You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hostap/src/common/wpa_common.c

3738 lines
100 KiB
C

/*
* WPA/RSN - Shared functions for supplicant and authenticator
* Copyright (c) 2002-2018, Jouni Malinen <j@w1.fi>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include "includes.h"
#include "common.h"
#include "crypto/md5.h"
#include "crypto/sha1.h"
#include "crypto/sha256.h"
#include "crypto/sha384.h"
#include "crypto/sha512.h"
#include "crypto/aes_wrap.h"
#include "crypto/crypto.h"
#include "ieee802_11_defs.h"
#include "defs.h"
#include "wpa_common.h"
static unsigned int wpa_kck_len(int akmp, size_t pmk_len)
{
switch (akmp) {
case WPA_KEY_MGMT_IEEE8021X_SUITE_B_192:
case WPA_KEY_MGMT_FT_IEEE8021X_SHA384:
return 24;
case WPA_KEY_MGMT_FILS_SHA256:
case WPA_KEY_MGMT_FT_FILS_SHA256:
case WPA_KEY_MGMT_FILS_SHA384:
case WPA_KEY_MGMT_FT_FILS_SHA384:
return 0;
case WPA_KEY_MGMT_DPP:
return pmk_len / 2;
case WPA_KEY_MGMT_OWE:
return pmk_len / 2;
default:
return 16;
}
}
#ifdef CONFIG_IEEE80211R
static unsigned int wpa_kck2_len(int akmp)
{
switch (akmp) {
case WPA_KEY_MGMT_FT_FILS_SHA256:
return 16;
case WPA_KEY_MGMT_FT_FILS_SHA384:
return 24;
default:
return 0;
}
}
#endif /* CONFIG_IEEE80211R */
static unsigned int wpa_kek_len(int akmp, size_t pmk_len)
{
switch (akmp) {
case WPA_KEY_MGMT_FILS_SHA384:
case WPA_KEY_MGMT_FT_FILS_SHA384:
return 64;
case WPA_KEY_MGMT_IEEE8021X_SUITE_B_192:
case WPA_KEY_MGMT_FILS_SHA256:
case WPA_KEY_MGMT_FT_FILS_SHA256:
case WPA_KEY_MGMT_FT_IEEE8021X_SHA384:
return 32;
case WPA_KEY_MGMT_DPP:
return pmk_len <= 32 ? 16 : 32;
case WPA_KEY_MGMT_OWE:
return pmk_len <= 32 ? 16 : 32;
default:
return 16;
}
}
#ifdef CONFIG_IEEE80211R
static unsigned int wpa_kek2_len(int akmp)
{
switch (akmp) {
case WPA_KEY_MGMT_FT_FILS_SHA256:
return 16;
case WPA_KEY_MGMT_FT_FILS_SHA384:
return 32;
default:
return 0;
}
}
#endif /* CONFIG_IEEE80211R */
unsigned int wpa_mic_len(int akmp, size_t pmk_len)
{
switch (akmp) {
case WPA_KEY_MGMT_IEEE8021X_SUITE_B_192:
case WPA_KEY_MGMT_FT_IEEE8021X_SHA384:
return 24;
case WPA_KEY_MGMT_FILS_SHA256:
case WPA_KEY_MGMT_FILS_SHA384:
case WPA_KEY_MGMT_FT_FILS_SHA256:
case WPA_KEY_MGMT_FT_FILS_SHA384:
return 0;
case WPA_KEY_MGMT_DPP:
return pmk_len / 2;
case WPA_KEY_MGMT_OWE:
return pmk_len / 2;
default:
return 16;
}
}
/**
* wpa_use_akm_defined - Is AKM-defined Key Descriptor Version used
* @akmp: WPA_KEY_MGMT_* used in key derivation
* Returns: 1 if AKM-defined Key Descriptor Version is used; 0 otherwise
*/
int wpa_use_akm_defined(int akmp)
{
return akmp == WPA_KEY_MGMT_OSEN ||
akmp == WPA_KEY_MGMT_OWE ||
akmp == WPA_KEY_MGMT_DPP ||
akmp == WPA_KEY_MGMT_FT_IEEE8021X_SHA384 ||
wpa_key_mgmt_sae(akmp) ||
wpa_key_mgmt_suite_b(akmp) ||
wpa_key_mgmt_fils(akmp);
}
/**
* wpa_use_cmac - Is CMAC integrity algorithm used for EAPOL-Key MIC
* @akmp: WPA_KEY_MGMT_* used in key derivation
* Returns: 1 if CMAC is used; 0 otherwise
*/
int wpa_use_cmac(int akmp)
{
return akmp == WPA_KEY_MGMT_OSEN ||
akmp == WPA_KEY_MGMT_OWE ||
akmp == WPA_KEY_MGMT_DPP ||
wpa_key_mgmt_ft(akmp) ||
wpa_key_mgmt_sha256(akmp) ||
wpa_key_mgmt_sae(akmp) ||
wpa_key_mgmt_suite_b(akmp);
}
/**
* wpa_use_aes_key_wrap - Is AES Keywrap algorithm used for EAPOL-Key Key Data
* @akmp: WPA_KEY_MGMT_* used in key derivation
* Returns: 1 if AES Keywrap is used; 0 otherwise
*
* Note: AKM 00-0F-AC:1 and 00-0F-AC:2 have special rules for selecting whether
* to use AES Keywrap based on the negotiated pairwise cipher. This function
* does not cover those special cases.
*/
int wpa_use_aes_key_wrap(int akmp)
{
return akmp == WPA_KEY_MGMT_OSEN ||
akmp == WPA_KEY_MGMT_OWE ||
akmp == WPA_KEY_MGMT_DPP ||
wpa_key_mgmt_ft(akmp) ||
wpa_key_mgmt_sha256(akmp) ||
wpa_key_mgmt_sae(akmp) ||
wpa_key_mgmt_suite_b(akmp);
}
/**
* wpa_eapol_key_mic - Calculate EAPOL-Key MIC
* @key: EAPOL-Key Key Confirmation Key (KCK)
* @key_len: KCK length in octets
* @akmp: WPA_KEY_MGMT_* used in key derivation
* @ver: Key descriptor version (WPA_KEY_INFO_TYPE_*)
* @buf: Pointer to the beginning of the EAPOL header (version field)
* @len: Length of the EAPOL frame (from EAPOL header to the end of the frame)
* @mic: Pointer to the buffer to which the EAPOL-Key MIC is written
* Returns: 0 on success, -1 on failure
*
* Calculate EAPOL-Key MIC for an EAPOL-Key packet. The EAPOL-Key MIC field has
* to be cleared (all zeroes) when calling this function.
*
* Note: 'IEEE Std 802.11i-2004 - 8.5.2 EAPOL-Key frames' has an error in the
* description of the Key MIC calculation. It includes packet data from the
* beginning of the EAPOL-Key header, not EAPOL header. This incorrect change
* happened during final editing of the standard and the correct behavior is
* defined in the last draft (IEEE 802.11i/D10).
*/
int wpa_eapol_key_mic(const u8 *key, size_t key_len, int akmp, int ver,
const u8 *buf, size_t len, u8 *mic)
{
u8 hash[SHA512_MAC_LEN];
if (key_len == 0) {
wpa_printf(MSG_DEBUG,
"WPA: KCK not set - cannot calculate MIC");
return -1;
}
switch (ver) {
#ifndef CONFIG_FIPS
case WPA_KEY_INFO_TYPE_HMAC_MD5_RC4:
wpa_printf(MSG_DEBUG, "WPA: EAPOL-Key MIC using HMAC-MD5");
return hmac_md5(key, key_len, buf, len, mic);
#endif /* CONFIG_FIPS */
case WPA_KEY_INFO_TYPE_HMAC_SHA1_AES:
wpa_printf(MSG_DEBUG, "WPA: EAPOL-Key MIC using HMAC-SHA1");
if (hmac_sha1(key, key_len, buf, len, hash))
return -1;
os_memcpy(mic, hash, MD5_MAC_LEN);
break;
case WPA_KEY_INFO_TYPE_AES_128_CMAC:
wpa_printf(MSG_DEBUG, "WPA: EAPOL-Key MIC using AES-CMAC");
return omac1_aes_128(key, buf, len, mic);
case WPA_KEY_INFO_TYPE_AKM_DEFINED:
switch (akmp) {
#ifdef CONFIG_SAE
case WPA_KEY_MGMT_SAE:
case WPA_KEY_MGMT_FT_SAE:
wpa_printf(MSG_DEBUG,
"WPA: EAPOL-Key MIC using AES-CMAC (AKM-defined - SAE)");
return omac1_aes_128(key, buf, len, mic);
#endif /* CONFIG_SAE */
#ifdef CONFIG_HS20
case WPA_KEY_MGMT_OSEN:
wpa_printf(MSG_DEBUG,
"WPA: EAPOL-Key MIC using AES-CMAC (AKM-defined - OSEN)");
return omac1_aes_128(key, buf, len, mic);
#endif /* CONFIG_HS20 */
#ifdef CONFIG_SUITEB
case WPA_KEY_MGMT_IEEE8021X_SUITE_B:
wpa_printf(MSG_DEBUG,
"WPA: EAPOL-Key MIC using HMAC-SHA256 (AKM-defined - Suite B)");
if (hmac_sha256(key, key_len, buf, len, hash))
return -1;
os_memcpy(mic, hash, MD5_MAC_LEN);
break;
#endif /* CONFIG_SUITEB */
#ifdef CONFIG_SUITEB192
case WPA_KEY_MGMT_IEEE8021X_SUITE_B_192:
wpa_printf(MSG_DEBUG,
"WPA: EAPOL-Key MIC using HMAC-SHA384 (AKM-defined - Suite B 192-bit)");
if (hmac_sha384(key, key_len, buf, len, hash))
return -1;
os_memcpy(mic, hash, 24);
break;
#endif /* CONFIG_SUITEB192 */
#ifdef CONFIG_OWE
case WPA_KEY_MGMT_OWE:
wpa_printf(MSG_DEBUG,
"WPA: EAPOL-Key MIC using HMAC-SHA%u (AKM-defined - OWE)",
(unsigned int) key_len * 8 * 2);
if (key_len == 128 / 8) {
if (hmac_sha256(key, key_len, buf, len, hash))
return -1;
} else if (key_len == 192 / 8) {
if (hmac_sha384(key, key_len, buf, len, hash))
return -1;
} else if (key_len == 256 / 8) {
if (hmac_sha512(key, key_len, buf, len, hash))
return -1;
} else {
wpa_printf(MSG_INFO,
"OWE: Unsupported KCK length: %u",
(unsigned int) key_len);
return -1;
}
os_memcpy(mic, hash, key_len);
break;
#endif /* CONFIG_OWE */
#ifdef CONFIG_DPP
case WPA_KEY_MGMT_DPP:
wpa_printf(MSG_DEBUG,
"WPA: EAPOL-Key MIC using HMAC-SHA%u (AKM-defined - DPP)",
(unsigned int) key_len * 8 * 2);
if (key_len == 128 / 8) {
if (hmac_sha256(key, key_len, buf, len, hash))
return -1;
} else if (key_len == 192 / 8) {
if (hmac_sha384(key, key_len, buf, len, hash))
return -1;
} else if (key_len == 256 / 8) {
if (hmac_sha512(key, key_len, buf, len, hash))
return -1;
} else {
wpa_printf(MSG_INFO,
"DPP: Unsupported KCK length: %u",
(unsigned int) key_len);
return -1;
}
os_memcpy(mic, hash, key_len);
break;
#endif /* CONFIG_DPP */
#if defined(CONFIG_IEEE80211R) && defined(CONFIG_SHA384)
case WPA_KEY_MGMT_FT_IEEE8021X_SHA384:
wpa_printf(MSG_DEBUG,
"WPA: EAPOL-Key MIC using HMAC-SHA384 (AKM-defined - FT 802.1X SHA384)");
if (hmac_sha384(key, key_len, buf, len, hash))
return -1;
os_memcpy(mic, hash, 24);
break;
#endif /* CONFIG_IEEE80211R && CONFIG_SHA384 */
default:
wpa_printf(MSG_DEBUG,
"WPA: EAPOL-Key MIC algorithm not known (AKM-defined - akmp=0x%x)",
akmp);
return -1;
}
break;
default:
wpa_printf(MSG_DEBUG,
"WPA: EAPOL-Key MIC algorithm not known (ver=%d)",
ver);
return -1;
}
return 0;
}
/**
* wpa_pmk_to_ptk - Calculate PTK from PMK, addresses, and nonces
* @pmk: Pairwise master key
* @pmk_len: Length of PMK
* @label: Label to use in derivation
* @addr1: AA or SA
* @addr2: SA or AA
* @nonce1: ANonce or SNonce
* @nonce2: SNonce or ANonce
* @ptk: Buffer for pairwise transient key
* @akmp: Negotiated AKM
* @cipher: Negotiated pairwise cipher
* @kdk_len: The length in octets that should be derived for KDK
* Returns: 0 on success, -1 on failure
*
* IEEE Std 802.11i-2004 - 8.5.1.2 Pairwise key hierarchy
* PTK = PRF-X(PMK, "Pairwise key expansion",
* Min(AA, SA) || Max(AA, SA) ||
* Min(ANonce, SNonce) || Max(ANonce, SNonce)
* [ || Z.x ])
*
* The optional Z.x component is used only with DPP and that part is not defined
* in IEEE 802.11.
