
wpa_key_mgmt_sae(sm->wpa_key_mgmt)) &&
sm->wpa_key_mgmt != WPA_KEY_MGMT_OSEN) {
pmkid = buf;
pmkid_len = 2 + RSN_SELECTOR_LEN + PMKID_LEN;
pmkid[0] = WLAN_EID_VENDOR_SPECIFIC;
pmkid[1] = RSN_SELECTOR_LEN + PMKID_LEN;
RSN_SELECTOR_PUT(&pmkid[2], RSN_KEY_DATA_PMKID);
if (sm->pmksa) {
wpa_hexdump(MSG_DEBUG,
"RSN: Message 1/4 PMKID from PMKSA entry",
sm->pmksa->pmkid, PMKID_LEN);
os_memcpy(&pmkid[2 + RSN_SELECTOR_LEN],
sm->pmksa->pmkid, PMKID_LEN);
} else if (wpa_key_mgmt_suite_b(sm->wpa_key_mgmt)) {
/* No KCK available to derive PMKID */
wpa_printf(MSG_DEBUG,
"RSN: No KCK available to derive PMKID for message 1/4");
pmkid = NULL;
#ifdef CONFIG_FILS
} else if (wpa_key_mgmt_fils(sm->wpa_key_mgmt)) {
if (sm->pmkid_set) {
wpa_hexdump(MSG_DEBUG,
"RSN: Message 1/4 PMKID from FILS/ERP",
sm->pmkid, PMKID_LEN);
os_memcpy(&pmkid[2 + RSN_SELECTOR_LEN],
sm->pmkid, PMKID_LEN);
} else {
/* No PMKID available */
wpa_printf(MSG_DEBUG,
"RSN: No FILS/ERP PMKID available for message 1/4");
pmkid = NULL;
}
#endif /* CONFIG_FILS */
#ifdef CONFIG_IEEE80211R_AP
} else if (wpa_key_mgmt_ft(sm->wpa_key_mgmt) &&
sm->ft_completed) {
wpa_printf(MSG_DEBUG,
"FT: No PMKID in message 1/4 when using FT protocol");
pmkid = NULL;
#endif /* CONFIG_IEEE80211R_AP */
#ifdef CONFIG_SAE
} else if (wpa_key_mgmt_sae(sm->wpa_key_mgmt)) {
if (sm->pmkid_set) {
wpa_hexdump(MSG_DEBUG,
"RSN: Message 1/4 PMKID from SAE",
sm->pmkid, PMKID_LEN);
os_memcpy(&pmkid[2 + RSN_SELECTOR_LEN],
sm->pmkid, PMKID_LEN);
} else {
/* No PMKID available */
wpa_printf(MSG_DEBUG,
"RSN: No SAE PMKID available for message 1/4");
pmkid = NULL;
}
#endif /* CONFIG_SAE */
} else {
/*
* Calculate PMKID since no PMKSA cache entry was
* available with pre-calculated PMKID.
*/
rsn_pmkid(sm->PMK, sm->pmk_len, sm->wpa_auth->addr,
sm->addr, &pmkid[2 + RSN_SELECTOR_LEN],
sm->wpa_key_mgmt);
wpa_hexdump(MSG_DEBUG,
"RSN: Message 1/4 PMKID derived from PMK",
&pmkid[2 + RSN_SELECTOR_LEN], PMKID_LEN);
}
}
if (!pmkid)
pmkid_len = 0;
wpa_send_eapol(sm->wpa_auth, sm,
WPA_KEY_INFO_ACK | WPA_KEY_INFO_KEY_TYPE, NULL,
sm->ANonce, pmkid, pmkid_len, 0, 0);
}
static int wpa_derive_ptk(struct wpa_state_machine *sm, const u8 *snonce,
const u8 *pmk, unsigned int pmk_len,
struct wpa_ptk *ptk, int force_sha256)
{
const u8 *z = NULL;
size_t z_len = 0;
int akmp;
#ifdef CONFIG_IEEE80211R_AP
if (wpa_key_mgmt_ft(sm->wpa_key_mgmt)) {
if (sm->ft_completed) {
u8 ptk_name[WPA_PMK_NAME_LEN];
return wpa_pmk_r1_to_ptk(sm->pmk_r1, sm->pmk_r1_len,
sm->SNonce, sm->ANonce,
sm->addr, sm->wpa_auth->addr,
sm->pmk_r1_name,
ptk, ptk_name,
sm->wpa_key_mgmt,
sm->pairwise);
}
return wpa_auth_derive_ptk_ft(sm, ptk);
}
#endif /* CONFIG_IEEE80211R_AP */
#ifdef CONFIG_DPP2
if (sm->wpa_key_mgmt == WPA_KEY_MGMT_DPP && sm->dpp_z) {
z = wpabuf_head(sm->dpp_z);
z_len = wpabuf_len(sm->dpp_z);
}
#endif /* CONFIG_DPP2 */
akmp = sm->wpa_key_mgmt;
if (force_sha256)
akmp |= WPA_KEY_MGMT_PSK_SHA256;
return wpa_pmk_to_ptk(pmk, pmk_len, "Pairwise key expansion",
sm->wpa_auth->addr, sm->addr, sm->ANonce, snonce,
ptk, akmp, sm->pairwise, z, z_len);
}
#ifdef CONFIG_FILS
int fils_auth_pmk_to_ptk(struct wpa_state_machine *sm, const u8 *pmk,
size_t pmk_len, const u8 *snonce, const u8 *anonce,
const u8 *dhss, size_t dhss_len,
struct wpabuf *g_sta, struct wpabuf *g_ap)
{
u8 ick[FILS_ICK_MAX_LEN];
size_t ick_len;
int res;
u8 fils_ft[FILS_FT_MAX_LEN];
size_t fils_ft_len = 0;
res = fils_pmk_to_ptk(pmk, pmk_len, sm->addr, sm->wpa_auth->addr,
snonce, anonce, dhss, dhss_len,
&sm->PTK, ick, &ick_len,
sm->wpa_key_mgmt, sm->pairwise,
fils_ft, &fils_ft_len);
if (res < 0)
return res;
sm->PTK_valid = true;
sm->tk_already_set = false;
#ifdef CONFIG_IEEE80211R_AP
if (fils_ft_len) {
struct wpa_authenticator *wpa_auth = sm->wpa_auth;
struct wpa_auth_config *conf = &wpa_auth->conf;
u8 pmk_r0[PMK_LEN_MAX], pmk_r0_name[WPA_PMK_NAME_LEN];
int use_sha384 = wpa_key_mgmt_sha384(sm->wpa_key_mgmt);
if (wpa_derive_pmk_r0(fils_ft, fils_ft_len,
conf->ssid, conf->ssid_len,
conf->mobility_domain,
conf->r0_key_holder,
conf->r0_key_holder_len,
sm->addr, pmk_r0, pmk_r0_name,
use_sha384) < 0)
return -1;
wpa_ft_store_pmk_fils(sm, pmk_r0, pmk_r0_name);
forced_memzero(fils_ft, sizeof(fils_ft));
res = wpa_derive_pmk_r1_name(pmk_r0_name, conf->r1_key_holder,
sm->addr, sm->pmk_r1_name,
use_sha384);
forced_memzero(pmk_r0, PMK_LEN_MAX);
if (res < 0)
return -1;
wpa_hexdump(MSG_DEBUG, "FILS+FT: PMKR1Name", sm->pmk_r1_name,
WPA_PMK_NAME_LEN);
sm->pmk_r1_name_valid = 1;
}
#endif /* CONFIG_IEEE80211R_AP */
res = fils_key_auth_sk(ick, ick_len, snonce, anonce,
sm->addr, sm->wpa_auth->addr,
g_sta ? wpabuf_head(g_sta) : NULL,
g_sta ? wpabuf_len(g_sta) : 0,
g_ap ? wpabuf_head(g_ap) : NULL,
g_ap ? wpabuf_len(g_ap) : 0,
sm->wpa_key_mgmt, sm->fils_key_auth_sta,
sm->fils_key_auth_ap,
&sm->fils_key_auth_len);
forced_memzero(ick, sizeof(ick));
/* Store nonces for (Re)Association Request/Response frame processing */
os_memcpy(sm->SNonce, snonce, FILS_NONCE_LEN);
os_memcpy(sm->ANonce, anonce, FILS_NONCE_LEN);
return res;
}
static int wpa_aead_decrypt(struct wpa_state_machine *sm, struct wpa_ptk *ptk,
u8 *buf, size_t buf_len, u16 *_key_data_len)
{
struct ieee802_1x_hdr *hdr;
struct wpa_eapol_key *key;
u8 *pos;
u16 key_data_len;
u8 *tmp;
const u8 *aad[1];
size_t aad_len[1];
hdr = (struct ieee802_1x_hdr *) buf;
key = (struct wpa_eapol_key *) (hdr + 1);
pos = (u8 *) (key + 1);
key_data_len = WPA_GET_BE16(pos);
if (key_data_len < AES_BLOCK_SIZE ||
key_data_len > buf_len - sizeof(*hdr) - sizeof(*key) - 2) {
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_INFO,
"No room for AES-SIV data in the frame");
return -1;
}
pos += 2; /* Pointing at the Encrypted Key Data field */
tmp = os_malloc(key_data_len);
if (!tmp)
return -1;
/* AES-SIV AAD from EAPOL protocol version field (inclusive) to
* to Key Data (exclusive). */
aad[0] = buf;
aad_len[0] = pos - buf;
if (aes_siv_decrypt(ptk->kek, ptk->kek_len, pos, key_data_len,
1, aad, aad_len, tmp) < 0) {
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_INFO,
"Invalid AES-SIV data in the frame");
bin_clear_free(tmp, key_data_len);
return -1;
}
/* AEAD decryption and validation completed successfully */
key_data_len -= AES_BLOCK_SIZE;
wpa_hexdump_key(MSG_DEBUG, "WPA: Decrypted Key Data",
tmp, key_data_len);
/* Replace Key Data field with the decrypted version */
os_memcpy(pos, tmp, key_data_len);
pos -= 2; /* Key Data Length field */
WPA_PUT_BE16(pos, key_data_len);
bin_clear_free(tmp, key_data_len);
if (_key_data_len)
*_key_data_len = key_data_len;
return 0;
}
const u8 * wpa_fils_validate_fils_session(struct wpa_state_machine *sm,
const u8 *ies, size_t ies_len,
const u8 *fils_session)
{
const u8 *ie, *end;
const u8 *session = NULL;
if (!wpa_key_mgmt_fils(sm->wpa_key_mgmt)) {
wpa_printf(MSG_DEBUG,
"FILS: Not a FILS AKM - reject association");
return NULL;
}
/* Verify Session element */
ie = ies;
end = ((const u8 *) ie) + ies_len;
while (ie + 1 < end) {
if (ie + 2 + ie[1] > end)
break;
if (ie[0] == WLAN_EID_EXTENSION &&
ie[1] >= 1 + FILS_SESSION_LEN &&
ie[2] == WLAN_EID_EXT_FILS_SESSION) {
session = ie;
break;
}
ie += 2 + ie[1];
}
if (!session) {
wpa_printf(MSG_DEBUG,
"FILS: %s: Could not find FILS Session element in Assoc Req - reject",
__func__);
return NULL;
}
if (!fils_session) {
wpa_printf(MSG_DEBUG,
"FILS: %s: Could not find FILS Session element in STA entry - reject",
__func__);
return NULL;
}
if (os_memcmp(fils_session, session + 3, FILS_SESSION_LEN) != 0) {
wpa_printf(MSG_DEBUG, "FILS: Session mismatch");
wpa_hexdump(MSG_DEBUG, "FILS: Expected FILS Session",
fils_session, FILS_SESSION_LEN);
wpa_hexdump(MSG_DEBUG, "FILS: Received FILS Session",
session + 3, FILS_SESSION_LEN);
return NULL;
}
return session;
}
int wpa_fils_validate_key_confirm(struct wpa_state_machine *sm, const u8 *ies,
size_t ies_len)
{
struct ieee802_11_elems elems;
if (ieee802_11_parse_elems(ies, ies_len, &elems, 1) == ParseFailed) {
wpa_printf(MSG_DEBUG,
"FILS: Failed to parse decrypted elements");
return -1;
}
if (!elems.fils_session) {
wpa_printf(MSG_DEBUG, "FILS: No FILS Session element");
return -1;
}
if (!elems.fils_key_confirm) {
wpa_printf(MSG_DEBUG, "FILS: No FILS Key Confirm element");
return -1;
}
if (elems.fils_key_confirm_len != sm->fils_key_auth_len) {
wpa_printf(MSG_DEBUG,
"FILS: Unexpected Key-Auth length %d (expected %zu)",
elems.fils_key_confirm_len,
sm->fils_key_auth_len);
return -1;
}
if (os_memcmp(elems.fils_key_confirm, sm->fils_key_auth_sta,
sm->fils_key_auth_len) != 0) {
wpa_printf(MSG_DEBUG, "FILS: Key-Auth mismatch");
wpa_hexdump(MSG_DEBUG, "FILS: Received Key-Auth",
elems.fils_key_confirm, elems.fils_key_confirm_len);
wpa_hexdump(MSG_DEBUG, "FILS: Expected Key-Auth",
sm->fils_key_auth_sta, sm->fils_key_auth_len);
return -1;
}
return 0;
}
int fils_decrypt_assoc(struct wpa_state_machine *sm, const u8 *fils_session,
const struct ieee80211_mgmt *mgmt, size_t frame_len,
u8 *pos, size_t left)
{
u16 fc, stype;
const u8 *end, *ie_start, *ie, *session, *crypt;
const u8 *aad[5];
size_t aad_len[5];
if (!sm || !sm->PTK_valid) {
wpa_printf(MSG_DEBUG,
"FILS: No KEK to decrypt Assocication Request frame");
return -1;
}
if (!wpa_key_mgmt_fils(sm->wpa_key_mgmt)) {
wpa_printf(MSG_DEBUG,
"FILS: Not a FILS AKM - reject association");
return -1;
}
end = ((const u8 *) mgmt) + frame_len;
fc = le_to_host16(mgmt->frame_control);
stype = WLAN_FC_GET_STYPE(fc);
if (stype == WLAN_FC_STYPE_REASSOC_REQ)
ie_start = mgmt->u.reassoc_req.variable;
else
ie_start = mgmt->u.assoc_req.variable;
ie = ie_start;
/*
* Find FILS Session element which is the last unencrypted element in
* the frame.
*/
session = wpa_fils_validate_fils_session(sm, ie, end - ie,
fils_session);
if (!session) {
wpa_printf(MSG_DEBUG, "FILS: Session validation failed");
return -1;
}
crypt = session + 2 + session[1];
if (end - crypt < AES_BLOCK_SIZE) {
wpa_printf(MSG_DEBUG,
"FILS: Too short frame to include AES-SIV data");
return -1;
}
/* AES-SIV AAD vectors */
/* The STA's MAC address */
aad[0] = mgmt->sa;
aad_len[0] = ETH_ALEN;
/* The AP's BSSID */
aad[1] = mgmt->da;
aad_len[1] = ETH_ALEN;
/* The STA's nonce */
aad[2] = sm->SNonce;
aad_len[2] = FILS_NONCE_LEN;
/* The AP's nonce */
aad[3] = sm->ANonce;
aad_len[3] = FILS_NONCE_LEN;
/*
* The (Re)Association Request frame from the Capability Information
* field to the FILS Session element (both inclusive).
*/
aad[4] = (const u8 *) &mgmt->u.assoc_req.capab_info;
aad_len[4] = crypt - aad[4];
if (aes_siv_decrypt(sm->PTK.kek, sm->PTK.kek_len, crypt, end - crypt,
5, aad, aad_len, pos + (crypt - ie_start)) < 0) {
wpa_printf(MSG_DEBUG,
"FILS: Invalid AES-SIV data in the frame");
return -1;
}
wpa_hexdump(MSG_DEBUG, "FILS: Decrypted Association Request elements",
pos, left - AES_BLOCK_SIZE);
if (wpa_fils_validate_key_confirm(sm, pos, left - AES_BLOCK_SIZE) < 0) {
wpa_printf(MSG_DEBUG, "FILS: Key Confirm validation failed");
return -1;
}
return left - AES_BLOCK_SIZE;
}
int fils_encrypt_assoc(struct wpa_state_machine *sm, u8 *buf,
size_t current_len, size_t max_len,
const struct wpabuf *hlp)
{
u8 *end = buf + max_len;
u8 *pos = buf + current_len;
struct ieee80211_mgmt *mgmt;
struct wpabuf *plain;
const u8 *aad[5];
size_t aad_len[5];
if (!sm || !sm->PTK_valid)
return -1;
wpa_hexdump(MSG_DEBUG,
"FILS: Association Response frame before FILS processing",
buf, current_len);
mgmt = (struct ieee80211_mgmt *) buf;
/* AES-SIV AAD vectors */
/* The AP's BSSID */
aad[0] = mgmt->sa;
aad_len[0] = ETH_ALEN;
/* The STA's MAC address */
aad[1] = mgmt->da;
aad_len[1] = ETH_ALEN;
/* The AP's nonce */
aad[2] = sm->ANonce;
aad_len[2] = FILS_NONCE_LEN;
/* The STA's nonce */
aad[3] = sm->SNonce;
aad_len[3] = FILS_NONCE_LEN;
/*
* The (Re)Association Response frame from the Capability Information
* field (the same offset in both Association and Reassociation
* Response frames) to the FILS Session element (both inclusive).
*/
aad[4] = (const u8 *) &mgmt->u.assoc_resp.capab_info;
aad_len[4] = pos - aad[4];
/* The following elements will be encrypted with AES-SIV */
plain = fils_prepare_plainbuf(sm, hlp);
if (!plain) {
wpa_printf(MSG_DEBUG, "FILS: Plain buffer prep failed");
return -1;
}
if (pos + wpabuf_len(plain) + AES_BLOCK_SIZE > end) {
wpa_printf(MSG_DEBUG,
"FILS: Not enough room for FILS elements");
wpabuf_clear_free(plain);
return -1;
}
wpa_hexdump_buf_key(MSG_DEBUG, "FILS: Association Response plaintext",
plain);
if (aes_siv_encrypt(sm->PTK.kek, sm->PTK.kek_len,
wpabuf_head(plain), wpabuf_len(plain),
5, aad, aad_len, pos) < 0) {
wpabuf_clear_free(plain);
return -1;
}
wpa_hexdump(MSG_DEBUG,
"FILS: Encrypted Association Response elements",
pos, AES_BLOCK_SIZE + wpabuf_len(plain));
current_len += wpabuf_len(plain) + AES_BLOCK_SIZE;
wpabuf_clear_free(plain);
sm->fils_completed = 1;
return current_len;
}
static struct wpabuf * fils_prepare_plainbuf(struct wpa_state_machine *sm,
const struct wpabuf *hlp)
{
struct wpabuf *plain;
u8 *len, *tmp, *tmp2;
u8 hdr[2];
u8 *gtk, dummy_gtk[32];
size_t gtk_len;
struct wpa_group *gsm;
size_t plain_len;
struct wpa_auth_config *conf = &sm->wpa_auth->conf;
plain_len = 1000 + ieee80211w_kde_len(sm);
if (conf->transition_disable)
plain_len += 2 + RSN_SELECTOR_LEN + 1;
plain = wpabuf_alloc(plain_len);
if (!plain)
return NULL;
/* TODO: FILS Public Key */
/* FILS Key Confirmation */
wpabuf_put_u8(plain, WLAN_EID_EXTENSION); /* Element ID */
wpabuf_put_u8(plain, 1 + sm->fils_key_auth_len); /* Length */
/* Element ID Extension */
wpabuf_put_u8(plain, WLAN_EID_EXT_FILS_KEY_CONFIRM);
wpabuf_put_data(plain, sm->fils_key_auth_ap, sm->fils_key_auth_len);
/* FILS HLP Container */
if (hlp)
wpabuf_put_buf(plain, hlp);
/* TODO: FILS IP Address Assignment */
/* Key Delivery */
gsm = sm->group;
wpabuf_put_u8(plain, WLAN_EID_EXTENSION); /* Element ID */
len = wpabuf_put(plain, 1);
wpabuf_put_u8(plain, WLAN_EID_EXT_KEY_DELIVERY);
wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN,
wpabuf_put(plain, WPA_KEY_RSC_LEN));
/* GTK KDE */
gtk = gsm->GTK[gsm->GN - 1];
gtk_len = gsm->GTK_len;
if (conf->disable_gtk || sm->wpa_key_mgmt == WPA_KEY_MGMT_OSEN) {
/*
* Provide unique random GTK to each STA to prevent use
* of GTK in the BSS.
*/
if (random_get_bytes(dummy_gtk, gtk_len) < 0) {
wpabuf_clear_free(plain);
return NULL;
}
gtk = dummy_gtk;
}
hdr[0] = gsm->GN & 0x03;
hdr[1] = 0;
tmp = wpabuf_put(plain, 0);
tmp2 = wpa_add_kde(tmp, RSN_KEY_DATA_GROUPKEY, hdr, 2,
gtk, gtk_len);
wpabuf_put(plain, tmp2 - tmp);
/* IGTK KDE and BIGTK KDE */
tmp = wpabuf_put(plain, 0);
tmp2 = ieee80211w_kde_add(sm, tmp);
wpabuf_put(plain, tmp2 - tmp);
if (conf->transition_disable) {
tmp = wpabuf_put(plain, 0);
tmp2 = wpa_add_kde(tmp, WFA_KEY_DATA_TRANSITION_DISABLE,
&conf->transition_disable, 1, NULL, 0);
wpabuf_put(plain, tmp2 - tmp);
}
*len = (u8 *) wpabuf_put(plain, 0) - len - 1;
#ifdef CONFIG_OCV
if (wpa_auth_uses_ocv(sm)) {
struct wpa_channel_info ci;
u8 *pos;
if (wpa_channel_info(sm->wpa_auth, &ci) != 0) {
wpa_printf(MSG_WARNING,
"FILS: Failed to get channel info for OCI element");
wpabuf_clear_free(plain);
return NULL;
}
#ifdef CONFIG_TESTING_OPTIONS
if (conf->oci_freq_override_fils_assoc) {
wpa_printf(MSG_INFO,
"TEST: Override OCI frequency %d -> %u MHz",
ci.frequency,
conf->oci_freq_override_fils_assoc);
ci.frequency = conf->oci_freq_override_fils_assoc;
}
#endif /* CONFIG_TESTING_OPTIONS */
pos = wpabuf_put(plain, OCV_OCI_EXTENDED_LEN);
if (ocv_insert_extended_oci(&ci, pos) < 0) {
wpabuf_clear_free(plain);
return NULL;
}
}
#endif /* CONFIG_OCV */
return plain;
}
int fils_set_tk(struct wpa_state_machine *sm)
{
enum wpa_alg alg;
int klen;
if (!sm || !sm->PTK_valid) {
wpa_printf(MSG_DEBUG, "FILS: No valid PTK available to set TK");
return -1;
}
if (sm->tk_already_set) {
wpa_printf(MSG_DEBUG, "FILS: TK already set to the driver");
return -1;
}
alg = wpa_cipher_to_alg(sm->pairwise);
klen = wpa_cipher_key_len(sm->pairwise);
wpa_printf(MSG_DEBUG, "FILS: Configure TK to the driver");
if (wpa_auth_set_key(sm->wpa_auth, 0, alg, sm->addr, 0,
sm->PTK.tk, klen, KEY_FLAG_PAIRWISE_RX_TX)) {
wpa_printf(MSG_DEBUG, "FILS: Failed to set TK to the driver");
return -1;
}
sm->tk_already_set = true;
return 0;
}
u8 * hostapd_eid_assoc_fils_session(struct wpa_state_machine *sm, u8 *buf,
const u8 *fils_session, struct wpabuf *hlp)
{
struct wpabuf *plain;
u8 *pos = buf;
/* FILS Session */
*pos++ = WLAN_EID_EXTENSION; /* Element ID */
*pos++ = 1 + FILS_SESSION_LEN; /* Length */
*pos++ = WLAN_EID_EXT_FILS_SESSION; /* Element ID Extension */
os_memcpy(pos, fils_session, FILS_SESSION_LEN);
pos += FILS_SESSION_LEN;
plain = fils_prepare_plainbuf(sm, hlp);
if (!plain) {
wpa_printf(MSG_DEBUG, "FILS: Plain buffer prep failed");
return NULL;
}
os_memcpy(pos, wpabuf_head(plain), wpabuf_len(plain));
pos += wpabuf_len(plain);
wpa_printf(MSG_DEBUG, "%s: plain buf_len: %zu", __func__,
wpabuf_len(plain));
wpabuf_clear_free(plain);
sm->fils_completed = 1;
return pos;
}
#endif /* CONFIG_FILS */
#ifdef CONFIG_OCV
int get_sta_tx_parameters(struct wpa_state_machine *sm, int ap_max_chanwidth,
int ap_seg1_idx, int *bandwidth, int *seg1_idx)
{
struct wpa_authenticator *wpa_auth = sm->wpa_auth;
if (!wpa_auth->cb->get_sta_tx_params)
return -1;
return wpa_auth->cb->get_sta_tx_params(wpa_auth->cb_ctx, sm->addr,
ap_max_chanwidth, ap_seg1_idx,
bandwidth, seg1_idx);
}
#endif /* CONFIG_OCV */
SM_STATE(WPA_PTK, PTKCALCNEGOTIATING)
{
struct wpa_authenticator *wpa_auth = sm->wpa_auth;
struct wpa_ptk PTK;
int ok = 0, psk_found = 0;
const u8 *pmk = NULL;
size_t pmk_len;
int ft;
const u8 *eapol_key_ie, *key_data, *mic;
u16 key_data_length;
size_t mic_len, eapol_key_ie_len;
struct ieee802_1x_hdr *hdr;
struct wpa_eapol_key *key;
struct wpa_eapol_ie_parse kde;
int vlan_id = 0;
int owe_ptk_workaround = !!wpa_auth->conf.owe_ptk_workaround;
SM_ENTRY_MA(WPA_PTK, PTKCALCNEGOTIATING, wpa_ptk);
sm->EAPOLKeyReceived = false;
sm->update_snonce = false;
os_memset(&PTK, 0, sizeof(PTK));
mic_len = wpa_mic_len(sm->wpa_key_mgmt, sm->pmk_len);
/* WPA with IEEE 802.1X: use the derived PMK from EAP
* WPA-PSK: iterate through possible PSKs and select the one matching
* the packet */
for (;;) {
if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt) &&
!wpa_key_mgmt_sae(sm->wpa_key_mgmt)) {
pmk = wpa_auth_get_psk(sm->wpa_auth, sm->addr,
sm->p2p_dev_addr, pmk, &pmk_len,
&vlan_id);
if (!pmk)
break;
psk_found = 1;
#ifdef CONFIG_IEEE80211R_AP
if (wpa_key_mgmt_ft_psk(sm->wpa_key_mgmt)) {
os_memcpy(sm->xxkey, pmk, pmk_len);
sm->xxkey_len = pmk_len;
}
#endif /* CONFIG_IEEE80211R_AP */
} else {
pmk = sm->PMK;
pmk_len = sm->pmk_len;
}
if ((!pmk || !pmk_len) && sm->pmksa) {
wpa_printf(MSG_DEBUG, "WPA: Use PMK from PMKSA cache");
pmk = sm->pmksa->pmk;
pmk_len = sm->pmksa->pmk_len;
}
if (wpa_derive_ptk(sm, sm->SNonce, pmk, pmk_len, &PTK,
owe_ptk_workaround == 2) < 0)
break;
if (mic_len &&
wpa_verify_key_mic(sm->wpa_key_mgmt, pmk_len, &PTK,
sm->last_rx_eapol_key,
sm->last_rx_eapol_key_len) == 0) {
if (sm->PMK != pmk) {
os_memcpy(sm->PMK, pmk, pmk_len);
sm->pmk_len = pmk_len;
}
ok = 1;
break;
}
#ifdef CONFIG_FILS
if (!mic_len &&
wpa_aead_decrypt(sm, &PTK, sm->last_rx_eapol_key,
sm->last_rx_eapol_key_len, NULL) == 0) {
ok = 1;
break;
}
#endif /* CONFIG_FILS */
#ifdef CONFIG_OWE
if (sm->wpa_key_mgmt == WPA_KEY_MGMT_OWE && pmk_len > 32 &&
owe_ptk_workaround == 1) {
wpa_printf(MSG_DEBUG,
"OWE: Try PTK derivation workaround with SHA256");
owe_ptk_workaround = 2;
continue;
}
#endif /* CONFIG_OWE */
if (!wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt) ||
wpa_key_mgmt_sae(sm->wpa_key_mgmt))
break;
}
if (!ok) {
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"invalid MIC in msg 2/4 of 4-Way Handshake");
if (psk_found)
wpa_auth_psk_failure_report(sm->wpa_auth, sm->addr);
return;
}
/*
* Note: last_rx_eapol_key length fields have already been validated in
* wpa_receive().