*/
int wpa_pmk_to_ptk(const u8 *pmk, size_t pmk_len, const char *label,
const u8 *addr1, const u8 *addr2,
const u8 *nonce1, const u8 *nonce2,
struct wpa_ptk *ptk, int akmp, int cipher,
const u8 *z, size_t z_len, size_t kdk_len)
{
#define MAX_Z_LEN 66 /* with NIST P-521 */
u8 data[2 * ETH_ALEN + 2 * WPA_NONCE_LEN + MAX_Z_LEN];
size_t data_len = 2 * ETH_ALEN + 2 * WPA_NONCE_LEN;
u8 tmp[WPA_KCK_MAX_LEN + WPA_KEK_MAX_LEN + WPA_TK_MAX_LEN +
WPA_KDK_MAX_LEN];
size_t ptk_len;
#ifdef CONFIG_OWE
int owe_ptk_workaround = 0;
if (akmp == (WPA_KEY_MGMT_OWE | WPA_KEY_MGMT_PSK_SHA256)) {
owe_ptk_workaround = 1;
akmp = WPA_KEY_MGMT_OWE;
}
#endif /* CONFIG_OWE */
if (pmk_len == 0) {
wpa_printf(MSG_ERROR, "WPA: No PMK set for PTK derivation");
return -1;
}
if (z_len > MAX_Z_LEN)
return -1;
if (os_memcmp(addr1, addr2, ETH_ALEN) < 0) {
os_memcpy(data, addr1, ETH_ALEN);
os_memcpy(data + ETH_ALEN, addr2, ETH_ALEN);
} else {
os_memcpy(data, addr2, ETH_ALEN);
os_memcpy(data + ETH_ALEN, addr1, ETH_ALEN);
}
if (os_memcmp(nonce1, nonce2, WPA_NONCE_LEN) < 0) {
os_memcpy(data + 2 * ETH_ALEN, nonce1, WPA_NONCE_LEN);
os_memcpy(data + 2 * ETH_ALEN + WPA_NONCE_LEN, nonce2,
WPA_NONCE_LEN);
} else {
os_memcpy(data + 2 * ETH_ALEN, nonce2, WPA_NONCE_LEN);
os_memcpy(data + 2 * ETH_ALEN + WPA_NONCE_LEN, nonce1,
WPA_NONCE_LEN);
}
if (z && z_len) {
os_memcpy(data + 2 * ETH_ALEN + 2 * WPA_NONCE_LEN, z, z_len);
data_len += z_len;
}
if (kdk_len > WPA_KDK_MAX_LEN) {
wpa_printf(MSG_ERROR,
"WPA: KDK len=%zu exceeds max supported len",
kdk_len);
return -1;
}
ptk->kck_len = wpa_kck_len(akmp, pmk_len);
ptk->kek_len = wpa_kek_len(akmp, pmk_len);
ptk->tk_len = wpa_cipher_key_len(cipher);
ptk->kdk_len = kdk_len;
if (ptk->tk_len == 0) {
wpa_printf(MSG_ERROR,
"WPA: Unsupported cipher (0x%x) used in PTK derivation",
cipher);
return -1;
}
ptk_len = ptk->kck_len + ptk->kek_len + ptk->tk_len + ptk->kdk_len;
if (wpa_key_mgmt_sha384(akmp)) {
#if defined(CONFIG_SUITEB192) || defined(CONFIG_FILS)
wpa_printf(MSG_DEBUG, "WPA: PTK derivation using PRF(SHA384)");
if (sha384_prf(pmk, pmk_len, label, data, data_len,
tmp, ptk_len) < 0)
return -1;
#else /* CONFIG_SUITEB192 || CONFIG_FILS */
return -1;
#endif /* CONFIG_SUITEB192 || CONFIG_FILS */
} else if (wpa_key_mgmt_sha256(akmp)) {
wpa_printf(MSG_DEBUG, "WPA: PTK derivation using PRF(SHA256)");
if (sha256_prf(pmk, pmk_len, label, data, data_len,
tmp, ptk_len) < 0)
return -1;
#ifdef CONFIG_OWE
} else if (akmp == WPA_KEY_MGMT_OWE && (pmk_len == 32 ||
owe_ptk_workaround)) {
wpa_printf(MSG_DEBUG, "WPA: PTK derivation using PRF(SHA256)");
if (sha256_prf(pmk, pmk_len, label, data, data_len,
tmp, ptk_len) < 0)
return -1;
} else if (akmp == WPA_KEY_MGMT_OWE && pmk_len == 48) {
wpa_printf(MSG_DEBUG, "WPA: PTK derivation using PRF(SHA384)");
if (sha384_prf(pmk, pmk_len, label, data, data_len,
tmp, ptk_len) < 0)
return -1;
} else if (akmp == WPA_KEY_MGMT_OWE && pmk_len == 64) {
wpa_printf(MSG_DEBUG, "WPA: PTK derivation using PRF(SHA512)");
if (sha512_prf(pmk, pmk_len, label, data, data_len,
tmp, ptk_len) < 0)
return -1;
} else if (akmp == WPA_KEY_MGMT_OWE) {
wpa_printf(MSG_INFO, "OWE: Unknown PMK length %u",
(unsigned int) pmk_len);
return -1;
#endif /* CONFIG_OWE */
#ifdef CONFIG_DPP
} else if (akmp == WPA_KEY_MGMT_DPP && pmk_len == 32) {
wpa_printf(MSG_DEBUG, "WPA: PTK derivation using PRF(SHA256)");
if (sha256_prf(pmk, pmk_len, label, data, data_len,
tmp, ptk_len) < 0)
return -1;
} else if (akmp == WPA_KEY_MGMT_DPP && pmk_len == 48) {
wpa_printf(MSG_DEBUG, "WPA: PTK derivation using PRF(SHA384)");
if (sha384_prf(pmk, pmk_len, label, data, data_len,
tmp, ptk_len) < 0)
return -1;
} else if (akmp == WPA_KEY_MGMT_DPP && pmk_len == 64) {
wpa_printf(MSG_DEBUG, "WPA: PTK derivation using PRF(SHA512)");
if (sha512_prf(pmk, pmk_len, label, data, data_len,
tmp, ptk_len) < 0)
return -1;
} else if (akmp == WPA_KEY_MGMT_DPP) {
wpa_printf(MSG_INFO, "DPP: Unknown PMK length %u",
(unsigned int) pmk_len);
return -1;
#endif /* CONFIG_DPP */
} else {
wpa_printf(MSG_DEBUG, "WPA: PTK derivation using PRF(SHA1)");
if (sha1_prf(pmk, pmk_len, label, data, data_len, tmp,
ptk_len) < 0)
return -1;
}
wpa_printf(MSG_DEBUG, "WPA: PTK derivation - A1=" MACSTR " A2=" MACSTR,
MAC2STR(addr1), MAC2STR(addr2));
wpa_hexdump(MSG_DEBUG, "WPA: Nonce1", nonce1, WPA_NONCE_LEN);
wpa_hexdump(MSG_DEBUG, "WPA: Nonce2", nonce2, WPA_NONCE_LEN);
if (z && z_len)
wpa_hexdump_key(MSG_DEBUG, "WPA: Z.x", z, z_len);
wpa_hexdump_key(MSG_DEBUG, "WPA: PMK", pmk, pmk_len);
wpa_hexdump_key(MSG_DEBUG, "WPA: PTK", tmp, ptk_len);
os_memcpy(ptk->kck, tmp, ptk->kck_len);
wpa_hexdump_key(MSG_DEBUG, "WPA: KCK", ptk->kck, ptk->kck_len);
os_memcpy(ptk->kek, tmp + ptk->kck_len, ptk->kek_len);
wpa_hexdump_key(MSG_DEBUG, "WPA: KEK", ptk->kek, ptk->kek_len);
os_memcpy(ptk->tk, tmp + ptk->kck_len + ptk->kek_len, ptk->tk_len);
wpa_hexdump_key(MSG_DEBUG, "WPA: TK", ptk->tk, ptk->tk_len);
if (kdk_len) {
os_memcpy(ptk->kdk, tmp + ptk->kck_len + ptk->kek_len +
ptk->tk_len, ptk->kdk_len);
wpa_hexdump_key(MSG_DEBUG, "WPA: KDK", ptk->kdk, ptk->kdk_len);
}
ptk->kek2_len = 0;
ptk->kck2_len = 0;
os_memset(tmp, 0, sizeof(tmp));
os_memset(data, 0, data_len);
return 0;
}
#ifdef CONFIG_FILS
int fils_rmsk_to_pmk(int akmp, const u8 *rmsk, size_t rmsk_len,
const u8 *snonce, const u8 *anonce, const u8 *dh_ss,
size_t dh_ss_len, u8 *pmk, size_t *pmk_len)
{
u8 nonces[2 * FILS_NONCE_LEN];
const u8 *addr[2];
size_t len[2];
size_t num_elem;
int res;
/* PMK = HMAC-Hash(SNonce || ANonce, rMSK [ || DHss ]) */
wpa_printf(MSG_DEBUG, "FILS: rMSK to PMK derivation");
if (wpa_key_mgmt_sha384(akmp))
*pmk_len = SHA384_MAC_LEN;
else if (wpa_key_mgmt_sha256(akmp))
*pmk_len = SHA256_MAC_LEN;
else
return -1;
wpa_hexdump_key(MSG_DEBUG, "FILS: rMSK", rmsk, rmsk_len);
wpa_hexdump(MSG_DEBUG, "FILS: SNonce", snonce, FILS_NONCE_LEN);
wpa_hexdump(MSG_DEBUG, "FILS: ANonce", anonce, FILS_NONCE_LEN);
wpa_hexdump(MSG_DEBUG, "FILS: DHss", dh_ss, dh_ss_len);
os_memcpy(nonces, snonce, FILS_NONCE_LEN);
os_memcpy(&nonces[FILS_NONCE_LEN], anonce, FILS_NONCE_LEN);
addr[0] = rmsk;
len[0] = rmsk_len;
num_elem = 1;
if (dh_ss) {
addr[1] = dh_ss;
len[1] = dh_ss_len;
num_elem++;
}
if (wpa_key_mgmt_sha384(akmp))
res = hmac_sha384_vector(nonces, 2 * FILS_NONCE_LEN, num_elem,
addr, len, pmk);
else
res = hmac_sha256_vector(nonces, 2 * FILS_NONCE_LEN, num_elem,
addr, len, pmk);
if (res == 0)
wpa_hexdump_key(MSG_DEBUG, "FILS: PMK", pmk, *pmk_len);
else
*pmk_len = 0;
return res;
}
int fils_pmkid_erp(int akmp, const u8 *reauth, size_t reauth_len,
u8 *pmkid)
{
const u8 *addr[1];
size_t len[1];
u8 hash[SHA384_MAC_LEN];
int res;
/* PMKID = Truncate-128(Hash(EAP-Initiate/Reauth)) */
addr[0] = reauth;
len[0] = reauth_len;
if (wpa_key_mgmt_sha384(akmp))
res = sha384_vector(1, addr, len, hash);
else if (wpa_key_mgmt_sha256(akmp))
res = sha256_vector(1, addr, len, hash);
else
return -1;
if (res)