*/
hdr = (struct ieee802_1x_hdr *) sm->last_rx_eapol_key;
key = (struct wpa_eapol_key *) (hdr + 1);
mic = (u8 *) (key + 1);
key_data = mic + mic_len + 2;
key_data_length = WPA_GET_BE16(mic + mic_len);
if (key_data_length > sm->last_rx_eapol_key_len - sizeof(*hdr) -
sizeof(*key) - mic_len - 2)
return;
if (wpa_parse_kde_ies(key_data, key_data_length, &kde) < 0) {
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key msg 2/4 with invalid Key Data contents");
return;
}
if (kde.rsn_ie) {
eapol_key_ie = kde.rsn_ie;
eapol_key_ie_len = kde.rsn_ie_len;
} else if (kde.osen) {
eapol_key_ie = kde.osen;
eapol_key_ie_len = kde.osen_len;
} else {
eapol_key_ie = kde.wpa_ie;
eapol_key_ie_len = kde.wpa_ie_len;
}
ft = sm->wpa == WPA_VERSION_WPA2 && wpa_key_mgmt_ft(sm->wpa_key_mgmt);
if (!sm->wpa_ie ||
wpa_compare_rsn_ie(ft, sm->wpa_ie, sm->wpa_ie_len,
eapol_key_ie, eapol_key_ie_len)) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"WPA IE from (Re)AssocReq did not match with msg 2/4");
if (sm->wpa_ie) {
wpa_hexdump(MSG_DEBUG, "WPA IE in AssocReq",
sm->wpa_ie, sm->wpa_ie_len);
}
wpa_hexdump(MSG_DEBUG, "WPA IE in msg 2/4",
eapol_key_ie, eapol_key_ie_len);
/* MLME-DEAUTHENTICATE.request */
wpa_sta_disconnect(wpa_auth, sm->addr,
WLAN_REASON_PREV_AUTH_NOT_VALID);
return;
}
if ((!sm->rsnxe && kde.rsnxe) ||
(sm->rsnxe && !kde.rsnxe) ||
(sm->rsnxe && kde.rsnxe &&
(sm->rsnxe_len != kde.rsnxe_len ||
os_memcmp(sm->rsnxe, kde.rsnxe, sm->rsnxe_len) != 0))) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"RSNXE from (Re)AssocReq did not match the one in EAPOL-Key msg 2/4");
wpa_hexdump(MSG_DEBUG, "RSNXE in AssocReq",
sm->rsnxe, sm->rsnxe_len);
wpa_hexdump(MSG_DEBUG, "RSNXE in EAPOL-Key msg 2/4",
kde.rsnxe, kde.rsnxe_len);
/* MLME-DEAUTHENTICATE.request */
wpa_sta_disconnect(wpa_auth, sm->addr,
WLAN_REASON_PREV_AUTH_NOT_VALID);
return;
}
#ifdef CONFIG_OCV
if (wpa_auth_uses_ocv(sm)) {
struct wpa_channel_info ci;
int tx_chanwidth;
int tx_seg1_idx;
if (wpa_channel_info(wpa_auth, &ci) != 0) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"Failed to get channel info to validate received OCI in EAPOL-Key 2/4");
return;
}
if (get_sta_tx_parameters(sm,
channel_width_to_int(ci.chanwidth),
ci.seg1_idx, &tx_chanwidth,
&tx_seg1_idx) < 0)
return;
if (ocv_verify_tx_params(kde.oci, kde.oci_len, &ci,
tx_chanwidth, tx_seg1_idx) !=
OCI_SUCCESS) {
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO,
"OCV failed: %s", ocv_errorstr);
if (wpa_auth->conf.msg_ctx)
wpa_msg(wpa_auth->conf.msg_ctx, MSG_INFO,
OCV_FAILURE "addr=" MACSTR
" frame=eapol-key-m2 error=%s",
MAC2STR(sm->addr), ocv_errorstr);
return;
}
}
#endif /* CONFIG_OCV */
#ifdef CONFIG_IEEE80211R_AP
if (ft && ft_check_msg_2_of_4(wpa_auth, sm, &kde) < 0) {
wpa_sta_disconnect(wpa_auth, sm->addr,
WLAN_REASON_PREV_AUTH_NOT_VALID);
return;
}
#endif /* CONFIG_IEEE80211R_AP */
#ifdef CONFIG_P2P
if (kde.ip_addr_req && kde.ip_addr_req[0] &&
wpa_auth->ip_pool && WPA_GET_BE32(sm->ip_addr) == 0) {
int idx;
wpa_printf(MSG_DEBUG,
"P2P: IP address requested in EAPOL-Key exchange");
idx = bitfield_get_first_zero(wpa_auth->ip_pool);
if (idx >= 0) {
u32 start = WPA_GET_BE32(wpa_auth->conf.ip_addr_start);
bitfield_set(wpa_auth->ip_pool, idx);
WPA_PUT_BE32(sm->ip_addr, start + idx);
wpa_printf(MSG_DEBUG,
"P2P: Assigned IP address %u.%u.%u.%u to "
MACSTR, sm->ip_addr[0], sm->ip_addr[1],
sm->ip_addr[2], sm->ip_addr[3],
MAC2STR(sm->addr));
}
}
#endif /* CONFIG_P2P */
#ifdef CONFIG_DPP2
if (DPP_VERSION > 1 && kde.dpp_kde) {
wpa_printf(MSG_DEBUG,
"DPP: peer Protocol Version %u Flags 0x%x",
kde.dpp_kde[0], kde.dpp_kde[1]);
if (sm->wpa_key_mgmt == WPA_KEY_MGMT_DPP &&
wpa_auth->conf.dpp_pfs != 2 &&
(kde.dpp_kde[1] & DPP_KDE_PFS_ALLOWED) &&
!sm->dpp_z) {
wpa_printf(MSG_INFO,
"DPP: Peer indicated it supports PFS and local configuration allows this, but PFS was not negotiated for the association");
wpa_sta_disconnect(wpa_auth, sm->addr,
WLAN_REASON_PREV_AUTH_NOT_VALID);
return;
}
}
#endif /* CONFIG_DPP2 */
#ifdef CONFIG_IEEE80211R_AP
if (sm->wpa == WPA_VERSION_WPA2 && wpa_key_mgmt_ft(sm->wpa_key_mgmt)) {
/*
* Verify that PMKR1Name from EAPOL-Key message 2/4 matches
* with the value we derived.
*/
if (os_memcmp_const(sm->sup_pmk_r1_name, sm->pmk_r1_name,
WPA_PMK_NAME_LEN) != 0) {
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"PMKR1Name mismatch in FT 4-way handshake");
wpa_hexdump(MSG_DEBUG,
"FT: PMKR1Name from Supplicant",
sm->sup_pmk_r1_name, WPA_PMK_NAME_LEN);
wpa_hexdump(MSG_DEBUG, "FT: Derived PMKR1Name",
sm->pmk_r1_name, WPA_PMK_NAME_LEN);
return;
}
}
#endif /* CONFIG_IEEE80211R_AP */
if (vlan_id && wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt) &&
wpa_auth_update_vlan(wpa_auth, sm->addr, vlan_id) < 0) {
wpa_sta_disconnect(wpa_auth, sm->addr,
WLAN_REASON_PREV_AUTH_NOT_VALID);
return;
}
sm->pending_1_of_4_timeout = 0;
eloop_cancel_timeout(wpa_send_eapol_timeout, sm->wpa_auth, sm);
if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt)) {
/* PSK may have changed from the previous choice, so update
* state machine data based on whatever PSK was selected here.
*/
os_memcpy(sm->PMK, pmk, PMK_LEN);
sm->pmk_len = PMK_LEN;
}
sm->MICVerified = true;
os_memcpy(&sm->PTK, &PTK, sizeof(PTK));
forced_memzero(&PTK, sizeof(PTK));
sm->PTK_valid = true;
}
SM_STATE(WPA_PTK, PTKCALCNEGOTIATING2)
{
SM_ENTRY_MA(WPA_PTK, PTKCALCNEGOTIATING2, wpa_ptk);
sm->TimeoutCtr = 0;
}
static int ieee80211w_kde_len(struct wpa_state_machine *sm)
{
size_t len = 0;
if (sm->mgmt_frame_prot) {
len += 2 + RSN_SELECTOR_LEN + WPA_IGTK_KDE_PREFIX_LEN;
len += wpa_cipher_key_len(sm->wpa_auth->conf.group_mgmt_cipher);
}
if (sm->mgmt_frame_prot && sm->wpa_auth->conf.beacon_prot) {
len += 2 + RSN_SELECTOR_LEN + WPA_BIGTK_KDE_PREFIX_LEN;
len += wpa_cipher_key_len(sm->wpa_auth->conf.group_mgmt_cipher);
}
return len;
}
static u8 * ieee80211w_kde_add(struct wpa_state_machine *sm, u8 *pos)
{
struct wpa_igtk_kde igtk;
struct wpa_bigtk_kde bigtk;
struct wpa_group *gsm = sm->group;
u8 rsc[WPA_KEY_RSC_LEN];
struct wpa_auth_config *conf = &sm->wpa_auth->conf;
size_t len = wpa_cipher_key_len(conf->group_mgmt_cipher);
if (!sm->mgmt_frame_prot)
return pos;
igtk.keyid[0] = gsm->GN_igtk;
igtk.keyid[1] = 0;
if (gsm->wpa_group_state != WPA_GROUP_SETKEYSDONE ||
wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN_igtk, rsc) < 0)
os_memset(igtk.pn, 0, sizeof(igtk.pn));
else
os_memcpy(igtk.pn, rsc, sizeof(igtk.pn));
os_memcpy(igtk.igtk, gsm->IGTK[gsm->GN_igtk - 4], len);
if (conf->disable_gtk || sm->wpa_key_mgmt == WPA_KEY_MGMT_OSEN) {
/*
* Provide unique random IGTK to each STA to prevent use of
* IGTK in the BSS.
*/
if (random_get_bytes(igtk.igtk, len) < 0)
return pos;
}
pos = wpa_add_kde(pos, RSN_KEY_DATA_IGTK,
(const u8 *) &igtk, WPA_IGTK_KDE_PREFIX_LEN + len,
NULL, 0);
if (!conf->beacon_prot)
return pos;
bigtk.keyid[0] = gsm->GN_bigtk;
bigtk.keyid[1] = 0;
if (gsm->wpa_group_state != WPA_GROUP_SETKEYSDONE ||
wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN_bigtk, rsc) < 0)
os_memset(bigtk.pn, 0, sizeof(bigtk.pn));
else
os_memcpy(bigtk.pn, rsc, sizeof(bigtk.pn));
os_memcpy(bigtk.bigtk, gsm->BIGTK[gsm->GN_bigtk - 6], len);
if (sm->wpa_key_mgmt == WPA_KEY_MGMT_OSEN) {
/*
* Provide unique random BIGTK to each OSEN STA to prevent use
* of BIGTK in the BSS.
*/
if (random_get_bytes(bigtk.bigtk, len) < 0)
return pos;
}
pos = wpa_add_kde(pos, RSN_KEY_DATA_BIGTK,
(const u8 *) &bigtk, WPA_BIGTK_KDE_PREFIX_LEN + len,
NULL, 0);
return pos;
}
static int ocv_oci_len(struct wpa_state_machine *sm)
{
#ifdef CONFIG_OCV
if (wpa_auth_uses_ocv(sm))
return OCV_OCI_KDE_LEN;
#endif /* CONFIG_OCV */
return 0;
}
static int ocv_oci_add(struct wpa_state_machine *sm, u8 **argpos,
unsigned int freq)
{
#ifdef CONFIG_OCV
struct wpa_channel_info ci;
if (!wpa_auth_uses_ocv(sm))
return 0;
if (wpa_channel_info(sm->wpa_auth, &ci) != 0) {
wpa_printf(MSG_WARNING,
"Failed to get channel info for OCI element");
return -1;
}
#ifdef CONFIG_TESTING_OPTIONS
if (freq) {
wpa_printf(MSG_INFO,
"TEST: Override OCI KDE frequency %d -> %u MHz",
ci.frequency, freq);
ci.frequency = freq;
}
#endif /* CONFIG_TESTING_OPTIONS */
return ocv_insert_oci_kde(&ci, argpos);
#else /* CONFIG_OCV */
return 0;
#endif /* CONFIG_OCV */
}
#ifdef CONFIG_TESTING_OPTIONS
static u8 * replace_ie(const char *name, const u8 *old_buf, size_t *len, u8 eid,
const u8 *ie, size_t ie_len)
{
const u8 *elem;
u8 *buf;
wpa_printf(MSG_DEBUG, "TESTING: %s EAPOL override", name);
wpa_hexdump(MSG_DEBUG, "TESTING: wpa_ie before override",
old_buf, *len);
buf = os_malloc(*len + ie_len);
if (!buf)
return NULL;
os_memcpy(buf, old_buf, *len);
elem = get_ie(buf, *len, eid);
if (elem) {
u8 elem_len = 2 + elem[1];
os_memmove((void *) elem, elem + elem_len,
*len - (elem - buf) - elem_len);
*len -= elem_len;
}
os_memcpy(buf + *len, ie, ie_len);
*len += ie_len;
wpa_hexdump(MSG_DEBUG, "TESTING: wpa_ie after EAPOL override",
buf, *len);
return buf;
}
#endif /* CONFIG_TESTING_OPTIONS */
SM_STATE(WPA_PTK, PTKINITNEGOTIATING)
{
u8 rsc[WPA_KEY_RSC_LEN], *_rsc, *gtk, *kde = NULL, *pos, dummy_gtk[32];
size_t gtk_len, kde_len, wpa_ie_len;
struct wpa_group *gsm = sm->group;
u8 *wpa_ie;
int secure, gtkidx, encr = 0;
u8 *wpa_ie_buf = NULL, *wpa_ie_buf2 = NULL;
u8 hdr[2];
struct wpa_auth_config *conf = &sm->wpa_auth->conf;
SM_ENTRY_MA(WPA_PTK, PTKINITNEGOTIATING, wpa_ptk);
sm->TimeoutEvt = false;
sm->TimeoutCtr++;
if (conf->wpa_disable_eapol_key_retries && sm->TimeoutCtr > 1) {
/* Do not allow retransmission of EAPOL-Key msg 3/4 */
return;
}
if (sm->TimeoutCtr > conf->wpa_pairwise_update_count) {
/* No point in sending the EAPOL-Key - we will disconnect
* immediately following this. */
return;
}
/* Send EAPOL(1, 1, 1, Pair, P, RSC, ANonce, MIC(PTK), RSNIE, [MDIE],
GTK[GN], IGTK, [BIGTK], [FTIE], [TIE * 2])
*/
os_memset(rsc, 0, WPA_KEY_RSC_LEN);
wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN, rsc);
/* If FT is used, wpa_auth->wpa_ie includes both RSNIE and MDIE */
wpa_ie = sm->wpa_auth->wpa_ie;
wpa_ie_len = sm->wpa_auth->wpa_ie_len;
if (sm->wpa == WPA_VERSION_WPA && (conf->wpa & WPA_PROTO_RSN) &&
wpa_ie_len > wpa_ie[1] + 2U && wpa_ie[0] == WLAN_EID_RSN) {
/* WPA-only STA, remove RSN IE and possible MDIE */
wpa_ie = wpa_ie + wpa_ie[1] + 2;
if (wpa_ie[0] == WLAN_EID_MOBILITY_DOMAIN)
wpa_ie = wpa_ie + wpa_ie[1] + 2;
wpa_ie_len = wpa_ie[1] + 2;
}
#ifdef CONFIG_TESTING_OPTIONS
if (conf->rsne_override_eapol_set) {
wpa_ie_buf2 = replace_ie(
"RSNE", wpa_ie, &wpa_ie_len, WLAN_EID_RSN,
conf->rsne_override_eapol,
conf->rsne_override_eapol_len);
if (!wpa_ie_buf2)
goto done;
wpa_ie = wpa_ie_buf2;
}
if (conf->rsnxe_override_eapol_set) {
wpa_ie_buf = replace_ie(
"RSNXE", wpa_ie, &wpa_ie_len, WLAN_EID_RSNX,
conf->rsnxe_override_eapol,
conf->rsnxe_override_eapol_len);
if (!wpa_ie_buf)
goto done;
wpa_ie = wpa_ie_buf;
}
#endif /* CONFIG_TESTING_OPTIONS */
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"sending 3/4 msg of 4-Way Handshake");
if (sm->wpa == WPA_VERSION_WPA2) {
if (sm->use_ext_key_id && sm->TimeoutCtr == 1 &&
wpa_auth_set_key(sm->wpa_auth, 0,
wpa_cipher_to_alg(sm->pairwise),
sm->addr,
sm->keyidx_active, sm->PTK.tk,
wpa_cipher_key_len(sm->pairwise),
KEY_FLAG_PAIRWISE_RX)) {
wpa_sta_disconnect(sm->wpa_auth, sm->addr,
WLAN_REASON_PREV_AUTH_NOT_VALID);
return;
}
/* WPA2 send GTK in the 4-way handshake */
secure = 1;
gtk = gsm->GTK[gsm->GN - 1];
gtk_len = gsm->GTK_len;
if (conf->disable_gtk ||
sm->wpa_key_mgmt == WPA_KEY_MGMT_OSEN) {
/*
* Provide unique random GTK to each STA to prevent use
* of GTK in the BSS.
*/
if (random_get_bytes(dummy_gtk, gtk_len) < 0)
goto done;
gtk = dummy_gtk;
}
gtkidx = gsm->GN;
_rsc = rsc;
encr = 1;
} else {
/* WPA does not include GTK in msg 3/4 */
secure = 0;
gtk = NULL;
gtk_len = 0;
_rsc = NULL;
if (sm->rx_eapol_key_secure) {
/*
* It looks like Windows 7 supplicant tries to use
* Secure bit in msg 2/4 after having reported Michael
* MIC failure and it then rejects the 4-way handshake
* if msg 3/4 does not set Secure bit. Work around this
* by setting the Secure bit here even in the case of
* WPA if the supplicant used it first.
*/
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"STA used Secure bit in WPA msg 2/4 - set Secure for 3/4 as workaround");
secure = 1;
}
}
kde_len = wpa_ie_len + ieee80211w_kde_len(sm) + ocv_oci_len(sm);
if (sm->use_ext_key_id)
kde_len += 2 + RSN_SELECTOR_LEN + 2;
if (gtk)
kde_len += 2 + RSN_SELECTOR_LEN + 2 + gtk_len;
#ifdef CONFIG_IEEE80211R_AP
if (wpa_key_mgmt_ft(sm->wpa_key_mgmt)) {
kde_len += 2 + PMKID_LEN; /* PMKR1Name into RSN IE */
kde_len += 300; /* FTIE + 2 * TIE */
}
#endif /* CONFIG_IEEE80211R_AP */
#ifdef CONFIG_P2P
if (WPA_GET_BE32(sm->ip_addr) > 0)
kde_len += 2 + RSN_SELECTOR_LEN + 3 * 4;
#endif /* CONFIG_P2P */
if (conf->transition_disable)
kde_len += 2 + RSN_SELECTOR_LEN + 1;
#ifdef CONFIG_DPP2
if (sm->wpa_key_mgmt == WPA_KEY_MGMT_DPP)
kde_len += 2 + RSN_SELECTOR_LEN + 2;
#endif /* CONFIG_DPP2 */
kde = os_malloc(kde_len);
if (!kde)
goto done;
pos = kde;
os_memcpy(pos, wpa_ie, wpa_ie_len);
pos += wpa_ie_len;
#ifdef CONFIG_IEEE80211R_AP
if (wpa_key_mgmt_ft(sm->wpa_key_mgmt)) {
int res;
size_t elen;
elen = pos - kde;
res = wpa_insert_pmkid(kde, &elen, sm->pmk_r1_name);
if (res < 0) {
wpa_printf(MSG_ERROR,
"FT: Failed to insert PMKR1Name into RSN IE in EAPOL-Key data");
goto done;
}
pos -= wpa_ie_len;
pos += elen;
}
#endif /* CONFIG_IEEE80211R_AP */
hdr[1] = 0;
if (sm->use_ext_key_id) {
hdr[0] = sm->keyidx_active & 0x01;
pos = wpa_add_kde(pos, RSN_KEY_DATA_KEYID, hdr, 2, NULL, 0);
}
if (gtk) {
hdr[0] = gtkidx & 0x03;
pos = wpa_add_kde(pos, RSN_KEY_DATA_GROUPKEY, hdr, 2,
gtk, gtk_len);
}
pos = ieee80211w_kde_add(sm, pos);
if (ocv_oci_add(sm, &pos, conf->oci_freq_override_eapol_m3) < 0)
goto done;
#ifdef CONFIG_IEEE80211R_AP
if (wpa_key_mgmt_ft(sm->wpa_key_mgmt)) {
int res;
if (sm->assoc_resp_ftie &&
kde + kde_len - pos >= 2 + sm->assoc_resp_ftie[1]) {
os_memcpy(pos, sm->assoc_resp_ftie,
2 + sm->assoc_resp_ftie[1]);
res = 2 + sm->assoc_resp_ftie[1];
} else {
int use_sha384 = wpa_key_mgmt_sha384(sm->wpa_key_mgmt);
res = wpa_write_ftie(conf, use_sha384,
conf->r0_key_holder,
conf->r0_key_holder_len,
NULL, NULL, pos,
kde + kde_len - pos,
NULL, 0, 0);
}
if (res < 0) {
wpa_printf(MSG_ERROR,
"FT: Failed to insert FTIE into EAPOL-Key Key Data");
goto done;
}
pos += res;
/* TIE[ReassociationDeadline] (TU) */
*pos++ = WLAN_EID_TIMEOUT_INTERVAL;
*pos++ = 5;
*pos++ = WLAN_TIMEOUT_REASSOC_DEADLINE;
WPA_PUT_LE32(pos, conf->reassociation_deadline);
pos += 4;
/* TIE[KeyLifetime] (seconds) */
*pos++ = WLAN_EID_TIMEOUT_INTERVAL;
*pos++ = 5;
*pos++ = WLAN_TIMEOUT_KEY_LIFETIME;
WPA_PUT_LE32(pos, conf->r0_key_lifetime);
pos += 4;
}
#endif /* CONFIG_IEEE80211R_AP */
#ifdef CONFIG_P2P
if (WPA_GET_BE32(sm->ip_addr) > 0) {
u8 addr[3 * 4];
os_memcpy(addr, sm->ip_addr, 4);
os_memcpy(addr + 4, conf->ip_addr_mask, 4);
os_memcpy(addr + 8, conf->ip_addr_go, 4);
pos = wpa_add_kde(pos, WFA_KEY_DATA_IP_ADDR_ALLOC,
addr, sizeof(addr), NULL, 0);
}
#endif /* CONFIG_P2P */
if (conf->transition_disable)
pos = wpa_add_kde(pos, WFA_KEY_DATA_TRANSITION_DISABLE,
&conf->transition_disable, 1, NULL, 0);
#ifdef CONFIG_DPP2
if (DPP_VERSION > 1 && sm->wpa_key_mgmt == WPA_KEY_MGMT_DPP) {
u8 payload[2];
payload[0] = DPP_VERSION; /* Protocol Version */
payload[1] = 0; /* Flags */
if (conf->dpp_pfs == 0)
payload[1] |= DPP_KDE_PFS_ALLOWED;
else if (conf->dpp_pfs == 1)
payload[1] |= DPP_KDE_PFS_ALLOWED |
DPP_KDE_PFS_REQUIRED;
pos = wpa_add_kde(pos, WFA_KEY_DATA_DPP,
payload, sizeof(payload), NULL, 0);
}
#endif /* CONFIG_DPP2 */
wpa_send_eapol(sm->wpa_auth, sm,
(secure ? WPA_KEY_INFO_SECURE : 0) |
(wpa_mic_len(sm->wpa_key_mgmt, sm->pmk_len) ?
WPA_KEY_INFO_MIC : 0) |
WPA_KEY_INFO_ACK | WPA_KEY_INFO_INSTALL |
WPA_KEY_INFO_KEY_TYPE,
_rsc, sm->ANonce, kde, pos - kde, 0, encr);
done:
os_free(kde);
os_free(wpa_ie_buf);
os_free(wpa_ie_buf2);
}
SM_STATE(WPA_PTK, PTKINITDONE)
{
SM_ENTRY_MA(WPA_PTK, PTKINITDONE, wpa_ptk);
sm->EAPOLKeyReceived = false;
if (sm->Pair) {
enum wpa_alg alg = wpa_cipher_to_alg(sm->pairwise);
int klen = wpa_cipher_key_len(sm->pairwise);
int res;
if (sm->use_ext_key_id)
res = wpa_auth_set_key(sm->wpa_auth, 0, 0, sm->addr,
sm->keyidx_active, NULL, 0,
KEY_FLAG_PAIRWISE_RX_TX_MODIFY);
else
res = wpa_auth_set_key(sm->wpa_auth, 0, alg, sm->addr,
0, sm->PTK.tk, klen,
KEY_FLAG_PAIRWISE_RX_TX);
if (res) {
wpa_sta_disconnect(sm->wpa_auth, sm->addr,
WLAN_REASON_PREV_AUTH_NOT_VALID);
return;
}
/* FIX: MLME-SetProtection.Request(TA, Tx_Rx) */
sm->pairwise_set = true;
wpa_auth_set_ptk_rekey_timer(sm);
if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt) ||
sm->wpa_key_mgmt == WPA_KEY_MGMT_DPP ||
sm->wpa_key_mgmt == WPA_KEY_MGMT_OWE) {
wpa_auth_set_eapol(sm->wpa_auth, sm->addr,
WPA_EAPOL_authorized, 1);
}
}
if (0 /* IBSS == TRUE */) {
sm->keycount++;
if (sm->keycount == 2) {
wpa_auth_set_eapol(sm->wpa_auth, sm->addr,
WPA_EAPOL_portValid, 1);
}
} else {
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portValid,
1);
}
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_keyAvailable,
false);
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_keyDone, true);
if (sm->wpa == WPA_VERSION_WPA)
sm->PInitAKeys = true;
else
sm->has_GTK = true;
wpa_auth_vlogger(sm->wpa_auth, sm->addr, LOGGER_INFO,
"pairwise key handshake completed (%s)",
sm->wpa == WPA_VERSION_WPA ? "WPA" : "RSN");
#ifdef CONFIG_IEEE80211R_AP
wpa_ft_push_pmk_r1(sm->wpa_auth, sm->addr);
#endif /* CONFIG_IEEE80211R_AP */
}
SM_STEP(WPA_PTK)
{
struct wpa_authenticator *wpa_auth = sm->wpa_auth;
struct wpa_auth_config *conf = &wpa_auth->conf;
if (sm->Init)
SM_ENTER(WPA_PTK, INITIALIZE);
else if (sm->Disconnect
/* || FIX: dot11RSNAConfigSALifetime timeout */) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG,
"WPA_PTK: sm->Disconnect");
SM_ENTER(WPA_PTK, DISCONNECT);
}
else if (sm->DeauthenticationRequest)
SM_ENTER(WPA_PTK, DISCONNECTED);
else if (sm->AuthenticationRequest)
SM_ENTER(WPA_PTK, AUTHENTICATION);
else if (sm->ReAuthenticationRequest)
SM_ENTER(WPA_PTK, AUTHENTICATION2);
else if (sm->PTKRequest) {
if (wpa_auth_sm_ptk_update(sm) < 0)
SM_ENTER(WPA_PTK, DISCONNECTED);
else
SM_ENTER(WPA_PTK, PTKSTART);
} else switch (sm->wpa_ptk_state) {
case WPA_PTK_INITIALIZE:
break;
case WPA_PTK_DISCONNECT:
SM_ENTER(WPA_PTK, DISCONNECTED);
break;
case WPA_PTK_DISCONNECTED:
SM_ENTER(WPA_PTK, INITIALIZE);
break;
case WPA_PTK_AUTHENTICATION:
SM_ENTER(WPA_PTK, AUTHENTICATION2);
break;
case WPA_PTK_AUTHENTICATION2:
if (wpa_key_mgmt_wpa_ieee8021x(sm->wpa_key_mgmt) &&
wpa_auth_get_eapol(wpa_auth, sm->addr,
WPA_EAPOL_keyRun))
SM_ENTER(WPA_PTK, INITPMK);
else if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt) ||
sm->wpa_key_mgmt == WPA_KEY_MGMT_OWE
/* FIX: && 802.1X::keyRun */)
SM_ENTER(WPA_PTK, INITPSK);
else if (sm->wpa_key_mgmt == WPA_KEY_MGMT_DPP)
SM_ENTER(WPA_PTK, INITPMK);
break;
case WPA_PTK_INITPMK:
if (wpa_auth_get_eapol(wpa_auth, sm->addr,
WPA_EAPOL_keyAvailable)) {
SM_ENTER(WPA_PTK, PTKSTART);
#ifdef CONFIG_DPP
} else if (sm->wpa_key_mgmt == WPA_KEY_MGMT_DPP && sm->pmksa) {
SM_ENTER(WPA_PTK, PTKSTART);
#endif /* CONFIG_DPP */
} else {
wpa_auth->dot11RSNA4WayHandshakeFailures++;
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"INITPMK - keyAvailable = false");
SM_ENTER(WPA_PTK, DISCONNECT);
}
break;
case WPA_PTK_INITPSK:
if (wpa_auth_get_psk(wpa_auth, sm->addr, sm->p2p_dev_addr,
NULL, NULL, NULL)) {
SM_ENTER(WPA_PTK, PTKSTART);
#ifdef CONFIG_SAE
} else if (wpa_auth_uses_sae(sm) && sm->pmksa) {
SM_ENTER(WPA_PTK, PTKSTART);
#endif /* CONFIG_SAE */
} else {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"no PSK configured for the STA");
wpa_auth->dot11RSNA4WayHandshakeFailures++;
SM_ENTER(WPA_PTK, DISCONNECT);
}
break;
case WPA_PTK_PTKSTART:
if (sm->EAPOLKeyReceived && !sm->EAPOLKeyRequest &&
sm->EAPOLKeyPairwise)
SM_ENTER(WPA_PTK, PTKCALCNEGOTIATING);
else if (sm->TimeoutCtr > conf->wpa_pairwise_update_count) {
wpa_auth->dot11RSNA4WayHandshakeFailures++;
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_DEBUG,
"PTKSTART: Retry limit %u reached",
conf->wpa_pairwise_update_count);
sm->disconnect_reason =
WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT;
SM_ENTER(WPA_PTK, DISCONNECT);
} else if (sm->TimeoutEvt)
SM_ENTER(WPA_PTK, PTKSTART);
break;
case WPA_PTK_PTKCALCNEGOTIATING:
if (sm->MICVerified)
SM_ENTER(WPA_PTK, PTKCALCNEGOTIATING2);
else if (sm->EAPOLKeyReceived && !sm->EAPOLKeyRequest &&
sm->EAPOLKeyPairwise)
SM_ENTER(WPA_PTK, PTKCALCNEGOTIATING);
else if (sm->TimeoutEvt)
SM_ENTER(WPA_PTK, PTKSTART);
break;
case WPA_PTK_PTKCALCNEGOTIATING2:
SM_ENTER(WPA_PTK, PTKINITNEGOTIATING);
break;
case WPA_PTK_PTKINITNEGOTIATING:
if (sm->update_snonce)
SM_ENTER(WPA_PTK, PTKCALCNEGOTIATING);
else if (sm->EAPOLKeyReceived && !sm->EAPOLKeyRequest &&
sm->EAPOLKeyPairwise && sm->MICVerified)
SM_ENTER(WPA_PTK, PTKINITDONE);
else if (sm->TimeoutCtr >
conf->wpa_pairwise_update_count ||
(conf->wpa_disable_eapol_key_retries &&
sm->TimeoutCtr > 1)) {
wpa_auth->dot11RSNA4WayHandshakeFailures++;
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_DEBUG,
"PTKINITNEGOTIATING: Retry limit %u reached",
conf->wpa_pairwise_update_count);
sm->disconnect_reason =
WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT;
SM_ENTER(WPA_PTK, DISCONNECT);
} else if (sm->TimeoutEvt)
SM_ENTER(WPA_PTK, PTKINITNEGOTIATING);
break;
case WPA_PTK_PTKINITDONE:
break;
}
}
SM_STATE(WPA_PTK_GROUP, IDLE)
{
SM_ENTRY_MA(WPA_PTK_GROUP, IDLE, wpa_ptk_group);
if (sm->Init) {
/* Init flag is not cleared here, so avoid busy
* loop by claiming nothing changed. */
sm->changed = false;
}
sm->GTimeoutCtr = 0;
}
SM_STATE(WPA_PTK_GROUP, REKEYNEGOTIATING)
{
u8 rsc[WPA_KEY_RSC_LEN];
struct wpa_group *gsm = sm->group;
const u8 *kde;
u8 *kde_buf = NULL, *pos, hdr[2];
size_t kde_len;
u8 *gtk, dummy_gtk[32];
struct wpa_auth_config *conf = &sm->wpa_auth->conf;
SM_ENTRY_MA(WPA_PTK_GROUP, REKEYNEGOTIATING, wpa_ptk_group);
sm->GTimeoutCtr++;
if (conf->wpa_disable_eapol_key_retries && sm->GTimeoutCtr > 1) {
/* Do not allow retransmission of EAPOL-Key group msg 1/2 */
return;
}
if (sm->GTimeoutCtr > conf->wpa_group_update_count) {
/* No point in sending the EAPOL-Key - we will disconnect
* immediately following this. */
return;
}
if (sm->wpa == WPA_VERSION_WPA)
sm->PInitAKeys = false;
sm->TimeoutEvt = false;
/* Send EAPOL(1, 1, 1, !Pair, G, RSC, GNonce, MIC(PTK), GTK[GN]) */
os_memset(rsc, 0, WPA_KEY_RSC_LEN);
if (gsm->wpa_group_state == WPA_GROUP_SETKEYSDONE)
wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN, rsc);
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"sending 1/2 msg of Group Key Handshake");
gtk = gsm->GTK[gsm->GN - 1];
if (conf->disable_gtk || sm->wpa_key_mgmt == WPA_KEY_MGMT_OSEN) {
/*
* Provide unique random GTK to each STA to prevent use
* of GTK in the BSS.