return res;
os_memcpy(pmkid, hash, PMKID_LEN);
wpa_hexdump(MSG_DEBUG, "FILS: PMKID", pmkid, PMKID_LEN);
return 0;
}
int fils_pmk_to_ptk(const u8 *pmk, size_t pmk_len, const u8 *spa, const u8 *aa,
const u8 *snonce, const u8 *anonce, const u8 *dhss,
size_t dhss_len, struct wpa_ptk *ptk,
u8 *ick, size_t *ick_len, int akmp, int cipher,
u8 *fils_ft, size_t *fils_ft_len, size_t kdk_len)
{
u8 *data, *pos;
size_t data_len;
u8 tmp[FILS_ICK_MAX_LEN + WPA_KEK_MAX_LEN + WPA_TK_MAX_LEN +
FILS_FT_MAX_LEN + WPA_KDK_MAX_LEN];
size_t key_data_len;
const char *label = "FILS PTK Derivation";
int ret = -1;
size_t offset;
/*
* FILS-Key-Data = PRF-X(PMK, "FILS PTK Derivation",
* SPA || AA || SNonce || ANonce [ || DHss ])
* ICK = L(FILS-Key-Data, 0, ICK_bits)
* KEK = L(FILS-Key-Data, ICK_bits, KEK_bits)
* TK = L(FILS-Key-Data, ICK_bits + KEK_bits, TK_bits)
* If doing FT initial mobility domain association:
* FILS-FT = L(FILS-Key-Data, ICK_bits + KEK_bits + TK_bits,
* FILS-FT_bits)
* When a KDK is derived:
* KDK = L(FILS-Key-Data, ICK_bits + KEK_bits + TK_bits + FILS-FT_bits,
* KDK_bits)
*/
data_len = 2 * ETH_ALEN + 2 * FILS_NONCE_LEN + dhss_len;
data = os_malloc(data_len);
if (!data)
goto err;
pos = data;
os_memcpy(pos, spa, ETH_ALEN);
pos += ETH_ALEN;
os_memcpy(pos, aa, ETH_ALEN);
pos += ETH_ALEN;
os_memcpy(pos, snonce, FILS_NONCE_LEN);
pos += FILS_NONCE_LEN;
os_memcpy(pos, anonce, FILS_NONCE_LEN);
pos += FILS_NONCE_LEN;
if (dhss)
os_memcpy(pos, dhss, dhss_len);
ptk->kck_len = 0;
ptk->kek_len = wpa_kek_len(akmp, pmk_len);
ptk->tk_len = wpa_cipher_key_len(cipher);
if (wpa_key_mgmt_sha384(akmp))
*ick_len = 48;
else if (wpa_key_mgmt_sha256(akmp))
*ick_len = 32;
else
goto err;
key_data_len = *ick_len + ptk->kek_len + ptk->tk_len;
if (kdk_len) {
if (kdk_len > WPA_KDK_MAX_LEN) {
wpa_printf(MSG_ERROR, "FILS: KDK len=%zu too big",
kdk_len);
goto err;
}
ptk->kdk_len = kdk_len;
key_data_len += kdk_len;
} else {
ptk->kdk_len = 0;
}
if (fils_ft && fils_ft_len) {
if (akmp == WPA_KEY_MGMT_FT_FILS_SHA256) {
*fils_ft_len = 32;
} else if (akmp == WPA_KEY_MGMT_FT_FILS_SHA384) {
*fils_ft_len = 48;
} else {
*fils_ft_len = 0;
fils_ft = NULL;
}
key_data_len += *fils_ft_len;
}
if (wpa_key_mgmt_sha384(akmp)) {
wpa_printf(MSG_DEBUG, "FILS: PTK derivation using PRF(SHA384)");
if (sha384_prf(pmk, pmk_len, label, data, data_len,
tmp, key_data_len) < 0)
goto err;
} else {
wpa_printf(MSG_DEBUG, "FILS: PTK derivation using PRF(SHA256)");
if (sha256_prf(pmk, pmk_len, label, data, data_len,
tmp, key_data_len) < 0)
goto err;
}
wpa_printf(MSG_DEBUG, "FILS: PTK derivation - SPA=" MACSTR
" AA=" MACSTR, MAC2STR(spa), MAC2STR(aa));
wpa_hexdump(MSG_DEBUG, "FILS: SNonce", snonce, FILS_NONCE_LEN);
wpa_hexdump(MSG_DEBUG, "FILS: ANonce", anonce, FILS_NONCE_LEN);
if (dhss)
wpa_hexdump_key(MSG_DEBUG, "FILS: DHss", dhss, dhss_len);
wpa_hexdump_key(MSG_DEBUG, "FILS: PMK", pmk, pmk_len);
wpa_hexdump_key(MSG_DEBUG, "FILS: FILS-Key-Data", tmp, key_data_len);
os_memcpy(ick, tmp, *ick_len);
offset = *ick_len;
wpa_hexdump_key(MSG_DEBUG, "FILS: ICK", ick, *ick_len);
os_memcpy(ptk->kek, tmp + offset, ptk->kek_len);
wpa_hexdump_key(MSG_DEBUG, "FILS: KEK", ptk->kek, ptk->kek_len);
offset += ptk->kek_len;
os_memcpy(ptk->tk, tmp + offset, ptk->tk_len);
wpa_hexdump_key(MSG_DEBUG, "FILS: TK", ptk->tk, ptk->tk_len);
offset += ptk->tk_len;
if (fils_ft && fils_ft_len) {
os_memcpy(fils_ft, tmp + offset, *fils_ft_len);
wpa_hexdump_key(MSG_DEBUG, "FILS: FILS-FT",
fils_ft, *fils_ft_len);
offset += *fils_ft_len;
}
if (ptk->kdk_len) {
os_memcpy(ptk->kdk, tmp + offset, ptk->kdk_len);
wpa_hexdump_key(MSG_DEBUG, "FILS: KDK", ptk->kdk, ptk->kdk_len);
}
ptk->kek2_len = 0;
ptk->kck2_len = 0;
os_memset(tmp, 0, sizeof(tmp));
ret = 0;
err:
bin_clear_free(data, data_len);
return ret;
}
int fils_key_auth_sk(const u8 *ick, size_t ick_len, const u8 *snonce,
const u8 *anonce, const u8 *sta_addr, const u8 *bssid,
const u8 *g_sta, size_t g_sta_len,
const u8 *g_ap, size_t g_ap_len,
int akmp, u8 *key_auth_sta, u8 *key_auth_ap,
size_t *key_auth_len)
{
const u8 *addr[6];
size_t len[6];
size_t num_elem = 4;
int res;
wpa_printf(MSG_DEBUG, "FILS: Key-Auth derivation: STA-MAC=" MACSTR
" AP-BSSID=" MACSTR, MAC2STR(sta_addr), MAC2STR(bssid));
wpa_hexdump_key(MSG_DEBUG, "FILS: ICK", ick, ick_len);
wpa_hexdump(MSG_DEBUG, "FILS: SNonce", snonce, FILS_NONCE_LEN);
wpa_hexdump(MSG_DEBUG, "FILS: ANonce", anonce, FILS_NONCE_LEN);
wpa_hexdump(MSG_DEBUG, "FILS: gSTA", g_sta, g_sta_len);
wpa_hexdump(MSG_DEBUG, "FILS: gAP", g_ap, g_ap_len);
/*
* For (Re)Association Request frame (STA->AP):
* Key-Auth = HMAC-Hash(ICK, SNonce || ANonce || STA-MAC || AP-BSSID
* [ || gSTA || gAP ])
*/
addr[0] = snonce;
len[0] = FILS_NONCE_LEN;
addr[1] = anonce;
len[1] = FILS_NONCE_LEN;
addr[2] = sta_addr;
len[2] = ETH_ALEN;
addr[3] = bssid;
len[3] = ETH_ALEN;
if (g_sta && g_sta_len && g_ap && g_ap_len) {
addr[4] = g_sta;
len[4] = g_sta_len;
addr[5] = g_ap;
len[5] = g_ap_len;
num_elem = 6;
}
if (wpa_key_mgmt_sha384(akmp)) {
*key_auth_len = 48;
res = hmac_sha384_vector(ick, ick_len, num_elem, addr, len,
key_auth_sta);
} else if (wpa_key_mgmt_sha256(akmp)) {
*key_auth_len = 32;
res = hmac_sha256_vector(ick, ick_len, num_elem, addr, len,
key_auth_sta);
} else {
return -1;
}
if (res < 0)
return res;
/*
* For (Re)Association Response frame (AP->STA):
* Key-Auth = HMAC-Hash(ICK, ANonce || SNonce || AP-BSSID || STA-MAC
* [ || gAP || gSTA ])
*/
addr[0] = anonce;
addr[1] = snonce;
addr[2] = bssid;
addr[3] = sta_addr;
if (g_sta && g_sta_len && g_ap && g_ap_len) {
addr[4] = g_ap;
len[4] = g_ap_len;
addr[5] = g_sta;
len[5] = g_sta_len;
}
if (wpa_key_mgmt_sha384(akmp))
res = hmac_sha384_vector(ick, ick_len, num_elem, addr, len,
key_auth_ap);
else if (wpa_key_mgmt_sha256(akmp))
res = hmac_sha256_vector(ick, ick_len, num_elem, addr, len,
key_auth_ap);
if (res < 0)
return res;
wpa_hexdump(MSG_DEBUG, "FILS: Key-Auth (STA)",
key_auth_sta, *key_auth_len);
wpa_hexdump(MSG_DEBUG, "FILS: Key-Auth (AP)",
key_auth_ap, *key_auth_len);
return 0;
}
#endif /* CONFIG_FILS */
#ifdef CONFIG_IEEE80211R
int wpa_ft_mic(const u8 *kck, size_t kck_len, const u8 *sta_addr,
const u8 *ap_addr, u8 transaction_seqnum,
const u8 *mdie, size_t mdie_len,
const u8 *ftie, size_t ftie_len,
const u8 *rsnie, size_t rsnie_len,
const u8 *ric, size_t ric_len,
const u8 *rsnxe, size_t rsnxe_len,
u8 *mic)
{
const u8 *addr[10];
size_t len[10];
size_t i, num_elem = 0;
u8 zero_mic[24];
size_t mic_len, fte_fixed_len;
if (kck_len == 16) {
mic_len = 16;
#ifdef CONFIG_SHA384
} else if (kck_len == 24) {
mic_len = 24;
#endif /* CONFIG_SHA384 */
} else {
wpa_printf(MSG_WARNING, "FT: Unsupported KCK length %u",
(unsigned int) kck_len);
return -1;
}
fte_fixed_len = sizeof(struct rsn_ftie) - 16 + mic_len;
addr[num_elem] = sta_addr;
len[num_elem] = ETH_ALEN;
num_elem++;
addr[num_elem] = ap_addr;
len[num_elem] = ETH_ALEN;
num_elem++;