*/
if (random_get_bytes(dummy_gtk, gsm->GTK_len) < 0)
return;
gtk = dummy_gtk;
}
if (sm->wpa == WPA_VERSION_WPA2) {
kde_len = 2 + RSN_SELECTOR_LEN + 2 + gsm->GTK_len +
ieee80211w_kde_len(sm) + ocv_oci_len(sm);
kde_buf = os_malloc(kde_len);
if (!kde_buf)
return;
kde = pos = kde_buf;
hdr[0] = gsm->GN & 0x03;
hdr[1] = 0;
pos = wpa_add_kde(pos, RSN_KEY_DATA_GROUPKEY, hdr, 2,
gtk, gsm->GTK_len);
pos = ieee80211w_kde_add(sm, pos);
if (ocv_oci_add(sm, &pos,
conf->oci_freq_override_eapol_g1) < 0) {
os_free(kde_buf);
return;
}
kde_len = pos - kde;
} else {
kde = gtk;
kde_len = gsm->GTK_len;
}
wpa_send_eapol(sm->wpa_auth, sm,
WPA_KEY_INFO_SECURE |
(wpa_mic_len(sm->wpa_key_mgmt, sm->pmk_len) ?
WPA_KEY_INFO_MIC : 0) |
WPA_KEY_INFO_ACK |
(!sm->Pair ? WPA_KEY_INFO_INSTALL : 0),
rsc, NULL, kde, kde_len, gsm->GN, 1);
os_free(kde_buf);
}
SM_STATE(WPA_PTK_GROUP, REKEYESTABLISHED)
{
struct wpa_authenticator *wpa_auth = sm->wpa_auth;
#ifdef CONFIG_OCV
const u8 *key_data, *mic;
struct ieee802_1x_hdr *hdr;
struct wpa_eapol_key *key;
struct wpa_eapol_ie_parse kde;
size_t mic_len;
u16 key_data_length;
#endif /* CONFIG_OCV */
SM_ENTRY_MA(WPA_PTK_GROUP, REKEYESTABLISHED, wpa_ptk_group);
sm->EAPOLKeyReceived = false;
#ifdef CONFIG_OCV
mic_len = wpa_mic_len(sm->wpa_key_mgmt, sm->pmk_len);
/*
* Note: last_rx_eapol_key length fields have already been validated in
* wpa_receive().
*/
hdr = (struct ieee802_1x_hdr *) sm->last_rx_eapol_key;
key = (struct wpa_eapol_key *) (hdr + 1);
mic = (u8 *) (key + 1);
key_data = mic + mic_len + 2;
key_data_length = WPA_GET_BE16(mic + mic_len);
if (key_data_length > sm->last_rx_eapol_key_len - sizeof(*hdr) -
sizeof(*key) - mic_len - 2)
return;
if (wpa_parse_kde_ies(key_data, key_data_length, &kde) < 0) {
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key group msg 2/2 with invalid Key Data contents");
return;
}
if (wpa_auth_uses_ocv(sm)) {
struct wpa_channel_info ci;
int tx_chanwidth;
int tx_seg1_idx;
if (wpa_channel_info(wpa_auth, &ci) != 0) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"Failed to get channel info to validate received OCI in EAPOL-Key group 2/2");
return;
}
if (get_sta_tx_parameters(sm,
channel_width_to_int(ci.chanwidth),
ci.seg1_idx, &tx_chanwidth,
&tx_seg1_idx) < 0)
return;
if (ocv_verify_tx_params(kde.oci, kde.oci_len, &ci,
tx_chanwidth, tx_seg1_idx) !=
OCI_SUCCESS) {
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO,
"OCV failed: %s", ocv_errorstr);
if (wpa_auth->conf.msg_ctx)
wpa_msg(wpa_auth->conf.msg_ctx, MSG_INFO,
OCV_FAILURE "addr=" MACSTR
" frame=eapol-key-g2 error=%s",
MAC2STR(sm->addr), ocv_errorstr);
return;
}
}
#endif /* CONFIG_OCV */
if (sm->GUpdateStationKeys)
sm->group->GKeyDoneStations--;
sm->GUpdateStationKeys = false;
sm->GTimeoutCtr = 0;
/* FIX: MLME.SetProtection.Request(TA, Tx_Rx) */
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO,
"group key handshake completed (%s)",
sm->wpa == WPA_VERSION_WPA ? "WPA" : "RSN");
sm->has_GTK = true;
}
SM_STATE(WPA_PTK_GROUP, KEYERROR)
{
SM_ENTRY_MA(WPA_PTK_GROUP, KEYERROR, wpa_ptk_group);
if (sm->GUpdateStationKeys)
sm->group->GKeyDoneStations--;
sm->GUpdateStationKeys = false;
sm->Disconnect = true;
sm->disconnect_reason = WLAN_REASON_GROUP_KEY_UPDATE_TIMEOUT;
wpa_auth_vlogger(sm->wpa_auth, sm->addr, LOGGER_INFO,
"group key handshake failed (%s) after %u tries",
sm->wpa == WPA_VERSION_WPA ? "WPA" : "RSN",
sm->wpa_auth->conf.wpa_group_update_count);
}
SM_STEP(WPA_PTK_GROUP)
{
if (sm->Init || sm->PtkGroupInit) {
SM_ENTER(WPA_PTK_GROUP, IDLE);
sm->PtkGroupInit = false;
} else switch (sm->wpa_ptk_group_state) {
case WPA_PTK_GROUP_IDLE:
if (sm->GUpdateStationKeys ||
(sm->wpa == WPA_VERSION_WPA && sm->PInitAKeys))
SM_ENTER(WPA_PTK_GROUP, REKEYNEGOTIATING);
break;
case WPA_PTK_GROUP_REKEYNEGOTIATING:
if (sm->EAPOLKeyReceived && !sm->EAPOLKeyRequest &&
!sm->EAPOLKeyPairwise && sm->MICVerified)
SM_ENTER(WPA_PTK_GROUP, REKEYESTABLISHED);
else if (sm->GTimeoutCtr >
sm->wpa_auth->conf.wpa_group_update_count ||
(sm->wpa_auth->conf.wpa_disable_eapol_key_retries &&
sm->GTimeoutCtr > 1))
SM_ENTER(WPA_PTK_GROUP, KEYERROR);
else if (sm->TimeoutEvt)
SM_ENTER(WPA_PTK_GROUP, REKEYNEGOTIATING);
break;
case WPA_PTK_GROUP_KEYERROR:
SM_ENTER(WPA_PTK_GROUP, IDLE);
break;
case WPA_PTK_GROUP_REKEYESTABLISHED:
SM_ENTER(WPA_PTK_GROUP, IDLE);
break;
}
}
static int wpa_gtk_update(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
struct wpa_auth_config *conf = &wpa_auth->conf;
int ret = 0;
size_t len;
os_memcpy(group->GNonce, group->Counter, WPA_NONCE_LEN);
inc_byte_array(group->Counter, WPA_NONCE_LEN);
if (wpa_gmk_to_gtk(group->GMK, "Group key expansion",
wpa_auth->addr, group->GNonce,
group->GTK[group->GN - 1], group->GTK_len) < 0)
ret = -1;
wpa_hexdump_key(MSG_DEBUG, "GTK",
group->GTK[group->GN - 1], group->GTK_len);
if (conf->ieee80211w != NO_MGMT_FRAME_PROTECTION) {
len = wpa_cipher_key_len(conf->group_mgmt_cipher);
os_memcpy(group->GNonce, group->Counter, WPA_NONCE_LEN);
inc_byte_array(group->Counter, WPA_NONCE_LEN);
if (wpa_gmk_to_gtk(group->GMK, "IGTK key expansion",
wpa_auth->addr, group->GNonce,
group->IGTK[group->GN_igtk - 4], len) < 0)
ret = -1;
wpa_hexdump_key(MSG_DEBUG, "IGTK",
group->IGTK[group->GN_igtk - 4], len);
}
if (conf->ieee80211w != NO_MGMT_FRAME_PROTECTION &&
conf->beacon_prot) {
len = wpa_cipher_key_len(conf->group_mgmt_cipher);
os_memcpy(group->GNonce, group->Counter, WPA_NONCE_LEN);
inc_byte_array(group->Counter, WPA_NONCE_LEN);
if (wpa_gmk_to_gtk(group->GMK, "BIGTK key expansion",
wpa_auth->addr, group->GNonce,
group->BIGTK[group->GN_bigtk - 6], len) < 0)
ret = -1;
wpa_hexdump_key(MSG_DEBUG, "BIGTK",
group->BIGTK[group->GN_bigtk - 6], len);
}
return ret;
}
static void wpa_group_gtk_init(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
wpa_printf(MSG_DEBUG,
"WPA: group state machine entering state GTK_INIT (VLAN-ID %d)",
group->vlan_id);
group->changed = false; /* GInit is not cleared here; avoid loop */
group->wpa_group_state = WPA_GROUP_GTK_INIT;
/* GTK[0..N] = 0 */
os_memset(group->GTK, 0, sizeof(group->GTK));
group->GN = 1;
group->GM = 2;
group->GN_igtk = 4;
group->GM_igtk = 5;
group->GN_bigtk = 6;
group->GM_bigtk = 7;
/* GTK[GN] = CalcGTK() */
wpa_gtk_update(wpa_auth, group);
}
static int wpa_group_update_sta(struct wpa_state_machine *sm, void *ctx)
{
if (ctx != NULL && ctx != sm->group)
return 0;
if (sm->wpa_ptk_state != WPA_PTK_PTKINITDONE) {
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"Not in PTKINITDONE; skip Group Key update");
sm->GUpdateStationKeys = false;
return 0;
}
if (sm->GUpdateStationKeys) {
/*
* This should not really happen, so add a debug log entry.
* Since we clear the GKeyDoneStations before the loop, the
* station needs to be counted here anyway.
*/
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"GUpdateStationKeys was already set when marking station for GTK rekeying");
}
/* Do not rekey GTK/IGTK when STA is in WNM-Sleep Mode */
if (sm->is_wnmsleep)
return 0;
sm->group->GKeyDoneStations++;
sm->GUpdateStationKeys = true;
wpa_sm_step(sm);
return 0;
}
#ifdef CONFIG_WNM_AP
/* update GTK when exiting WNM-Sleep Mode */
void wpa_wnmsleep_rekey_gtk(struct wpa_state_machine *sm)
{
if (!sm || sm->is_wnmsleep)
return;
wpa_group_update_sta(sm, NULL);
}
void wpa_set_wnmsleep(struct wpa_state_machine *sm, int flag)
{
if (sm)
sm->is_wnmsleep = !!flag;
}
int wpa_wnmsleep_gtk_subelem(struct wpa_state_machine *sm, u8 *pos)
{
struct wpa_auth_config *conf = &sm->wpa_auth->conf;
struct wpa_group *gsm = sm->group;
u8 *start = pos;
/*
* GTK subelement:
* Sub-elem ID[1] | Length[1] | Key Info[2] | Key Length[1] | RSC[8] |
* Key[5..32]
*/
*pos++ = WNM_SLEEP_SUBELEM_GTK;
*pos++ = 11 + gsm->GTK_len;
/* Key ID in B0-B1 of Key Info */
WPA_PUT_LE16(pos, gsm->GN & 0x03);
pos += 2;
*pos++ = gsm->GTK_len;
if (wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN, pos) != 0)
return 0;
pos += 8;
os_memcpy(pos, gsm->GTK[gsm->GN - 1], gsm->GTK_len);
if (conf->disable_gtk || sm->wpa_key_mgmt == WPA_KEY_MGMT_OSEN) {
/*
* Provide unique random GTK to each STA to prevent use
* of GTK in the BSS.
*/
if (random_get_bytes(pos, gsm->GTK_len) < 0)
return 0;
}
pos += gsm->GTK_len;
wpa_printf(MSG_DEBUG, "WNM: GTK Key ID %u in WNM-Sleep Mode exit",
gsm->GN);
wpa_hexdump_key(MSG_DEBUG, "WNM: GTK in WNM-Sleep Mode exit",
gsm->GTK[gsm->GN - 1], gsm->GTK_len);
return pos - start;
}
int wpa_wnmsleep_igtk_subelem(struct wpa_state_machine *sm, u8 *pos)
{
struct wpa_auth_config *conf = &sm->wpa_auth->conf;
struct wpa_group *gsm = sm->group;
u8 *start = pos;
size_t len = wpa_cipher_key_len(sm->wpa_auth->conf.group_mgmt_cipher);
/*
* IGTK subelement:
* Sub-elem ID[1] | Length[1] | KeyID[2] | PN[6] | Key[16]
*/
*pos++ = WNM_SLEEP_SUBELEM_IGTK;
*pos++ = 2 + 6 + len;
WPA_PUT_LE16(pos, gsm->GN_igtk);
pos += 2;
if (wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN_igtk, pos) != 0)
return 0;
pos += 6;
os_memcpy(pos, gsm->IGTK[gsm->GN_igtk - 4], len);
if (conf->disable_gtk || sm->wpa_key_mgmt == WPA_KEY_MGMT_OSEN) {
/*
* Provide unique random IGTK to each STA to prevent use
* of IGTK in the BSS.
*/
if (random_get_bytes(pos, len) < 0)
return 0;
}
pos += len;
wpa_printf(MSG_DEBUG, "WNM: IGTK Key ID %u in WNM-Sleep Mode exit",
gsm->GN_igtk);
wpa_hexdump_key(MSG_DEBUG, "WNM: IGTK in WNM-Sleep Mode exit",
gsm->IGTK[gsm->GN_igtk - 4], len);
return pos - start;
}
int wpa_wnmsleep_bigtk_subelem(struct wpa_state_machine *sm, u8 *pos)
{
struct wpa_group *gsm = sm->group;
u8 *start = pos;
size_t len = wpa_cipher_key_len(sm->wpa_auth->conf.group_mgmt_cipher);
/*
* BIGTK subelement:
* Sub-elem ID[1] | Length[1] | KeyID[2] | PN[6] | Key[16]
*/
*pos++ = WNM_SLEEP_SUBELEM_BIGTK;
*pos++ = 2 + 6 + len;
WPA_PUT_LE16(pos, gsm->GN_bigtk);
pos += 2;
if (wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN_bigtk, pos) != 0)
return 0;
pos += 6;
os_memcpy(pos, gsm->BIGTK[gsm->GN_bigtk - 6], len);
if (sm->wpa_key_mgmt == WPA_KEY_MGMT_OSEN) {
/*
* Provide unique random BIGTK to each STA to prevent use
* of BIGTK in the BSS.