addr[num_elem] = &transaction_seqnum;
len[num_elem] = 1;
num_elem++;
if (rsnie) {
addr[num_elem] = rsnie;
len[num_elem] = rsnie_len;
num_elem++;
}
if (mdie) {
addr[num_elem] = mdie;
len[num_elem] = mdie_len;
num_elem++;
}
if (ftie) {
if (ftie_len < 2 + fte_fixed_len)
return -1;
/* IE hdr and mic_control */
addr[num_elem] = ftie;
len[num_elem] = 2 + 2;
num_elem++;
/* MIC field with all zeros */
os_memset(zero_mic, 0, mic_len);
addr[num_elem] = zero_mic;
len[num_elem] = mic_len;
num_elem++;
/* Rest of FTIE */
addr[num_elem] = ftie + 2 + 2 + mic_len;
len[num_elem] = ftie_len - (2 + 2 + mic_len);
num_elem++;
}
if (ric) {
addr[num_elem] = ric;
len[num_elem] = ric_len;
num_elem++;
}
if (rsnxe) {
addr[num_elem] = rsnxe;
len[num_elem] = rsnxe_len;
num_elem++;
}
for (i = 0; i < num_elem; i++)
wpa_hexdump(MSG_MSGDUMP, "FT: MIC data", addr[i], len[i]);
#ifdef CONFIG_SHA384
if (kck_len == 24) {
u8 hash[SHA384_MAC_LEN];
if (hmac_sha384_vector(kck, kck_len, num_elem, addr, len, hash))
return -1;
os_memcpy(mic, hash, 24);
}
#endif /* CONFIG_SHA384 */
if (kck_len == 16 &&
omac1_aes_128_vector(kck, num_elem, addr, len, mic))
return -1;
return 0;
}
static int wpa_ft_parse_ftie(const u8 *ie, size_t ie_len,
struct wpa_ft_ies *parse, int use_sha384)
{
const u8 *end, *pos;
parse->ftie = ie;
parse->ftie_len = ie_len;
pos = ie + (use_sha384 ? sizeof(struct rsn_ftie_sha384) :
sizeof(struct rsn_ftie));
end = ie + ie_len;
wpa_hexdump(MSG_DEBUG, "FT: Parse FTE subelements", pos, end - pos);
while (end - pos >= 2) {
u8 id, len;
id = *pos++;
len = *pos++;
if (len > end - pos) {
wpa_printf(MSG_DEBUG, "FT: Truncated subelement");
break;
}
switch (id) {
case FTIE_SUBELEM_R1KH_ID:
if (len != FT_R1KH_ID_LEN) {
wpa_printf(MSG_DEBUG,
"FT: Invalid R1KH-ID length in FTIE: %d",
len);
return -1;
}
parse->r1kh_id = pos;
break;
case FTIE_SUBELEM_GTK:
parse->gtk = pos;
parse->gtk_len = len;
break;
case FTIE_SUBELEM_R0KH_ID:
if (len < 1 || len > FT_R0KH_ID_MAX_LEN) {
wpa_printf(MSG_DEBUG,
"FT: Invalid R0KH-ID length in FTIE: %d",
len);
return -1;
}
parse->r0kh_id = pos;
parse->r0kh_id_len = len;
break;
case FTIE_SUBELEM_IGTK:
parse->igtk = pos;
parse->igtk_len = len;
break;
#ifdef CONFIG_OCV
case FTIE_SUBELEM_OCI:
parse->oci = pos;
parse->oci_len = len;
break;
#endif /* CONFIG_OCV */
case FTIE_SUBELEM_BIGTK:
parse->bigtk = pos;
parse->bigtk_len = len;
break;
default:
wpa_printf(MSG_DEBUG, "FT: Unknown subelem id %u", id);
break;
}
pos += len;
}
return 0;
}
int wpa_ft_parse_ies(const u8 *ies, size_t ies_len,
struct wpa_ft_ies *parse, int use_sha384)
{
const u8 *end, *pos;
struct wpa_ie_data data;
int ret;
const struct rsn_ftie *ftie;
int prot_ie_count = 0;
int update_use_sha384 = 0;
if (use_sha384 < 0) {
use_sha384 = 0;
update_use_sha384 = 1;
}
os_memset(parse, 0, sizeof(*parse));
if (ies == NULL)
return 0;
pos = ies;
end = ies + ies_len;
while (end - pos >= 2) {
u8 id, len;
id = *pos++;
len = *pos++;
if (len > end - pos)
break;
switch (id) {
case WLAN_EID_RSN:
wpa_hexdump(MSG_DEBUG, "FT: RSNE", pos, len);
parse->rsn = pos;
parse->rsn_len = len;
ret = wpa_parse_wpa_ie_rsn(parse->rsn - 2,
parse->rsn_len + 2,
&data);
if (ret < 0) {
wpa_printf(MSG_DEBUG, "FT: Failed to parse "
"RSN IE: %d", ret);
return -1;
}
parse->rsn_capab = data.capabilities;
if (data.num_pmkid == 1 && data.pmkid)
parse->rsn_pmkid = data.pmkid;
parse->key_mgmt = data.key_mgmt;
parse->pairwise_cipher = data.pairwise_cipher;
if (update_use_sha384) {
use_sha384 =
wpa_key_mgmt_sha384(parse->key_mgmt);
update_use_sha384 = 0;
}
break;
case WLAN_EID_RSNX:
wpa_hexdump(MSG_DEBUG, "FT: RSNXE", pos, len);
if (len < 1)
break;
parse->rsnxe = pos;
parse->rsnxe_len = len;
break;
case WLAN_EID_MOBILITY_DOMAIN:
wpa_hexdump(MSG_DEBUG, "FT: MDE", pos, len);
if (len < sizeof(struct rsn_mdie))
return -1;
parse->mdie = pos;
parse->mdie_len = len;
break;
case WLAN_EID_FAST_BSS_TRANSITION:
wpa_hexdump(MSG_DEBUG, "FT: FTE", pos, len);
if (use_sha384) {
const struct rsn_ftie_sha384 *ftie_sha384;
if (len < sizeof(*ftie_sha384))
return -1;
ftie_sha384 =
(const struct rsn_ftie_sha384 *) pos;
wpa_hexdump(MSG_DEBUG, "FT: FTE-MIC Control",
ftie_sha384->mic_control, 2);
wpa_hexdump(MSG_DEBUG, "FT: FTE-MIC",
ftie_sha384->mic,
sizeof(ftie_sha384->mic));
parse->fte_anonce = ftie_sha384->anonce;
wpa_hexdump(MSG_DEBUG, "FT: FTE-ANonce",
ftie_sha384->anonce,
WPA_NONCE_LEN);
parse->fte_snonce = ftie_sha384->snonce;
wpa_hexdump(MSG_DEBUG, "FT: FTE-SNonce",
ftie_sha384->snonce,
WPA_NONCE_LEN);
prot_ie_count = ftie_sha384->mic_control[1];
if (wpa_ft_parse_ftie(pos, len, parse, 1) < 0)
return -1;
break;
}
if (len < sizeof(*ftie))
return -1;
ftie = (const struct rsn_ftie *) pos;
wpa_hexdump(MSG_DEBUG, "FT: FTE-MIC Control",
ftie->mic_control, 2);
wpa_hexdump(MSG_DEBUG, "FT: FTE-MIC",
ftie->mic, sizeof(ftie->mic));
parse->fte_anonce = ftie->anonce;
wpa_hexdump(MSG_DEBUG, "FT: FTE-ANonce",
ftie->anonce, WPA_NONCE_LEN);
parse->fte_snonce = ftie->snonce;
wpa_hexdump(MSG_DEBUG, "FT: FTE-SNonce",
ftie->snonce, WPA_NONCE_LEN);
prot_ie_count = ftie->mic_control[1];
if (wpa_ft_parse_ftie(pos, len, parse, 0) < 0)
return -1;
break;
case WLAN_EID_TIMEOUT_INTERVAL:
wpa_hexdump(MSG_DEBUG, "FT: Timeout Interval",
pos, len);
if (len != 5)
break;
parse->tie = pos;
parse->tie_len = len;
break;
case WLAN_EID_RIC_DATA:
if (parse->ric == NULL)
parse->ric = pos - 2;
break;
}
pos += len;
}
if (prot_ie_count == 0)
return 0; /* no MIC */
/*
* Check that the protected IE count matches with IEs included in the
* frame.
*/
if (parse->rsn)
prot_ie_count--;
if (parse->mdie)
prot_ie_count--;
if (parse->ftie)
prot_ie_count--;
if (parse->rsnxe)
prot_ie_count--;
if (prot_ie_count < 0) {
wpa_printf(MSG_DEBUG, "FT: Some required IEs not included in "
"the protected IE count");
return -1;
}
if (prot_ie_count == 0 && parse->ric) {
wpa_printf(MSG_DEBUG, "FT: RIC IE(s) in the frame, but not "
"included in protected IE count");
return -1;
}
/* Determine the end of the RIC IE(s) */
if (parse->ric) {
pos = parse->ric;
while (end - pos >= 2 && 2 + pos[1] <= end - pos &&
prot_ie_count) {
prot_ie_count--;
pos += 2 + pos[1];
}
parse->ric_len = pos - parse->ric;
}
if (prot_ie_count) {
wpa_printf(MSG_DEBUG, "FT: %d protected IEs missing from "
"frame", (int) prot_ie_count);
return -1;
}
return 0;
}
#endif /* CONFIG_IEEE80211R */
#ifdef CONFIG_PASN
/*
* pasn_use_sha384 - Should SHA384 be used or SHA256
*
* @akmp: Authentication and key management protocol
* @cipher: The cipher suite
*
* According to IEEE P802.11az/D2.7, 12.12.7, the hash algorithm to use is the
* hash algorithm defined for the Base AKM (see Table 9-151 (AKM suite
* selectors)). When there is no Base AKM, the hash algorithm is selected based
* on the pairwise cipher suite provided in the RSNE by the AP in the second
* PASN frame. SHA-256 is used as the hash algorithm, except for the ciphers
* 00-0F-AC:9 and 00-0F-AC:10 for which SHA-384 is used.
*/
static bool pasn_use_sha384(int akmp, int cipher)
{
return (akmp == WPA_KEY_MGMT_PASN && (cipher == WPA_CIPHER_CCMP_256 ||
cipher == WPA_CIPHER_GCMP_256)) ||
wpa_key_mgmt_sha384(akmp);
}
/**
* pasn_pmk_to_ptk - Calculate PASN PTK from PMK, addresses, etc.
* @pmk: Pairwise master key
* @pmk_len: Length of PMK
* @spa: Suppplicant address
* @bssid: AP BSSID
* @dhss: Is the shared secret (DHss) derived from the PASN ephemeral key
* exchange encoded as an octet string
* @dhss_len: The length of dhss in octets
* @ptk: Buffer for pairwise transient key
* @akmp: Negotiated AKM
* @cipher: Negotiated pairwise cipher
* @kdk_len: the length in octets that should be derived for HTLK. Can be zero.
* Returns: 0 on success, -1 on failure
*/
int pasn_pmk_to_ptk(const u8 *pmk, size_t pmk_len,
const u8 *spa, const u8 *bssid,
const u8 *dhss, size_t dhss_len,
struct wpa_ptk *ptk, int akmp, int cipher,
size_t kdk_len)
{
u8 tmp[WPA_KCK_MAX_LEN + WPA_TK_MAX_LEN + WPA_KDK_MAX_LEN];
u8 *data;
size_t data_len, ptk_len;
int ret = -1;
const char *label = "PASN PTK Derivation";
if (!pmk || !pmk_len) {
wpa_printf(MSG_ERROR, "PASN: No PMK set for PTK derivation");
return -1;
}
if (!dhss || !dhss_len) {
wpa_printf(MSG_ERROR, "PASN: No DHss set for PTK derivation");
return -1;
}
/*
* PASN-PTK = KDF(PMK, “PASN PTK Derivation”, SPA || BSSID || DHss)
*
* KCK = L(PASN-PTK, 0, 256)
* TK = L(PASN-PTK, 256, TK_bits)
* KDK = L(PASN-PTK, 256 + TK_bits, kdk_len * 8)
*/
data_len = 2 * ETH_ALEN + dhss_len;
data = os_zalloc(data_len);
if (!data)
return -1;
os_memcpy(data, spa, ETH_ALEN);
os_memcpy(data + ETH_ALEN, bssid, ETH_ALEN);
os_memcpy(data + 2 * ETH_ALEN, dhss, dhss_len);
ptk->kck_len = WPA_PASN_KCK_LEN;
ptk->tk_len = wpa_cipher_key_len(cipher);
ptk->kdk_len = kdk_len;
ptk->kek_len = 0;
ptk->kek2_len = 0;
ptk->kck2_len = 0;
if (ptk->tk_len == 0) {
wpa_printf(MSG_ERROR,
"PASN: Unsupported cipher (0x%x) used in PTK derivation",
cipher);
goto err;
}
ptk_len = ptk->kck_len + ptk->tk_len + ptk->kdk_len;
if (ptk_len > sizeof(tmp))
goto err;
if (pasn_use_sha384(akmp, cipher)) {
wpa_printf(MSG_DEBUG, "PASN: PTK derivation using SHA384");
if (sha384_prf(pmk, pmk_len, label, data, data_len, tmp,
ptk_len) < 0)
goto err;
} else {
wpa_printf(MSG_DEBUG, "PASN: PTK derivation using SHA256");
if (sha256_prf(pmk, pmk_len, label, data, data_len, tmp,
ptk_len) < 0)
goto err;
}
wpa_printf(MSG_DEBUG,
"PASN: PTK derivation: SPA=" MACSTR " BSSID=" MACSTR,
MAC2STR(spa), MAC2STR(bssid));
wpa_hexdump_key(MSG_DEBUG, "PASN: DHss", dhss, dhss_len);
wpa_hexdump_key(MSG_DEBUG, "PASN: PMK", pmk, pmk_len);
wpa_hexdump_key(MSG_DEBUG, "PASN: PASN-PTK", tmp, ptk_len);
os_memcpy(ptk->kck, tmp, WPA_PASN_KCK_LEN);
wpa_hexdump_key(MSG_DEBUG, "PASN: KCK:", ptk->kck, WPA_PASN_KCK_LEN);
os_memcpy(ptk->tk, tmp + WPA_PASN_KCK_LEN, ptk->tk_len);
wpa_hexdump_key(MSG_DEBUG, "PASN: TK:", ptk->tk, ptk->tk_len);
if (kdk_len) {
os_memcpy(ptk->kdk, tmp + WPA_PASN_KCK_LEN + ptk->tk_len,
ptk->kdk_len);
wpa_hexdump_key(MSG_DEBUG, "PASN: KDK:",
ptk->kdk, ptk->kdk_len);
}
forced_memzero(tmp, sizeof(tmp));
ret = 0;
err:
bin_clear_free(data, data_len);
return ret;
}
/*
* pasn_mic_len - Returns the MIC length for PASN authentication
*/
u8 pasn_mic_len(int akmp, int cipher)
{
if (pasn_use_sha384(akmp, cipher))
return 24;
return 16;
}
/**
* pasn_mic - Calculate PASN MIC
* @kck: The key confirmation key for the PASN PTKSA
* @akmp: Negotiated AKM
* @cipher: Negotiated pairwise cipher
* @addr1: For the 2nd PASN frame supplicant address; for the 3rd frame the
* BSSID
* @addr2: For the 2nd PASN frame the BSSID; for the 3rd frame the supplicant
* address
* @data: For calculating the MIC for the 2nd PASN frame, this should hold the
* Beacon frame RSNE + RSNXE. For calculating the MIC for the 3rd PASN
* frame, this should hold the hash of the body of the PASN 1st frame.
* @data_len: The length of data
* @frame: The body of the PASN frame including the MIC element with the octets
* in the MIC field of the MIC element set to 0.
* @frame_len: The length of frame
* @mic: Buffer to hold the MIC on success. Should be big enough to handle the
* maximal MIC length
* Returns: 0 on success, -1 on failure
*/
int pasn_mic(const u8 *kck, int akmp, int cipher,
const u8 *addr1, const u8 *addr2,
const u8 *data, size_t data_len,
const u8 *frame, size_t frame_len, u8 *mic)
{
u8 *buf;
u8 hash[SHA384_MAC_LEN];
size_t buf_len = 2 * ETH_ALEN + data_len + frame_len;
int ret = -1;
if (!kck) {
wpa_printf(MSG_ERROR, "PASN: No KCK for MIC calculation");
return -1;
}
if (!data || !data_len) {
wpa_printf(MSG_ERROR, "PASN: invalid data for MIC calculation");
return -1;
}
if (!frame || !frame_len) {
wpa_printf(MSG_ERROR, "PASN: invalid data for MIC calculation");
return -1;
}
buf = os_zalloc(buf_len);
if (!buf)
return -1;
os_memcpy(buf, addr1, ETH_ALEN);
os_memcpy(buf + ETH_ALEN, addr2, ETH_ALEN);
wpa_hexdump_key(MSG_DEBUG, "PASN: MIC: data", data, data_len);
os_memcpy(buf + 2 * ETH_ALEN, data, data_len);
wpa_hexdump_key(MSG_DEBUG, "PASN: MIC: frame", frame, frame_len);
os_memcpy(buf + 2 * ETH_ALEN + data_len, frame, frame_len);
wpa_hexdump_key(MSG_DEBUG, "PASN: MIC: KCK", kck, WPA_PASN_KCK_LEN);
wpa_hexdump_key(MSG_DEBUG, "PASN: MIC: buf", buf, buf_len);
if (pasn_use_sha384(akmp, cipher)) {
wpa_printf(MSG_DEBUG, "PASN: MIC using HMAC-SHA384");
if (hmac_sha384(kck, WPA_PASN_KCK_LEN, buf, buf_len, hash))
goto err;
os_memcpy(mic, hash, 24);
wpa_hexdump_key(MSG_DEBUG, "PASN: MIC: mic: ", mic, 24);
} else {
wpa_printf(MSG_DEBUG, "PASN: MIC using HMAC-SHA256");
if (hmac_sha256(kck, WPA_PASN_KCK_LEN, buf, buf_len, hash))
goto err;
os_memcpy(mic, hash, 16);
wpa_hexdump_key(MSG_DEBUG, "PASN: MIC: mic: ", mic, 16);
}
ret = 0;
err:
bin_clear_free(buf, buf_len);
return ret;
}
/**
* pasn_auth_frame_hash - Computes a hash of an Authentication frame body
* @akmp: Negotiated AKM
* @cipher: Negotiated pairwise cipher
* @data: Pointer to the Authentication frame body
* @len: Length of the Authentication frame body
* @hash: On return would hold the computed hash. Should be big enough to handle
* SHA384.