*/
if (random_get_bytes(pos, len) < 0)
return 0;
}
pos += len;
wpa_printf(MSG_DEBUG, "WNM: BIGTK Key ID %u in WNM-Sleep Mode exit",
gsm->GN_bigtk);
wpa_hexdump_key(MSG_DEBUG, "WNM: BIGTK in WNM-Sleep Mode exit",
gsm->IGTK[gsm->GN_bigtk - 6], len);
return pos - start;
}
#endif /* CONFIG_WNM_AP */
static void wpa_group_setkeys(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
int tmp;
wpa_printf(MSG_DEBUG,
"WPA: group state machine entering state SETKEYS (VLAN-ID %d)",
group->vlan_id);
group->changed = true;
group->wpa_group_state = WPA_GROUP_SETKEYS;
group->GTKReKey = false;
tmp = group->GM;
group->GM = group->GN;
group->GN = tmp;
tmp = group->GM_igtk;
group->GM_igtk = group->GN_igtk;
group->GN_igtk = tmp;
tmp = group->GM_bigtk;
group->GM_bigtk = group->GN_bigtk;
group->GN_bigtk = tmp;
/* "GKeyDoneStations = GNoStations" is done in more robust way by
* counting the STAs that are marked with GUpdateStationKeys instead of
* including all STAs that could be in not-yet-completed state. */
wpa_gtk_update(wpa_auth, group);
if (group->GKeyDoneStations) {
wpa_printf(MSG_DEBUG,
"wpa_group_setkeys: Unexpected GKeyDoneStations=%d when starting new GTK rekey",
group->GKeyDoneStations);
group->GKeyDoneStations = 0;
}
wpa_auth_for_each_sta(wpa_auth, wpa_group_update_sta, group);
wpa_printf(MSG_DEBUG, "wpa_group_setkeys: GKeyDoneStations=%d",
group->GKeyDoneStations);
}
static int wpa_group_config_group_keys(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
struct wpa_auth_config *conf = &wpa_auth->conf;
int ret = 0;
if (wpa_auth_set_key(wpa_auth, group->vlan_id,
wpa_cipher_to_alg(conf->wpa_group),
broadcast_ether_addr, group->GN,
group->GTK[group->GN - 1], group->GTK_len,
KEY_FLAG_GROUP_TX_DEFAULT) < 0)
ret = -1;
if (conf->ieee80211w != NO_MGMT_FRAME_PROTECTION) {
enum wpa_alg alg;
size_t len;
alg = wpa_cipher_to_alg(conf->group_mgmt_cipher);
len = wpa_cipher_key_len(conf->group_mgmt_cipher);
if (ret == 0 &&
wpa_auth_set_key(wpa_auth, group->vlan_id, alg,
broadcast_ether_addr, group->GN_igtk,
group->IGTK[group->GN_igtk - 4], len,
KEY_FLAG_GROUP_TX_DEFAULT) < 0)
ret = -1;
if (ret == 0 && conf->beacon_prot &&
wpa_auth_set_key(wpa_auth, group->vlan_id, alg,
broadcast_ether_addr, group->GN_bigtk,
group->BIGTK[group->GN_bigtk - 6], len,
KEY_FLAG_GROUP_TX_DEFAULT) < 0)
ret = -1;
}
return ret;
}
static int wpa_group_disconnect_cb(struct wpa_state_machine *sm, void *ctx)
{
if (sm->group == ctx) {
wpa_printf(MSG_DEBUG, "WPA: Mark STA " MACSTR
" for disconnection due to fatal failure",
MAC2STR(sm->addr));
sm->Disconnect = true;
}
return 0;
}
static void wpa_group_fatal_failure(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
wpa_printf(MSG_DEBUG,
"WPA: group state machine entering state FATAL_FAILURE");
group->changed = true;
group->wpa_group_state = WPA_GROUP_FATAL_FAILURE;
wpa_auth_for_each_sta(wpa_auth, wpa_group_disconnect_cb, group);
}
static int wpa_group_setkeysdone(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
wpa_printf(MSG_DEBUG,
"WPA: group state machine entering state SETKEYSDONE (VLAN-ID %d)",
group->vlan_id);
group->changed = true;
group->wpa_group_state = WPA_GROUP_SETKEYSDONE;
if (wpa_group_config_group_keys(wpa_auth, group) < 0) {
wpa_group_fatal_failure(wpa_auth, group);
return -1;
}
return 0;
}
static void wpa_group_sm_step(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
if (group->GInit) {
wpa_group_gtk_init(wpa_auth, group);
} else if (group->wpa_group_state == WPA_GROUP_FATAL_FAILURE) {
/* Do not allow group operations */
} else if (group->wpa_group_state == WPA_GROUP_GTK_INIT &&
group->GTKAuthenticator) {
wpa_group_setkeysdone(wpa_auth, group);
} else if (group->wpa_group_state == WPA_GROUP_SETKEYSDONE &&
group->GTKReKey) {
wpa_group_setkeys(wpa_auth, group);
} else if (group->wpa_group_state == WPA_GROUP_SETKEYS) {
if (group->GKeyDoneStations == 0)
wpa_group_setkeysdone(wpa_auth, group);
else if (group->GTKReKey)
wpa_group_setkeys(wpa_auth, group);
}
}
static int wpa_sm_step(struct wpa_state_machine *sm)
{
if (!sm)
return 0;
if (sm->in_step_loop) {
/* This should not happen, but if it does, make sure we do not
* end up freeing the state machine too early by exiting the
* recursive call. */
wpa_printf(MSG_ERROR, "WPA: wpa_sm_step() called recursively");
return 0;
}
sm->in_step_loop = 1;
do {
if (sm->pending_deinit)
break;
sm->changed = false;
sm->wpa_auth->group->changed = false;
SM_STEP_RUN(WPA_PTK);
if (sm->pending_deinit)
break;
SM_STEP_RUN(WPA_PTK_GROUP);
if (sm->pending_deinit)
break;
wpa_group_sm_step(sm->wpa_auth, sm->group);
} while (sm->changed || sm->wpa_auth->group->changed);
sm->in_step_loop = 0;
if (sm->pending_deinit) {
wpa_printf(MSG_DEBUG,
"WPA: Completing pending STA state machine deinit for "
MACSTR, MAC2STR(sm->addr));
wpa_free_sta_sm(sm);
return 1;
}
return 0;
}
static void wpa_sm_call_step(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_state_machine *sm = eloop_ctx;
wpa_sm_step(sm);
}
void wpa_auth_sm_notify(struct wpa_state_machine *sm)
{
if (!sm)
return;
eloop_register_timeout(0, 0, wpa_sm_call_step, sm, NULL);
}
void wpa_gtk_rekey(struct wpa_authenticator *wpa_auth)
{
int tmp, i;
struct wpa_group *group;
if (!wpa_auth)
return;
group = wpa_auth->group;
for (i = 0; i < 2; i++) {
tmp = group->GM;
group->GM = group->GN;
group->GN = tmp;
tmp = group->GM_igtk;
group->GM_igtk = group->GN_igtk;
group->GN_igtk = tmp;
tmp = group->GM_bigtk;
group->GM_bigtk = group->GN_bigtk;
group->GN_bigtk = tmp;
wpa_gtk_update(wpa_auth, group);
wpa_group_config_group_keys(wpa_auth, group);
}
}
static const char * wpa_bool_txt(int val)
{
return val ? "TRUE" : "FALSE";
}
#define RSN_SUITE "%02x-%02x-%02x-%d"
#define RSN_SUITE_ARG(s) \
((s) >> 24) & 0xff, ((s) >> 16) & 0xff, ((s) >> 8) & 0xff, (s) & 0xff
int wpa_get_mib(struct wpa_authenticator *wpa_auth, char *buf, size_t buflen)
{
struct wpa_auth_config *conf;
int len = 0, ret;
char pmkid_txt[PMKID_LEN * 2 + 1];
#ifdef CONFIG_RSN_PREAUTH
const int preauth = 1;
#else /* CONFIG_RSN_PREAUTH */
const int preauth = 0;
#endif /* CONFIG_RSN_PREAUTH */
if (!wpa_auth)
return len;
conf = &wpa_auth->conf;
ret = os_snprintf(buf + len, buflen - len,
"dot11RSNAOptionImplemented=TRUE\n"
"dot11RSNAPreauthenticationImplemented=%s\n"
"dot11RSNAEnabled=%s\n"
"dot11RSNAPreauthenticationEnabled=%s\n",
wpa_bool_txt(preauth),
wpa_bool_txt(conf->wpa & WPA_PROTO_RSN),
wpa_bool_txt(conf->rsn_preauth));
if (os_snprintf_error(buflen - len, ret))
return len;
len += ret;
wpa_snprintf_hex(pmkid_txt, sizeof(pmkid_txt),
wpa_auth->dot11RSNAPMKIDUsed, PMKID_LEN);
ret = os_snprintf(
buf + len, buflen - len,
"dot11RSNAConfigVersion=%u\n"
"dot11RSNAConfigPairwiseKeysSupported=9999\n"
/* FIX: dot11RSNAConfigGroupCipher */
/* FIX: dot11RSNAConfigGroupRekeyMethod */
/* FIX: dot11RSNAConfigGroupRekeyTime */
/* FIX: dot11RSNAConfigGroupRekeyPackets */
"dot11RSNAConfigGroupRekeyStrict=%u\n"
"dot11RSNAConfigGroupUpdateCount=%u\n"
"dot11RSNAConfigPairwiseUpdateCount=%u\n"
"dot11RSNAConfigGroupCipherSize=%u\n"
"dot11RSNAConfigPMKLifetime=%u\n"
"dot11RSNAConfigPMKReauthThreshold=%u\n"
"dot11RSNAConfigNumberOfPTKSAReplayCounters=0\n"
"dot11RSNAConfigSATimeout=%u\n"
"dot11RSNAAuthenticationSuiteSelected=" RSN_SUITE "\n"
"dot11RSNAPairwiseCipherSelected=" RSN_SUITE "\n"
"dot11RSNAGroupCipherSelected=" RSN_SUITE "\n"
"dot11RSNAPMKIDUsed=%s\n"
"dot11RSNAAuthenticationSuiteRequested=" RSN_SUITE "\n"
"dot11RSNAPairwiseCipherRequested=" RSN_SUITE "\n"
"dot11RSNAGroupCipherRequested=" RSN_SUITE "\n"
"dot11RSNATKIPCounterMeasuresInvoked=%u\n"
"dot11RSNA4WayHandshakeFailures=%u\n"
"dot11RSNAConfigNumberOfGTKSAReplayCounters=0\n",
RSN_VERSION,
!!conf->wpa_strict_rekey,
conf->wpa_group_update_count,
conf->wpa_pairwise_update_count,
wpa_cipher_key_len(conf->wpa_group) * 8,
dot11RSNAConfigPMKLifetime,
dot11RSNAConfigPMKReauthThreshold,
dot11RSNAConfigSATimeout,
RSN_SUITE_ARG(wpa_auth->dot11RSNAAuthenticationSuiteSelected),
RSN_SUITE_ARG(wpa_auth->dot11RSNAPairwiseCipherSelected),
RSN_SUITE_ARG(wpa_auth->dot11RSNAGroupCipherSelected),
pmkid_txt,
RSN_SUITE_ARG(wpa_auth->dot11RSNAAuthenticationSuiteRequested),
RSN_SUITE_ARG(wpa_auth->dot11RSNAPairwiseCipherRequested),
RSN_SUITE_ARG(wpa_auth->dot11RSNAGroupCipherRequested),
wpa_auth->dot11RSNATKIPCounterMeasuresInvoked,
wpa_auth->dot11RSNA4WayHandshakeFailures);
if (os_snprintf_error(buflen - len, ret))
return len;
len += ret;
/* TODO: dot11RSNAConfigPairwiseCiphersTable */
/* TODO: dot11RSNAConfigAuthenticationSuitesTable */
/* Private MIB */
ret = os_snprintf(buf + len, buflen - len, "hostapdWPAGroupState=%d\n",
wpa_auth->group->wpa_group_state);
if (os_snprintf_error(buflen - len, ret))
return len;
len += ret;
return len;
}
int wpa_get_mib_sta(struct wpa_state_machine *sm, char *buf, size_t buflen)
{
int len = 0, ret;
u32 pairwise = 0;
if (!sm)
return 0;
/* TODO: FF-FF-FF-FF-FF-FF entry for broadcast/multicast stats */
/* dot11RSNAStatsEntry */
pairwise = wpa_cipher_to_suite(sm->wpa == WPA_VERSION_WPA2 ?