* Returns: 0 on success, -1 on failure
*/
int pasn_auth_frame_hash(int akmp, int cipher, const u8 *data, size_t len,
u8 *hash)
{
if (pasn_use_sha384(akmp, cipher)) {
wpa_printf(MSG_DEBUG, "PASN: Frame hash using SHA-384");
return sha384_vector(1, &data, &len, hash);
} else {
wpa_printf(MSG_DEBUG, "PASN: Frame hash using SHA-256");
return sha256_vector(1, &data, &len, hash);
}
}
#endif /* CONFIG_PASN */
static int rsn_selector_to_bitfield(const u8 *s)
{
if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_NONE)
return WPA_CIPHER_NONE;
if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_TKIP)
return WPA_CIPHER_TKIP;
if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_CCMP)
return WPA_CIPHER_CCMP;
if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_AES_128_CMAC)
return WPA_CIPHER_AES_128_CMAC;
if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_GCMP)
return WPA_CIPHER_GCMP;
if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_CCMP_256)
return WPA_CIPHER_CCMP_256;
if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_GCMP_256)
return WPA_CIPHER_GCMP_256;
if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_BIP_GMAC_128)
return WPA_CIPHER_BIP_GMAC_128;
if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_BIP_GMAC_256)
return WPA_CIPHER_BIP_GMAC_256;
if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_BIP_CMAC_256)
return WPA_CIPHER_BIP_CMAC_256;
if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_NO_GROUP_ADDRESSED)
return WPA_CIPHER_GTK_NOT_USED;
return 0;
}
static int rsn_key_mgmt_to_bitfield(const u8 *s)
{
if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_UNSPEC_802_1X)
return WPA_KEY_MGMT_IEEE8021X;
if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X)
return WPA_KEY_MGMT_PSK;
#ifdef CONFIG_IEEE80211R
if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_FT_802_1X)
return WPA_KEY_MGMT_FT_IEEE8021X;
if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_FT_PSK)
return WPA_KEY_MGMT_FT_PSK;
#ifdef CONFIG_SHA384
if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_FT_802_1X_SHA384)
return WPA_KEY_MGMT_FT_IEEE8021X_SHA384;
#endif /* CONFIG_SHA384 */
#endif /* CONFIG_IEEE80211R */
if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_802_1X_SHA256)
return WPA_KEY_MGMT_IEEE8021X_SHA256;
if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_PSK_SHA256)
return WPA_KEY_MGMT_PSK_SHA256;
#ifdef CONFIG_SAE
if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_SAE)
return WPA_KEY_MGMT_SAE;
if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_FT_SAE)
return WPA_KEY_MGMT_FT_SAE;
#endif /* CONFIG_SAE */
if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_802_1X_SUITE_B)
return WPA_KEY_MGMT_IEEE8021X_SUITE_B;
if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_802_1X_SUITE_B_192)
return WPA_KEY_MGMT_IEEE8021X_SUITE_B_192;
if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_FILS_SHA256)
return WPA_KEY_MGMT_FILS_SHA256;
if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_FILS_SHA384)
return WPA_KEY_MGMT_FILS_SHA384;
if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_FT_FILS_SHA256)
return WPA_KEY_MGMT_FT_FILS_SHA256;
if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_FT_FILS_SHA384)
return WPA_KEY_MGMT_FT_FILS_SHA384;
#ifdef CONFIG_OWE
if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_OWE)
return WPA_KEY_MGMT_OWE;
#endif /* CONFIG_OWE */
#ifdef CONFIG_DPP
if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_DPP)
return WPA_KEY_MGMT_DPP;
#endif /* CONFIG_DPP */
if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_OSEN)
return WPA_KEY_MGMT_OSEN;
#ifdef CONFIG_PASN
if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_PASN)
return WPA_KEY_MGMT_PASN;
#endif /* CONFIG_PASN */
return 0;
}
int wpa_cipher_valid_group(int cipher)
{
return wpa_cipher_valid_pairwise(cipher) ||
cipher == WPA_CIPHER_GTK_NOT_USED;
}
int wpa_cipher_valid_mgmt_group(int cipher)
{
return cipher == WPA_CIPHER_GTK_NOT_USED ||
cipher == WPA_CIPHER_AES_128_CMAC ||
cipher == WPA_CIPHER_BIP_GMAC_128 ||
cipher == WPA_CIPHER_BIP_GMAC_256 ||
cipher == WPA_CIPHER_BIP_CMAC_256;
}
/**
* wpa_parse_wpa_ie_rsn - Parse RSN IE
* @rsn_ie: Buffer containing RSN IE
* @rsn_ie_len: RSN IE buffer length (including IE number and length octets)
* @data: Pointer to structure that will be filled in with parsed data
* Returns: 0 on success, <0 on failure
*/
int wpa_parse_wpa_ie_rsn(const u8 *rsn_ie, size_t rsn_ie_len,
struct wpa_ie_data *data)
{
const u8 *pos;
int left;
int i, count;
os_memset(data, 0, sizeof(*data));
data->proto = WPA_PROTO_RSN;
data->pairwise_cipher = WPA_CIPHER_CCMP;
data->group_cipher = WPA_CIPHER_CCMP;
data->key_mgmt = WPA_KEY_MGMT_IEEE8021X;
data->capabilities = 0;
data->pmkid = NULL;
data->num_pmkid = 0;
data->mgmt_group_cipher = WPA_CIPHER_AES_128_CMAC;
if (rsn_ie_len == 0) {
/* No RSN IE - fail silently */
return -1;
}
if (rsn_ie_len < sizeof(struct rsn_ie_hdr)) {
wpa_printf(MSG_DEBUG, "%s: ie len too short %lu",
__func__, (unsigned long) rsn_ie_len);
return -1;
}
if (rsn_ie_len >= 6 && rsn_ie[1] >= 4 &&
rsn_ie[1] == rsn_ie_len - 2 &&
WPA_GET_BE32(&rsn_ie[2]) == OSEN_IE_VENDOR_TYPE) {
pos = rsn_ie + 6;
left = rsn_ie_len - 6;
data->group_cipher = WPA_CIPHER_GTK_NOT_USED;
data->has_group = 1;
data->key_mgmt = WPA_KEY_MGMT_OSEN;
data->proto = WPA_PROTO_OSEN;
} else {
const struct rsn_ie_hdr *hdr;
hdr = (const struct rsn_ie_hdr *) rsn_ie;
if (hdr->elem_id != WLAN_EID_RSN ||
hdr->len != rsn_ie_len - 2 ||
WPA_GET_LE16(hdr->version) != RSN_VERSION) {
wpa_printf(MSG_DEBUG, "%s: malformed ie or unknown version",
__func__);
return -2;
}
pos = (const u8 *) (hdr + 1);
left = rsn_ie_len - sizeof(*hdr);
}
if (left >= RSN_SELECTOR_LEN) {
data->group_cipher = rsn_selector_to_bitfield(pos);
data->has_group = 1;
if (!wpa_cipher_valid_group(data->group_cipher)) {
wpa_printf(MSG_DEBUG,
"%s: invalid group cipher 0x%x (%08x)",
__func__, data->group_cipher,
WPA_GET_BE32(pos));
return -1;
}
pos += RSN_SELECTOR_LEN;
left -= RSN_SELECTOR_LEN;
} else if (left > 0) {
wpa_printf(MSG_DEBUG, "%s: ie length mismatch, %u too much",
__func__, left);
return -3;
}
if (left >= 2) {
data->pairwise_cipher = 0;
count = WPA_GET_LE16(pos);
pos += 2;
left -= 2;
if (count == 0 || count > left / RSN_SELECTOR_LEN) {
wpa_printf(MSG_DEBUG, "%s: ie count botch (pairwise), "
"count %u left %u", __func__, count, left);
return -4;
}
if (count)
data->has_pairwise = 1;
for (i = 0; i < count; i++) {
data->pairwise_cipher |= rsn_selector_to_bitfield(pos);
pos += RSN_SELECTOR_LEN;
left -= RSN_SELECTOR_LEN;
}
if (data->pairwise_cipher & WPA_CIPHER_AES_128_CMAC) {
wpa_printf(MSG_DEBUG, "%s: AES-128-CMAC used as "
"pairwise cipher", __func__);
return -1;
}
} else if (left == 1) {
wpa_printf(MSG_DEBUG, "%s: ie too short (for key mgmt)",
__func__);
return -5;
}
if (left >= 2) {
data->key_mgmt = 0;
count = WPA_GET_LE16(pos);
pos += 2;
left -= 2;
if (count == 0 || count > left / RSN_SELECTOR_LEN) {
wpa_printf(MSG_DEBUG, "%s: ie count botch (key mgmt), "
"count %u left %u", __func__, count, left);
return -6;
}
for (i = 0; i < count; i++) {
data->key_mgmt |= rsn_key_mgmt_to_bitfield(pos);
pos += RSN_SELECTOR_LEN;
left -= RSN_SELECTOR_LEN;
}
} else if (left == 1) {
wpa_printf(MSG_DEBUG, "%s: ie too short (for capabilities)",
__func__);
return -7;
}
if (left >= 2) {
data->capabilities = WPA_GET_LE16(pos);
pos += 2;
left -= 2;
}
if (left >= 2) {
u16 num_pmkid = WPA_GET_LE16(pos);
pos += 2;
left -= 2;
if (num_pmkid > (unsigned int) left / PMKID_LEN) {
wpa_printf(MSG_DEBUG, "%s: PMKID underflow "
"(num_pmkid=%u left=%d)",
__func__, num_pmkid, left);
data->num_pmkid = 0;
return -9;
} else {
data->num_pmkid = num_pmkid;
data->pmkid = pos;
pos += data->num_pmkid * PMKID_LEN;
left -= data->num_pmkid * PMKID_LEN;
}
}
if (left >= 4) {
data->mgmt_group_cipher = rsn_selector_to_bitfield(pos);
if (!wpa_cipher_valid_mgmt_group(data->mgmt_group_cipher)) {
wpa_printf(MSG_DEBUG,
"%s: Unsupported management group cipher 0x%x (%08x)",
__func__, data->mgmt_group_cipher,
WPA_GET_BE32(pos));
return -10;
}
pos += RSN_SELECTOR_LEN;
left -= RSN_SELECTOR_LEN;
}
if (left > 0) {
wpa_hexdump(MSG_DEBUG,
"wpa_parse_wpa_ie_rsn: ignore trailing bytes",
pos, left);
}
return 0;
}
static int wpa_selector_to_bitfield(const u8 *s)
{
if (RSN_SELECTOR_GET(s) == WPA_CIPHER_SUITE_NONE)
return WPA_CIPHER_NONE;
if (RSN_SELECTOR_GET(s) == WPA_CIPHER_SUITE_TKIP)
return WPA_CIPHER_TKIP;
if (RSN_SELECTOR_GET(s) == WPA_CIPHER_SUITE_CCMP)
return WPA_CIPHER_CCMP;
return 0;
}
static int wpa_key_mgmt_to_bitfield(const u8 *s)
{
if (RSN_SELECTOR_GET(s) == WPA_AUTH_KEY_MGMT_UNSPEC_802_1X)
return WPA_KEY_MGMT_IEEE8021X;
if (RSN_SELECTOR_GET(s) == WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X)
return WPA_KEY_MGMT_PSK;
if (RSN_SELECTOR_GET(s) == WPA_AUTH_KEY_MGMT_NONE)
return WPA_KEY_MGMT_WPA_NONE;
return 0;
}
int wpa_parse_wpa_ie_wpa(const u8 *wpa_ie, size_t wpa_ie_len,
struct wpa_ie_data *data)
{
const struct wpa_ie_hdr *hdr;
const u8 *pos;
int left;
int i, count;
os_memset(data, 0, sizeof(*data));
data->proto = WPA_PROTO_WPA;
data->pairwise_cipher = WPA_CIPHER_TKIP;
data->group_cipher = WPA_CIPHER_TKIP;
data->key_mgmt = WPA_KEY_MGMT_IEEE8021X;
data->capabilities = 0;
data->pmkid = NULL;
data->num_pmkid = 0;
data->mgmt_group_cipher = 0;
if (wpa_ie_len < sizeof(struct wpa_ie_hdr)) {
wpa_printf(MSG_DEBUG, "%s: ie len too short %lu",
__func__, (unsigned long) wpa_ie_len);
return -1;
}
hdr = (const struct wpa_ie_hdr *) wpa_ie;
if (hdr->elem_id != WLAN_EID_VENDOR_SPECIFIC ||
hdr->len != wpa_ie_len - 2 ||
RSN_SELECTOR_GET(hdr->oui) != WPA_OUI_TYPE ||
WPA_GET_LE16(hdr->version) != WPA_VERSION) {
wpa_printf(MSG_DEBUG, "%s: malformed ie or unknown version",
__func__);
return -2;
}
pos = (const u8 *) (hdr + 1);
left = wpa_ie_len - sizeof(*hdr);
if (left >= WPA_SELECTOR_LEN) {
data->group_cipher = wpa_selector_to_bitfield(pos);
pos += WPA_SELECTOR_LEN;
left -= WPA_SELECTOR_LEN;
} else if (left > 0) {
wpa_printf(MSG_DEBUG, "%s: ie length mismatch, %u too much",
__func__, left);
return -3;
}
if (left >= 2) {
data->pairwise_cipher = 0;
count = WPA_GET_LE16(pos);
pos += 2;
left -= 2;
if (count == 0 || count > left / WPA_SELECTOR_LEN) {
wpa_printf(MSG_DEBUG, "%s: ie count botch (pairwise), "
"count %u left %u", __func__, count, left);
return -4;
}
for (i = 0; i < count; i++) {
data->pairwise_cipher |= wpa_selector_to_bitfield(pos);
pos += WPA_SELECTOR_LEN;
left -= WPA_SELECTOR_LEN;
}
} else if (left == 1) {
wpa_printf(MSG_DEBUG, "%s: ie too short (for key mgmt)",
__func__);
return -5;
}
if (left >= 2) {
data->key_mgmt = 0;
count = WPA_GET_LE16(pos);
pos += 2;
left -= 2;
if (count == 0 || count > left / WPA_SELECTOR_LEN) {
wpa_printf(MSG_DEBUG, "%s: ie count botch (key mgmt), "
"count %u left %u", __func__, count, left);
return -6;
}
for (i = 0; i < count; i++) {
data->key_mgmt |= wpa_key_mgmt_to_bitfield(pos);
pos += WPA_SELECTOR_LEN;
left -= WPA_SELECTOR_LEN;
}
} else if (left == 1) {
wpa_printf(MSG_DEBUG, "%s: ie too short (for capabilities)",
__func__);
return -7;
}
if (left >= 2) {
data->capabilities = WPA_GET_LE16(pos);
pos += 2;
left -= 2;
}
if (left > 0) {
wpa_hexdump(MSG_DEBUG,
"wpa_parse_wpa_ie_wpa: ignore trailing bytes",
pos, left);
}
return 0;
}
int wpa_default_rsn_cipher(int freq)
{
if (freq > 56160)
return WPA_CIPHER_GCMP; /* DMG */
return WPA_CIPHER_CCMP;
}
#ifdef CONFIG_IEEE80211R
/**
* wpa_derive_pmk_r0 - Derive PMK-R0 and PMKR0Name
*
* IEEE Std 802.11r-2008 - 8.5.1.5.3
*/
int wpa_derive_pmk_r0(const u8 *xxkey, size_t xxkey_len,
const u8 *ssid, size_t ssid_len,
const u8 *mdid, const u8 *r0kh_id, size_t r0kh_id_len,
const u8 *s0kh_id, u8 *pmk_r0, u8 *pmk_r0_name,
int use_sha384)
{
u8 buf[1 + SSID_MAX_LEN + MOBILITY_DOMAIN_ID_LEN + 1 +
FT_R0KH_ID_MAX_LEN + ETH_ALEN];
u8 *pos, r0_key_data[64], hash[48];
const u8 *addr[2];
size_t len[2];
size_t q = use_sha384 ? 48 : 32;
size_t r0_key_data_len = q + 16;
/*
* R0-Key-Data = KDF-384(XXKey, "FT-R0",
* SSIDlength || SSID || MDID || R0KHlength ||
* R0KH-ID || S0KH-ID)
* XXKey is either the second 256 bits of MSK or PSK; or the first
* 384 bits of MSK for FT-EAP-SHA384.
* PMK-R0 = L(R0-Key-Data, 0, Q)
* PMK-R0Name-Salt = L(R0-Key-Data, Q, 128)
* Q = 384 for FT-EAP-SHA384; otherwise, 256
*/
if (ssid_len > SSID_MAX_LEN || r0kh_id_len > FT_R0KH_ID_MAX_LEN)
return -1;
wpa_printf(MSG_DEBUG, "FT: Derive PMK-R0 using KDF-%s",
use_sha384 ? "SHA384" : "SHA256");
wpa_hexdump_key(MSG_DEBUG, "FT: XXKey", xxkey, xxkey_len);
wpa_hexdump_ascii(MSG_DEBUG, "FT: SSID", ssid, ssid_len);
wpa_hexdump(MSG_DEBUG, "FT: MDID", mdid, MOBILITY_DOMAIN_ID_LEN);
wpa_hexdump_ascii(MSG_DEBUG, "FT: R0KH-ID", r0kh_id, r0kh_id_len);
wpa_printf(MSG_DEBUG, "FT: S0KH-ID: " MACSTR, MAC2STR(s0kh_id));
pos = buf;
*pos++ = ssid_len;
os_memcpy(pos, ssid, ssid_len);
pos += ssid_len;
os_memcpy(pos, mdid, MOBILITY_DOMAIN_ID_LEN);
pos += MOBILITY_DOMAIN_ID_LEN;
*pos++ = r0kh_id_len;
os_memcpy(pos, r0kh_id, r0kh_id_len);
pos += r0kh_id_len;
os_memcpy(pos, s0kh_id, ETH_ALEN);
pos += ETH_ALEN;
#ifdef CONFIG_SHA384
if (use_sha384) {
if (xxkey_len != SHA384_MAC_LEN) {
wpa_printf(MSG_ERROR,
"FT: Unexpected XXKey length %d (expected %d)",
(int) xxkey_len, SHA384_MAC_LEN);
return -1;
}
if (sha384_prf(xxkey, xxkey_len, "FT-R0", buf, pos - buf,
r0_key_data, r0_key_data_len) < 0)
return -1;
}
#endif /* CONFIG_SHA384 */
if (!use_sha384) {
if (xxkey_len != PMK_LEN) {
wpa_printf(MSG_ERROR,
"FT: Unexpected XXKey length %d (expected %d)",
(int) xxkey_len, PMK_LEN);
return -1;
}
if (sha256_prf(xxkey, xxkey_len, "FT-R0", buf, pos - buf,
r0_key_data, r0_key_data_len) < 0)
return -1;
}
os_memcpy(pmk_r0, r0_key_data, q);
wpa_hexdump_key(MSG_DEBUG, "FT: PMK-R0", pmk_r0, q);
wpa_hexdump_key(MSG_DEBUG, "FT: PMK-R0Name-Salt", &r0_key_data[q], 16);
/*
* PMKR0Name = Truncate-128(Hash("FT-R0N" || PMK-R0Name-Salt)
*/
addr[0] = (const u8 *) "FT-R0N";
len[0] = 6;
addr[1] = &r0_key_data[q];
len[1] = 16;
#ifdef CONFIG_SHA384
if (use_sha384 && sha384_vector(2, addr, len, hash) < 0)
return -1;
#endif /* CONFIG_SHA384 */
if (!use_sha384 && sha256_vector(2, addr, len, hash) < 0)
return -1;
os_memcpy(pmk_r0_name, hash, WPA_PMK_NAME_LEN);
wpa_hexdump(MSG_DEBUG, "FT: PMKR0Name", pmk_r0_name, WPA_PMK_NAME_LEN);
forced_memzero(r0_key_data, sizeof(r0_key_data));
return 0;
}
/**
* wpa_derive_pmk_r1_name - Derive PMKR1Name
*
* IEEE Std 802.11r-2008 - 8.5.1.5.4
*/
int wpa_derive_pmk_r1_name(const u8 *pmk_r0_name, const u8 *r1kh_id,
const u8 *s1kh_id, u8 *pmk_r1_name, int use_sha384)
{
u8 hash[48];
const u8 *addr[4];
size_t len[4];
/*
* PMKR1Name = Truncate-128(Hash("FT-R1N" || PMKR0Name ||
* R1KH-ID || S1KH-ID))
*/
addr[0] = (const u8 *) "FT-R1N";
len[0] = 6;
addr[1] = pmk_r0_name;
len[1] = WPA_PMK_NAME_LEN;
addr[2] = r1kh_id;
len[2] = FT_R1KH_ID_LEN;
addr[3] = s1kh_id;
len[3] = ETH_ALEN;
#ifdef CONFIG_SHA384
if (use_sha384 && sha384_vector(4, addr, len, hash) < 0)
return -1;
#endif /* CONFIG_SHA384 */
if (!use_sha384 && sha256_vector(4, addr, len, hash) < 0)
return -1;
os_memcpy(pmk_r1_name, hash, WPA_PMK_NAME_LEN);
wpa_hexdump(MSG_DEBUG, "FT: PMKR1Name", pmk_r1_name, WPA_PMK_NAME_LEN);
return 0;
}
/**
* wpa_derive_pmk_r1 - Derive PMK-R1 and PMKR1Name from PMK-R0
*
* IEEE Std 802.11r-2008 - 8.5.1.5.4
*/
int wpa_derive_pmk_r1(const u8 *pmk_r0, size_t pmk_r0_len,
const u8 *pmk_r0_name,
const u8 *r1kh_id, const u8 *s1kh_id,
u8 *pmk_r1, u8 *pmk_r1_name)
{
u8 buf[FT_R1KH_ID_LEN + ETH_ALEN];
u8 *pos;
/* PMK-R1 = KDF-256(PMK-R0, "FT-R1", R1KH-ID || S1KH-ID) */
wpa_printf(MSG_DEBUG, "FT: Derive PMK-R1 using KDF-%s",
pmk_r0_len == SHA384_MAC_LEN ? "SHA384" : "SHA256");
wpa_hexdump_key(MSG_DEBUG, "FT: PMK-R0", pmk_r0, pmk_r0_len);
wpa_hexdump(MSG_DEBUG, "FT: R1KH-ID", r1kh_id, FT_R1KH_ID_LEN);
wpa_printf(MSG_DEBUG, "FT: S1KH-ID: " MACSTR, MAC2STR(s1kh_id));
pos = buf;
os_memcpy(pos, r1kh_id, FT_R1KH_ID_LEN);
pos += FT_R1KH_ID_LEN;
os_memcpy(pos, s1kh_id, ETH_ALEN);
pos += ETH_ALEN;
#ifdef CONFIG_SHA384
if (pmk_r0_len == SHA384_MAC_LEN &&
sha384_prf(pmk_r0, pmk_r0_len, "FT-R1",
buf, pos - buf, pmk_r1, pmk_r0_len) < 0)
return -1;
#endif /* CONFIG_SHA384 */
if (pmk_r0_len == PMK_LEN &&
sha256_prf(pmk_r0, pmk_r0_len, "FT-R1",
buf, pos - buf, pmk_r1, pmk_r0_len) < 0)
return -1;
if (pmk_r0_len != SHA384_MAC_LEN && pmk_r0_len != PMK_LEN) {
wpa_printf(MSG_ERROR, "FT: Unexpected PMK-R0 length %d",
(int) pmk_r0_len);
return -1;
}
wpa_hexdump_key(MSG_DEBUG, "FT: PMK-R1", pmk_r1, pmk_r0_len);
return wpa_derive_pmk_r1_name(pmk_r0_name, r1kh_id, s1kh_id,
pmk_r1_name,
pmk_r0_len == SHA384_MAC_LEN);
}
/**
* wpa_pmk_r1_to_ptk - Derive PTK and PTKName from PMK-R1
*
* IEEE Std 802.11r-2008 - 8.5.1.5.5
*/
int wpa_pmk_r1_to_ptk(const u8 *pmk_r1, size_t pmk_r1_len,
const u8 *snonce, const u8 *anonce,
const u8 *sta_addr, const u8 *bssid,
const u8 *pmk_r1_name,
struct wpa_ptk *ptk, u8 *ptk_name, int akmp, int cipher,
size_t kdk_len)
{
u8 buf[2 * WPA_NONCE_LEN + 2 * ETH_ALEN];
u8 *pos, hash[32];
const u8 *addr[6];
size_t len[6];
u8 tmp[2 * WPA_KCK_MAX_LEN + 2 * WPA_KEK_MAX_LEN + WPA_TK_MAX_LEN +
WPA_KDK_MAX_LEN];
size_t ptk_len, offset;
int use_sha384 = wpa_key_mgmt_sha384(akmp);
if (kdk_len > WPA_KDK_MAX_LEN) {
wpa_printf(MSG_ERROR,
"FT: KDK len=%zu exceeds max supported len",
kdk_len);
return -1;
}
/*
* PTK = KDF-PTKLen(PMK-R1, "FT-PTK", SNonce || ANonce ||
* BSSID || STA-ADDR)
*/
wpa_printf(MSG_DEBUG, "FT: Derive PTK using KDF-%s",
use_sha384 ? "SHA384" : "SHA256");
wpa_hexdump_key(MSG_DEBUG, "FT: PMK-R1", pmk_r1, pmk_r1_len);
wpa_hexdump(MSG_DEBUG, "FT: SNonce", snonce, WPA_NONCE_LEN);
wpa_hexdump(MSG_DEBUG, "FT: ANonce", anonce, WPA_NONCE_LEN);
wpa_printf(MSG_DEBUG, "FT: BSSID=" MACSTR " STA-ADDR=" MACSTR,
MAC2STR(bssid), MAC2STR(sta_addr));
pos = buf;
os_memcpy(pos, snonce, WPA_NONCE_LEN);
pos += WPA_NONCE_LEN;
os_memcpy(pos, anonce, WPA_NONCE_LEN);
pos += WPA_NONCE_LEN;
os_memcpy(pos, bssid, ETH_ALEN);
pos += ETH_ALEN;
os_memcpy(pos, sta_addr, ETH_ALEN);
pos += ETH_ALEN;
ptk->kck_len = wpa_kck_len(akmp, PMK_LEN);
ptk->kck2_len = wpa_kck2_len(akmp);
ptk->kek_len = wpa_kek_len(akmp, PMK_LEN);
ptk->kek2_len = wpa_kek2_len(akmp);