WPA_PROTO_RSN : WPA_PROTO_WPA,
sm->pairwise);
if (pairwise == 0)
return 0;
ret = os_snprintf(
buf + len, buflen - len,
/* TODO: dot11RSNAStatsIndex */
"dot11RSNAStatsSTAAddress=" MACSTR "\n"
"dot11RSNAStatsVersion=1\n"
"dot11RSNAStatsSelectedPairwiseCipher=" RSN_SUITE "\n"
/* TODO: dot11RSNAStatsTKIPICVErrors */
"dot11RSNAStatsTKIPLocalMICFailures=%u\n"
"dot11RSNAStatsTKIPRemoteMICFailures=%u\n"
/* TODO: dot11RSNAStatsCCMPReplays */
/* TODO: dot11RSNAStatsCCMPDecryptErrors */
/* TODO: dot11RSNAStatsTKIPReplays */,
MAC2STR(sm->addr),
RSN_SUITE_ARG(pairwise),
sm->dot11RSNAStatsTKIPLocalMICFailures,
sm->dot11RSNAStatsTKIPRemoteMICFailures);
if (os_snprintf_error(buflen - len, ret))
return len;
len += ret;
/* Private MIB */
ret = os_snprintf(buf + len, buflen - len,
"wpa=%d\n"
"AKMSuiteSelector=" RSN_SUITE "\n"
"hostapdWPAPTKState=%d\n"
"hostapdWPAPTKGroupState=%d\n",
sm->wpa,
RSN_SUITE_ARG(wpa_akm_to_suite(sm->wpa_key_mgmt)),
sm->wpa_ptk_state,
sm->wpa_ptk_group_state);
if (os_snprintf_error(buflen - len, ret))
return len;
len += ret;
return len;
}
void wpa_auth_countermeasures_start(struct wpa_authenticator *wpa_auth)
{
if (wpa_auth)
wpa_auth->dot11RSNATKIPCounterMeasuresInvoked++;
}
int wpa_auth_pairwise_set(struct wpa_state_machine *sm)
{
return sm && sm->pairwise_set;
}
int wpa_auth_get_pairwise(struct wpa_state_machine *sm)
{
return sm->pairwise;
}
const u8 * wpa_auth_get_pmk(struct wpa_state_machine *sm, int *len)
{
if (!sm)
return NULL;
*len = sm->pmk_len;
return sm->PMK;
}
int wpa_auth_sta_key_mgmt(struct wpa_state_machine *sm)
{
if (!sm)
return -1;
return sm->wpa_key_mgmt;
}
int wpa_auth_sta_wpa_version(struct wpa_state_machine *sm)
{
if (!sm)
return 0;
return sm->wpa;
}
int wpa_auth_sta_ft_tk_already_set(struct wpa_state_machine *sm)
{
if (!sm || !wpa_key_mgmt_ft(sm->wpa_key_mgmt))
return 0;
return sm->tk_already_set;
}
int wpa_auth_sta_fils_tk_already_set(struct wpa_state_machine *sm)
{
if (!sm || !wpa_key_mgmt_fils(sm->wpa_key_mgmt))
return 0;
return sm->tk_already_set;
}
int wpa_auth_sta_clear_pmksa(struct wpa_state_machine *sm,
struct rsn_pmksa_cache_entry *entry)
{
if (!sm || sm->pmksa != entry)
return -1;
sm->pmksa = NULL;
return 0;
}
struct rsn_pmksa_cache_entry *
wpa_auth_sta_get_pmksa(struct wpa_state_machine *sm)
{
return sm ? sm->pmksa : NULL;
}
void wpa_auth_sta_local_mic_failure_report(struct wpa_state_machine *sm)
{
if (sm)
sm->dot11RSNAStatsTKIPLocalMICFailures++;
}
const u8 * wpa_auth_get_wpa_ie(struct wpa_authenticator *wpa_auth, size_t *len)
{
if (!wpa_auth)
return NULL;
*len = wpa_auth->wpa_ie_len;
return wpa_auth->wpa_ie;
}
int wpa_auth_pmksa_add(struct wpa_state_machine *sm, const u8 *pmk,
unsigned int pmk_len,
int session_timeout, struct eapol_state_machine *eapol)
{
if (!sm || sm->wpa != WPA_VERSION_WPA2 ||
sm->wpa_auth->conf.disable_pmksa_caching)
return -1;
#ifdef CONFIG_IEEE80211R_AP
if (pmk_len >= 2 * PMK_LEN && wpa_key_mgmt_ft(sm->wpa_key_mgmt) &&
wpa_key_mgmt_wpa_ieee8021x(sm->wpa_key_mgmt) &&
!wpa_key_mgmt_sha384(sm->wpa_key_mgmt)) {
/* Cache MPMK/XXKey instead of initial part from MSK */
pmk = pmk + PMK_LEN;
pmk_len = PMK_LEN;
} else
#endif /* CONFIG_IEEE80211R_AP */
if (wpa_key_mgmt_sha384(sm->wpa_key_mgmt)) {
if (pmk_len > PMK_LEN_SUITE_B_192)
pmk_len = PMK_LEN_SUITE_B_192;
} else if (pmk_len > PMK_LEN) {
pmk_len = PMK_LEN;
}
wpa_hexdump_key(MSG_DEBUG, "RSN: Cache PMK", pmk, pmk_len);
if (pmksa_cache_auth_add(sm->wpa_auth->pmksa, pmk, pmk_len, NULL,
sm->PTK.kck, sm->PTK.kck_len,
sm->wpa_auth->addr, sm->addr, session_timeout,
eapol, sm->wpa_key_mgmt))
return 0;
return -1;
}
int wpa_auth_pmksa_add_preauth(struct wpa_authenticator *wpa_auth,
const u8 *pmk, size_t len, const u8 *sta_addr,
int session_timeout,
struct eapol_state_machine *eapol)
{
if (!wpa_auth)
return -1;
wpa_hexdump_key(MSG_DEBUG, "RSN: Cache PMK from preauth", pmk, len);
if (pmksa_cache_auth_add(wpa_auth->pmksa, pmk, len, NULL,
NULL, 0,
wpa_auth->addr,
sta_addr, session_timeout, eapol,
WPA_KEY_MGMT_IEEE8021X))
return 0;
return -1;
}
int wpa_auth_pmksa_add_sae(struct wpa_authenticator *wpa_auth, const u8 *addr,
const u8 *pmk, const u8 *pmkid)
{
if (wpa_auth->conf.disable_pmksa_caching)
return -1;
wpa_hexdump_key(MSG_DEBUG, "RSN: Cache PMK from SAE", pmk, PMK_LEN);
if (pmksa_cache_auth_add(wpa_auth->pmksa, pmk, PMK_LEN, pmkid,
NULL, 0,
wpa_auth->addr, addr, 0, NULL,
WPA_KEY_MGMT_SAE))
return 0;
return -1;
}
void wpa_auth_add_sae_pmkid(struct wpa_state_machine *sm, const u8 *pmkid)
{
os_memcpy(sm->pmkid, pmkid, PMKID_LEN);
sm->pmkid_set = 1;
}
int wpa_auth_pmksa_add2(struct wpa_authenticator *wpa_auth, const u8 *addr,
const u8 *pmk, size_t pmk_len, const u8 *pmkid,
int session_timeout, int akmp)
{
if (wpa_auth->conf.disable_pmksa_caching)
return -1;
wpa_hexdump_key(MSG_DEBUG, "RSN: Cache PMK (2)", pmk, PMK_LEN);
if (pmksa_cache_auth_add(wpa_auth->pmksa, pmk, pmk_len, pmkid,
NULL, 0, wpa_auth->addr, addr, session_timeout,
NULL, akmp))
return 0;
return -1;
}
void wpa_auth_pmksa_remove(struct wpa_authenticator *wpa_auth,
const u8 *sta_addr)
{
struct rsn_pmksa_cache_entry *pmksa;
if (!wpa_auth || !wpa_auth->pmksa)
return;
pmksa = pmksa_cache_auth_get(wpa_auth->pmksa, sta_addr, NULL);
if (pmksa) {
wpa_printf(MSG_DEBUG, "WPA: Remove PMKSA cache entry for "
MACSTR " based on request", MAC2STR(sta_addr));
pmksa_cache_free_entry(wpa_auth->pmksa, pmksa);
}
}
int wpa_auth_pmksa_list(struct wpa_authenticator *wpa_auth, char *buf,
size_t len)
{
if (!wpa_auth || !wpa_auth->pmksa)
return 0;
return pmksa_cache_auth_list(wpa_auth->pmksa, buf, len);
}
void wpa_auth_pmksa_flush(struct wpa_authenticator *wpa_auth)
{
if (wpa_auth && wpa_auth->pmksa)
pmksa_cache_auth_flush(wpa_auth->pmksa);
}
#ifdef CONFIG_PMKSA_CACHE_EXTERNAL
#ifdef CONFIG_MESH
int wpa_auth_pmksa_list_mesh(struct wpa_authenticator *wpa_auth, const u8 *addr,
char *buf, size_t len)
{
if (!wpa_auth || !wpa_auth->pmksa)
return 0;
return pmksa_cache_auth_list_mesh(wpa_auth->pmksa, addr, buf, len);
}
struct rsn_pmksa_cache_entry *
wpa_auth_pmksa_create_entry(const u8 *aa, const u8 *spa, const u8 *pmk,
const u8 *pmkid, int expiration)
{
struct rsn_pmksa_cache_entry *entry;
struct os_reltime now;
entry = pmksa_cache_auth_create_entry(pmk, PMK_LEN, pmkid, NULL, 0, aa,
spa, 0, NULL, WPA_KEY_MGMT_SAE);
if (!entry)
return NULL;
os_get_reltime(&now);
entry->expiration = now.sec + expiration;
return entry;
}
int wpa_auth_pmksa_add_entry(struct wpa_authenticator *wpa_auth,
struct rsn_pmksa_cache_entry *entry)
{
int ret;
if (!wpa_auth || !wpa_auth->pmksa)
return -1;
ret = pmksa_cache_auth_add_entry(wpa_auth->pmksa, entry);
if (ret < 0)
wpa_printf(MSG_DEBUG,
"RSN: Failed to store external PMKSA cache for "
MACSTR, MAC2STR(entry->spa));
return ret;
}
#endif /* CONFIG_MESH */
#endif /* CONFIG_PMKSA_CACHE_EXTERNAL */
struct rsn_pmksa_cache_entry *
wpa_auth_pmksa_get(struct wpa_authenticator *wpa_auth, const u8 *sta_addr,
const u8 *pmkid)
{
if (!wpa_auth || !wpa_auth->pmksa)
return NULL;
return pmksa_cache_auth_get(wpa_auth->pmksa, sta_addr, pmkid);
}
void wpa_auth_pmksa_set_to_sm(struct rsn_pmksa_cache_entry *pmksa,
struct wpa_state_machine *sm,
struct wpa_authenticator *wpa_auth,
u8 *pmkid, u8 *pmk)
{
if (!sm)
return;
sm->pmksa = pmksa;
os_memcpy(pmk, pmksa->pmk, PMK_LEN);
os_memcpy(pmkid, pmksa->pmkid, PMKID_LEN);
os_memcpy(wpa_auth->dot11RSNAPMKIDUsed, pmksa->pmkid, PMKID_LEN);
}
/*
* Remove and free the group from wpa_authenticator. This is triggered by a
* callback to make sure nobody is currently iterating the group list while it
* gets modified.
*/
static void wpa_group_free(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
struct wpa_group *prev = wpa_auth->group;
wpa_printf(MSG_DEBUG, "WPA: Remove group state machine for VLAN-ID %d",
group->vlan_id);
while (prev) {
if (prev->next == group) {
/* This never frees the special first group as needed */
prev->next = group->next;
os_free(group);
break;
}
prev = prev->next;
}
}
/* Increase the reference counter for group */
static void wpa_group_get(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
/* Skip the special first group */
if (wpa_auth->group == group)
return;
group->references++;
}
/* Decrease the reference counter and maybe free the group */
static void wpa_group_put(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
/* Skip the special first group */
if (wpa_auth->group == group)
return;
group->references--;
if (group->references)
return;
wpa_group_free(wpa_auth, group);
}
/*
* Add a group that has its references counter set to zero. Caller needs to
* call wpa_group_get() on the return value to mark the entry in use.
*/
static struct wpa_group *
wpa_auth_add_group(struct wpa_authenticator *wpa_auth, int vlan_id)
{
struct wpa_group *group;
if (!wpa_auth || !wpa_auth->group)
return NULL;
wpa_printf(MSG_DEBUG, "WPA: Add group state machine for VLAN-ID %d",
vlan_id);
group = wpa_group_init(wpa_auth, vlan_id, 0);
if (!group)
return NULL;
group->next = wpa_auth->group->next;
wpa_auth->group->next = group;
return group;
}
/*
* Enforce that the group state machine for the VLAN is running, increase
* reference counter as interface is up. References might have been increased
* even if a negative value is returned.
* Returns: -1 on error (group missing, group already failed); otherwise, 0
*/
int wpa_auth_ensure_group(struct wpa_authenticator *wpa_auth, int vlan_id)
{
struct wpa_group *group;
if (!wpa_auth)
return 0;
group = wpa_auth->group;
while (group) {
if (group->vlan_id == vlan_id)
break;
group = group->next;
}
if (!group) {
group = wpa_auth_add_group(wpa_auth, vlan_id);
if (!group)
return -1;
}
wpa_printf(MSG_DEBUG,
"WPA: Ensure group state machine running for VLAN ID %d",
vlan_id);
wpa_group_get(wpa_auth, group);
group->num_setup_iface++;
if (group->wpa_group_state == WPA_GROUP_FATAL_FAILURE)
return -1;
return 0;
}
/*
* Decrease reference counter, expected to be zero afterwards.
* returns: -1 on error (group not found, group in fail state)
* -2 if wpa_group is still referenced
* 0 else
*/
int wpa_auth_release_group(struct wpa_authenticator *wpa_auth, int vlan_id)
{
struct wpa_group *group;
int ret = 0;
if (!wpa_auth)
return 0;
group = wpa_auth->group;
while (group) {
if (group->vlan_id == vlan_id)
break;
group = group->next;
}
if (!group)
return -1;
wpa_printf(MSG_DEBUG,
"WPA: Try stopping group state machine for VLAN ID %d",
vlan_id);
if (group->num_setup_iface <= 0) {
wpa_printf(MSG_ERROR,
"WPA: wpa_auth_release_group called more often than wpa_auth_ensure_group for VLAN ID %d, skipping.",
vlan_id);
return -1;
}
group->num_setup_iface--;
if (group->wpa_group_state == WPA_GROUP_FATAL_FAILURE)
ret = -1;
if (group->references > 1) {
wpa_printf(MSG_DEBUG,
"WPA: Cannot stop group state machine for VLAN ID %d as references are still hold",
vlan_id);
ret = -2;
}
wpa_group_put(wpa_auth, group);
return ret;
}
int wpa_auth_sta_set_vlan(struct wpa_state_machine *sm, int vlan_id)
{
struct wpa_group *group;
if (!sm || !sm->wpa_auth)
return 0;
group = sm->wpa_auth->group;
while (group) {
if (group->vlan_id == vlan_id)
break;
group = group->next;
}
if (!group) {
group = wpa_auth_add_group(sm->wpa_auth, vlan_id);
if (!group)
return -1;
}
if (sm->group == group)
return 0;
if (group->wpa_group_state == WPA_GROUP_FATAL_FAILURE)
return -1;
wpa_printf(MSG_DEBUG, "WPA: Moving STA " MACSTR
" to use group state machine for VLAN ID %d",
MAC2STR(sm->addr), vlan_id);
wpa_group_get(sm->wpa_auth, group);
wpa_group_put(sm->wpa_auth, sm->group);
sm->group = group;
return 0;
}
void wpa_auth_eapol_key_tx_status(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm, int ack)
{
if (!wpa_auth || !sm)
return;
wpa_printf(MSG_DEBUG, "WPA: EAPOL-Key TX status for STA " MACSTR
" ack=%d", MAC2STR(sm->addr), ack);
if (sm->pending_1_of_4_timeout && ack) {
/*
* Some deployed supplicant implementations update their SNonce
* for each EAPOL-Key 2/4 message even within the same 4-way
* handshake and then fail to use the first SNonce when
* deriving the PTK. This results in unsuccessful 4-way
* handshake whenever the relatively short initial timeout is
* reached and EAPOL-Key 1/4 is retransmitted. Try to work
* around this by increasing the timeout now that we know that
* the station has received the frame.
*/
int timeout_ms = eapol_key_timeout_subseq;
wpa_printf(MSG_DEBUG,
"WPA: Increase initial EAPOL-Key 1/4 timeout by %u ms because of acknowledged frame",
timeout_ms);
eloop_cancel_timeout(wpa_send_eapol_timeout, wpa_auth, sm);
eloop_register_timeout(timeout_ms / 1000,
(timeout_ms % 1000) * 1000,
wpa_send_eapol_timeout, wpa_auth, sm);
}
#ifdef CONFIG_TESTING_OPTIONS
if (sm->eapol_status_cb) {
sm->eapol_status_cb(sm->eapol_status_cb_ctx1,
sm->eapol_status_cb_ctx2);
sm->eapol_status_cb = NULL;
}
#endif /* CONFIG_TESTING_OPTIONS */
}
int wpa_auth_uses_sae(struct wpa_state_machine *sm)
{
if (!sm)
return 0;
return wpa_key_mgmt_sae(sm->wpa_key_mgmt);
}
int wpa_auth_uses_ft_sae(struct wpa_state_machine *sm)
{
if (!sm)
return 0;
return sm->wpa_key_mgmt == WPA_KEY_MGMT_FT_SAE;
}
#ifdef CONFIG_P2P
int wpa_auth_get_ip_addr(struct wpa_state_machine *sm, u8 *addr)
{
if (!sm || WPA_GET_BE32(sm->ip_addr) == 0)
return -1;
os_memcpy(addr, sm->ip_addr, 4);
return 0;
}
#endif /* CONFIG_P2P */
int wpa_auth_radius_das_disconnect_pmksa(struct wpa_authenticator *wpa_auth,
struct radius_das_attrs *attr)
{
return pmksa_cache_auth_radius_das_disconnect(wpa_auth->pmksa, attr);
}
void wpa_auth_reconfig_group_keys(struct wpa_authenticator *wpa_auth)
{
struct wpa_group *group;
if (!wpa_auth)
return;
for (group = wpa_auth->group; group; group = group->next)
wpa_group_config_group_keys(wpa_auth, group);
}
#ifdef CONFIG_FILS
struct wpa_auth_fils_iter_data {
struct wpa_authenticator *auth;
const u8 *cache_id;
struct rsn_pmksa_cache_entry *pmksa;
const u8 *spa;
const u8 *pmkid;
};
static int wpa_auth_fils_iter(struct wpa_authenticator *a, void *ctx)
{
struct wpa_auth_fils_iter_data *data = ctx;
if (a == data->auth || !a->conf.fils_cache_id_set ||
os_memcmp(a->conf.fils_cache_id, data->cache_id,
FILS_CACHE_ID_LEN) != 0)
return 0;
data->pmksa = pmksa_cache_auth_get(a->pmksa, data->spa, data->pmkid);
return data->pmksa != NULL;
}
struct rsn_pmksa_cache_entry *
wpa_auth_pmksa_get_fils_cache_id(struct wpa_authenticator *wpa_auth,
const u8 *sta_addr, const u8 *pmkid)
{
struct wpa_auth_fils_iter_data idata;
if (!wpa_auth->conf.fils_cache_id_set)
return NULL;
idata.auth = wpa_auth;
idata.cache_id = wpa_auth->conf.fils_cache_id;
idata.pmksa = NULL;
idata.spa = sta_addr;
idata.pmkid = pmkid;
wpa_auth_for_each_auth(wpa_auth, wpa_auth_fils_iter, &idata);
return idata.pmksa;
}
#ifdef CONFIG_IEEE80211R_AP
int wpa_auth_write_fte(struct wpa_authenticator *wpa_auth, int use_sha384,
u8 *buf, size_t len)
{
struct wpa_auth_config *conf = &wpa_auth->conf;
return wpa_write_ftie(conf, use_sha384, conf->r0_key_holder,
conf->r0_key_holder_len,
NULL, NULL, buf, len, NULL, 0, 0);
}
#endif /* CONFIG_IEEE80211R_AP */
void wpa_auth_get_fils_aead_params(struct wpa_state_machine *sm,
u8 *fils_anonce, u8 *fils_snonce,
u8 *fils_kek, size_t *fils_kek_len)
{
os_memcpy(fils_anonce, sm->ANonce, WPA_NONCE_LEN);
os_memcpy(fils_snonce, sm->SNonce, WPA_NONCE_LEN);
os_memcpy(fils_kek, sm->PTK.kek, WPA_KEK_MAX_LEN);
*fils_kek_len = sm->PTK.kek_len;
}
void wpa_auth_add_fils_pmk_pmkid(struct wpa_state_machine *sm, const u8 *pmk,
size_t pmk_len, const u8 *pmkid)
{
os_memcpy(sm->PMK, pmk, pmk_len);
sm->pmk_len = pmk_len;
os_memcpy(sm->pmkid, pmkid, PMKID_LEN);
sm->pmkid_set = 1;
}
#endif /* CONFIG_FILS */
void wpa_auth_set_auth_alg(struct wpa_state_machine *sm, u16 auth_alg)
{
if (sm)
sm->auth_alg = auth_alg;
}
#ifdef CONFIG_DPP2
void wpa_auth_set_dpp_z(struct wpa_state_machine *sm, const struct wpabuf *z)
{
if (sm) {
wpabuf_clear_free(sm->dpp_z);
sm->dpp_z = z ? wpabuf_dup(z) : NULL;
}
}
#endif /* CONFIG_DPP2 */
void wpa_auth_set_transition_disable(struct wpa_authenticator *wpa_auth,
u8 val)
{
if (wpa_auth)
wpa_auth->conf.transition_disable = val;
}
#ifdef CONFIG_TESTING_OPTIONS
int wpa_auth_resend_m1(struct wpa_state_machine *sm, int change_anonce,
void (*cb)(void *ctx1, void *ctx2),
void *ctx1, void *ctx2)
{
const u8 *anonce = sm->ANonce;
u8 anonce_buf[WPA_NONCE_LEN];
if (change_anonce) {
if (random_get_bytes(anonce_buf, WPA_NONCE_LEN))
return -1;
anonce = anonce_buf;
}
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"sending 1/4 msg of 4-Way Handshake (TESTING)");
wpa_send_eapol(sm->wpa_auth, sm,
WPA_KEY_INFO_ACK | WPA_KEY_INFO_KEY_TYPE, NULL,
anonce, NULL, 0, 0, 0);
return 0;
}
int wpa_auth_resend_m3(struct wpa_state_machine *sm,
void (*cb)(void *ctx1, void *ctx2),
void *ctx1, void *ctx2)
{
u8 rsc[WPA_KEY_RSC_LEN], *_rsc, *gtk, *kde, *pos;
u8 *opos;
size_t gtk_len, kde_len;
struct wpa_auth_config *conf = &sm->wpa_auth->conf;
struct wpa_group *gsm = sm->group;
u8 *wpa_ie;
int wpa_ie_len, secure, gtkidx, encr = 0;
u8 hdr[2];
/* Send EAPOL(1, 1, 1, Pair, P, RSC, ANonce, MIC(PTK), RSNIE, [MDIE],
GTK[GN], IGTK, [BIGTK], [FTIE], [TIE * 2])
*/
/* Use 0 RSC */
os_memset(rsc, 0, WPA_KEY_RSC_LEN);
/* If FT is used, wpa_auth->wpa_ie includes both RSNIE and MDIE */
wpa_ie = sm->wpa_auth->wpa_ie;
wpa_ie_len = sm->wpa_auth->wpa_ie_len;
if (sm->wpa == WPA_VERSION_WPA &&
(sm->wpa_auth->conf.wpa & WPA_PROTO_RSN) &&
wpa_ie_len > wpa_ie[1] + 2 && wpa_ie[0] == WLAN_EID_RSN) {
/* WPA-only STA, remove RSN IE and possible MDIE */
wpa_ie = wpa_ie + wpa_ie[1] + 2;
if (wpa_ie[0] == WLAN_EID_MOBILITY_DOMAIN)
wpa_ie = wpa_ie + wpa_ie[1] + 2;
wpa_ie_len = wpa_ie[1] + 2;
}
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"sending 3/4 msg of 4-Way Handshake (TESTING)");
if (sm->wpa == WPA_VERSION_WPA2) {
/* WPA2 send GTK in the 4-way handshake */
secure = 1;
gtk = gsm->GTK[gsm->GN - 1];
gtk_len = gsm->GTK_len;
gtkidx = gsm->GN;
_rsc = rsc;
encr = 1;
} else {
/* WPA does not include GTK in msg 3/4 */
secure = 0;
gtk = NULL;
gtk_len = 0;
_rsc = NULL;
if (sm->rx_eapol_key_secure) {
/*
* It looks like Windows 7 supplicant tries to use
* Secure bit in msg 2/4 after having reported Michael
* MIC failure and it then rejects the 4-way handshake
* if msg 3/4 does not set Secure bit. Work around this
* by setting the Secure bit here even in the case of
* WPA if the supplicant used it first.
*/
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"STA used Secure bit in WPA msg 2/4 - set Secure for 3/4 as workaround");
secure = 1;
}
}
kde_len = wpa_ie_len + ieee80211w_kde_len(sm) + ocv_oci_len(sm);
if (sm->use_ext_key_id)
kde_len += 2 + RSN_SELECTOR_LEN + 2;
if (gtk)
kde_len += 2 + RSN_SELECTOR_LEN + 2 + gtk_len;
#ifdef CONFIG_IEEE80211R_AP
if (wpa_key_mgmt_ft(sm->wpa_key_mgmt)) {
kde_len += 2 + PMKID_LEN; /* PMKR1Name into RSN IE */
kde_len += 300; /* FTIE + 2 * TIE */
}
#endif /* CONFIG_IEEE80211R_AP */
kde = os_malloc(kde_len);
if (!kde)
return -1;
pos = kde;
os_memcpy(pos, wpa_ie, wpa_ie_len);
pos += wpa_ie_len;
#ifdef CONFIG_IEEE80211R_AP
if (wpa_key_mgmt_ft(sm->wpa_key_mgmt)) {
int res;
size_t elen;
elen = pos - kde;
res = wpa_insert_pmkid(kde, &elen, sm->pmk_r1_name);
if (res < 0) {
wpa_printf(MSG_ERROR,
"FT: Failed to insert PMKR1Name into RSN IE in EAPOL-Key data");
os_free(kde);
return -1;
}
pos -= wpa_ie_len;
pos += elen;
}
#endif /* CONFIG_IEEE80211R_AP */
hdr[1] = 0;
if (sm->use_ext_key_id) {
hdr[0] = sm->keyidx_active & 0x01;
pos = wpa_add_kde(pos, RSN_KEY_DATA_KEYID, hdr, 2, NULL, 0);
}
if (gtk) {
hdr[0] = gtkidx & 0x03;
pos = wpa_add_kde(pos, RSN_KEY_DATA_GROUPKEY, hdr, 2,
gtk, gtk_len);
}
opos = pos;
pos = ieee80211w_kde_add(sm, pos);
if (pos - opos >= 2 + RSN_SELECTOR_LEN + WPA_IGTK_KDE_PREFIX_LEN) {
/* skip KDE header and keyid */
opos += 2 + RSN_SELECTOR_LEN + 2;
os_memset(opos, 0, 6); /* clear PN */
}
if (ocv_oci_add(sm, &pos, conf->oci_freq_override_eapol_m3) < 0) {
os_free(kde);
return -1;
}
#ifdef CONFIG_IEEE80211R_AP
if (wpa_key_mgmt_ft(sm->wpa_key_mgmt)) {
int res;
if (sm->assoc_resp_ftie &&
kde + kde_len - pos >= 2 + sm->assoc_resp_ftie[1]) {
os_memcpy(pos, sm->assoc_resp_ftie,
2 + sm->assoc_resp_ftie[1]);
res = 2 + sm->assoc_resp_ftie[1];
} else {
int use_sha384 = wpa_key_mgmt_sha384(sm->wpa_key_mgmt);
res = wpa_write_ftie(conf, use_sha384,
conf->r0_key_holder,
conf->r0_key_holder_len,
NULL, NULL, pos,
kde + kde_len - pos,
NULL, 0, 0);
}
if (res < 0) {
wpa_printf(MSG_ERROR,
"FT: Failed to insert FTIE into EAPOL-Key Key Data");
os_free(kde);
return -1;
}
pos += res;
/* TIE[ReassociationDeadline] (TU) */
*pos++ = WLAN_EID_TIMEOUT_INTERVAL;
*pos++ = 5;
*pos++ = WLAN_TIMEOUT_REASSOC_DEADLINE;
WPA_PUT_LE32(pos, conf->reassociation_deadline);
pos += 4;
/* TIE[KeyLifetime] (seconds) */
*pos++ = WLAN_EID_TIMEOUT_INTERVAL;
*pos++ = 5;
*pos++ = WLAN_TIMEOUT_KEY_LIFETIME;
WPA_PUT_LE32(pos, conf->r0_key_lifetime);
pos += 4;
}
#endif /* CONFIG_IEEE80211R_AP */
wpa_send_eapol(sm->wpa_auth, sm,
(secure ? WPA_KEY_INFO_SECURE : 0) |
(wpa_mic_len(sm->wpa_key_mgmt, sm->pmk_len) ?
WPA_KEY_INFO_MIC : 0) |
WPA_KEY_INFO_ACK | WPA_KEY_INFO_INSTALL |
WPA_KEY_INFO_KEY_TYPE,
_rsc, sm->ANonce, kde, pos - kde, 0, encr);
os_free(kde);
return 0;
}
int wpa_auth_resend_group_m1(struct wpa_state_machine *sm,
void (*cb)(void *ctx1, void *ctx2),
void *ctx1, void *ctx2)
{
u8 rsc[WPA_KEY_RSC_LEN];
struct wpa_auth_config *conf = &sm->wpa_auth->conf;
struct wpa_group *gsm = sm->group;
const u8 *kde;
u8 *kde_buf = NULL, *pos, hdr[2];
u8 *opos;
size_t kde_len;
u8 *gtk;
/* Send EAPOL(1, 1, 1, !Pair, G, RSC, GNonce, MIC(PTK), GTK[GN]) */
os_memset(rsc, 0, WPA_KEY_RSC_LEN);
/* Use 0 RSC */
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"sending 1/2 msg of Group Key Handshake (TESTING)");
gtk = gsm->GTK[gsm->GN - 1];
if (sm->wpa == WPA_VERSION_WPA2) {
kde_len = 2 + RSN_SELECTOR_LEN + 2 + gsm->GTK_len +
ieee80211w_kde_len(sm) + ocv_oci_len(sm);
kde_buf = os_malloc(kde_len);
if (!kde_buf)
return -1;
kde = pos = kde_buf;
hdr[0] = gsm->GN & 0x03;
hdr[1] = 0;
pos = wpa_add_kde(pos, RSN_KEY_DATA_GROUPKEY, hdr, 2,
gtk, gsm->GTK_len);
opos = pos;
pos = ieee80211w_kde_add(sm, pos);
if (pos - opos >=
2 + RSN_SELECTOR_LEN + WPA_IGTK_KDE_PREFIX_LEN) {
/* skip KDE header and keyid */
opos += 2 + RSN_SELECTOR_LEN + 2;
os_memset(opos, 0, 6); /* clear PN */
}
if (ocv_oci_add(sm, &pos,
conf->oci_freq_override_eapol_g1) < 0) {
os_free(kde_buf);
return -1;
}
kde_len = pos - kde;
} else {
kde = gtk;
kde_len = gsm->GTK_len;
}
sm->eapol_status_cb = cb;
sm->eapol_status_cb_ctx1 = ctx1;
sm->eapol_status_cb_ctx2 = ctx2;
wpa_send_eapol(sm->wpa_auth, sm,
WPA_KEY_INFO_SECURE |
(wpa_mic_len(sm->wpa_key_mgmt, sm->pmk_len) ?
WPA_KEY_INFO_MIC : 0) |
WPA_KEY_INFO_ACK |
(!sm->Pair ? WPA_KEY_INFO_INSTALL : 0),
rsc, NULL, kde, kde_len, gsm->GN, 1);
os_free(kde_buf);
return 0;
}
int wpa_auth_rekey_gtk(struct wpa_authenticator *wpa_auth)
{
if (!wpa_auth)
return -1;
eloop_cancel_timeout(wpa_rekey_gtk, wpa_auth, NULL);
return eloop_register_timeout(0, 0, wpa_rekey_gtk, wpa_auth, NULL);
}
void wpa_auth_set_ft_rsnxe_used(struct wpa_authenticator *wpa_auth, int val)
{
if (wpa_auth)
wpa_auth->conf.ft_rsnxe_used = val;
}
void wpa_auth_set_ocv_override_freq(struct wpa_authenticator *wpa_auth,
enum wpa_auth_ocv_override_frame frame,
unsigned int freq)
{
if (!wpa_auth)
return;
switch (frame) {
case WPA_AUTH_OCV_OVERRIDE_EAPOL_M3:
wpa_auth->conf.oci_freq_override_eapol_m3 = freq;
break;
case WPA_AUTH_OCV_OVERRIDE_EAPOL_G1:
wpa_auth->conf.oci_freq_override_eapol_g1 = freq;
break;
case WPA_AUTH_OCV_OVERRIDE_FT_ASSOC:
wpa_auth->conf.oci_freq_override_ft_assoc = freq;
break;
case WPA_AUTH_OCV_OVERRIDE_FILS_ASSOC:
wpa_auth->conf.oci_freq_override_fils_assoc = freq;
break;
}
}
#endif /* CONFIG_TESTING_OPTIONS */