ptk->tk_len = wpa_cipher_key_len(cipher);
ptk->kdk_len = kdk_len;
ptk_len = ptk->kck_len + ptk->kek_len + ptk->tk_len +
ptk->kck2_len + ptk->kek2_len + ptk->kdk_len;
#ifdef CONFIG_SHA384
if (use_sha384) {
if (pmk_r1_len != SHA384_MAC_LEN) {
wpa_printf(MSG_ERROR,
"FT: Unexpected PMK-R1 length %d (expected %d)",
(int) pmk_r1_len, SHA384_MAC_LEN);
return -1;
}
if (sha384_prf(pmk_r1, pmk_r1_len, "FT-PTK",
buf, pos - buf, tmp, ptk_len) < 0)
return -1;
}
#endif /* CONFIG_SHA384 */
if (!use_sha384) {
if (pmk_r1_len != PMK_LEN) {
wpa_printf(MSG_ERROR,
"FT: Unexpected PMK-R1 length %d (expected %d)",
(int) pmk_r1_len, PMK_LEN);
return -1;
}
if (sha256_prf(pmk_r1, pmk_r1_len, "FT-PTK",
buf, pos - buf, tmp, ptk_len) < 0)
return -1;
}
wpa_hexdump_key(MSG_DEBUG, "FT: PTK", tmp, ptk_len);
/*
* PTKName = Truncate-128(SHA-256(PMKR1Name || "FT-PTKN" || SNonce ||
* ANonce || BSSID || STA-ADDR))
*/
wpa_hexdump(MSG_DEBUG, "FT: PMKR1Name", pmk_r1_name, WPA_PMK_NAME_LEN);
addr[0] = pmk_r1_name;
len[0] = WPA_PMK_NAME_LEN;
addr[1] = (const u8 *) "FT-PTKN";
len[1] = 7;
addr[2] = snonce;
len[2] = WPA_NONCE_LEN;
addr[3] = anonce;
len[3] = WPA_NONCE_LEN;
addr[4] = bssid;
len[4] = ETH_ALEN;
addr[5] = sta_addr;
len[5] = ETH_ALEN;
if (sha256_vector(6, addr, len, hash) < 0)
return -1;
os_memcpy(ptk_name, hash, WPA_PMK_NAME_LEN);
os_memcpy(ptk->kck, tmp, ptk->kck_len);
offset = ptk->kck_len;
os_memcpy(ptk->kek, tmp + offset, ptk->kek_len);
offset += ptk->kek_len;
os_memcpy(ptk->tk, tmp + offset, ptk->tk_len);
offset += ptk->tk_len;
os_memcpy(ptk->kck2, tmp + offset, ptk->kck2_len);
offset += ptk->kck2_len;
os_memcpy(ptk->kek2, tmp + offset, ptk->kek2_len);
offset += ptk->kek2_len;
os_memcpy(ptk->kdk, tmp + offset, ptk->kdk_len);
wpa_hexdump_key(MSG_DEBUG, "FT: KCK", ptk->kck, ptk->kck_len);
wpa_hexdump_key(MSG_DEBUG, "FT: KEK", ptk->kek, ptk->kek_len);
if (ptk->kck2_len)
wpa_hexdump_key(MSG_DEBUG, "FT: KCK2",
ptk->kck2, ptk->kck2_len);
if (ptk->kek2_len)
wpa_hexdump_key(MSG_DEBUG, "FT: KEK2",
ptk->kek2, ptk->kek2_len);
if (ptk->kdk_len)
wpa_hexdump_key(MSG_DEBUG, "FT: KDK", ptk->kdk, ptk->kdk_len);
wpa_hexdump_key(MSG_DEBUG, "FT: TK", ptk->tk, ptk->tk_len);
wpa_hexdump(MSG_DEBUG, "FT: PTKName", ptk_name, WPA_PMK_NAME_LEN);
forced_memzero(tmp, sizeof(tmp));
return 0;
}
#endif /* CONFIG_IEEE80211R */
/**
* rsn_pmkid - Calculate PMK identifier
* @pmk: Pairwise master key
* @pmk_len: Length of pmk in bytes
* @aa: Authenticator address
* @spa: Supplicant address
* @pmkid: Buffer for PMKID
* @akmp: Negotiated key management protocol
*
* IEEE Std 802.11-2016 - 12.7.1.3 Pairwise key hierarchy
* AKM: 00-0F-AC:5, 00-0F-AC:6, 00-0F-AC:14, 00-0F-AC:16
* PMKID = Truncate-128(HMAC-SHA-256(PMK, "PMK Name" || AA || SPA))
* AKM: 00-0F-AC:11
* See rsn_pmkid_suite_b()
* AKM: 00-0F-AC:12
* See rsn_pmkid_suite_b_192()
* AKM: 00-0F-AC:13, 00-0F-AC:15, 00-0F-AC:17
* PMKID = Truncate-128(HMAC-SHA-384(PMK, "PMK Name" || AA || SPA))
* Otherwise:
* PMKID = Truncate-128(HMAC-SHA-1(PMK, "PMK Name" || AA || SPA))
*/
void rsn_pmkid(const u8 *pmk, size_t pmk_len, const u8 *aa, const u8 *spa,
u8 *pmkid, int akmp)
{
char *title = "PMK Name";
const u8 *addr[3];
const size_t len[3] = { 8, ETH_ALEN, ETH_ALEN };
unsigned char hash[SHA384_MAC_LEN];
addr[0] = (u8 *) title;
addr[1] = aa;
addr[2] = spa;
if (0) {
#if defined(CONFIG_FILS) || defined(CONFIG_SHA384)
} else if (wpa_key_mgmt_sha384(akmp)) {
wpa_printf(MSG_DEBUG, "RSN: Derive PMKID using HMAC-SHA-384");
hmac_sha384_vector(pmk, pmk_len, 3, addr, len, hash);
#endif /* CONFIG_FILS || CONFIG_SHA384 */
} else if (wpa_key_mgmt_sha256(akmp)) {
wpa_printf(MSG_DEBUG, "RSN: Derive PMKID using HMAC-SHA-256");
hmac_sha256_vector(pmk, pmk_len, 3, addr, len, hash);
} else {
wpa_printf(MSG_DEBUG, "RSN: Derive PMKID using HMAC-SHA-1");
hmac_sha1_vector(pmk, pmk_len, 3, addr, len, hash);
}
wpa_hexdump(MSG_DEBUG, "RSN: Derived PMKID", hash, PMKID_LEN);
os_memcpy(pmkid, hash, PMKID_LEN);
}
#ifdef CONFIG_SUITEB
/**
* rsn_pmkid_suite_b - Calculate PMK identifier for Suite B AKM
* @kck: Key confirmation key
* @kck_len: Length of kck in bytes
* @aa: Authenticator address
* @spa: Supplicant address
* @pmkid: Buffer for PMKID
* Returns: 0 on success, -1 on failure
*
* IEEE Std 802.11ac-2013 - 11.6.1.3 Pairwise key hierarchy
* PMKID = Truncate(HMAC-SHA-256(KCK, "PMK Name" || AA || SPA))
*/
int rsn_pmkid_suite_b(const u8 *kck, size_t kck_len, const u8 *aa,
const u8 *spa, u8 *pmkid)
{
char *title = "PMK Name";
const u8 *addr[3];
const size_t len[3] = { 8, ETH_ALEN, ETH_ALEN };
unsigned char hash[SHA256_MAC_LEN];
addr[0] = (u8 *) title;
addr[1] = aa;
addr[2] = spa;
if (hmac_sha256_vector(kck, kck_len, 3, addr, len, hash) < 0)
return -1;
os_memcpy(pmkid, hash, PMKID_LEN);
return 0;
}
#endif /* CONFIG_SUITEB */
#ifdef CONFIG_SUITEB192
/**
* rsn_pmkid_suite_b_192 - Calculate PMK identifier for Suite B AKM
* @kck: Key confirmation key
* @kck_len: Length of kck in bytes
* @aa: Authenticator address
* @spa: Supplicant address
* @pmkid: Buffer for PMKID
* Returns: 0 on success, -1 on failure
*
* IEEE Std 802.11ac-2013 - 11.6.1.3 Pairwise key hierarchy
* PMKID = Truncate(HMAC-SHA-384(KCK, "PMK Name" || AA || SPA))
*/
int rsn_pmkid_suite_b_192(const u8 *kck, size_t kck_len, const u8 *aa,
const u8 *spa, u8 *pmkid)
{
char *title = "PMK Name";
const u8 *addr[3];
const size_t len[3] = { 8, ETH_ALEN, ETH_ALEN };
unsigned char hash[SHA384_MAC_LEN];
addr[0] = (u8 *) title;
addr[1] = aa;
addr[2] = spa;
if (hmac_sha384_vector(kck, kck_len, 3, addr, len, hash) < 0)
return -1;
os_memcpy(pmkid, hash, PMKID_LEN);
return 0;
}
#endif /* CONFIG_SUITEB192 */
/**
* wpa_cipher_txt - Convert cipher suite to a text string
* @cipher: Cipher suite (WPA_CIPHER_* enum)
* Returns: Pointer to a text string of the cipher suite name
*/
const char * wpa_cipher_txt(int cipher)
{
switch (cipher) {
case WPA_CIPHER_NONE:
return "NONE";
#ifdef CONFIG_WEP
case WPA_CIPHER_WEP40:
return "WEP-40";
case WPA_CIPHER_WEP104:
return "WEP-104";
#endif /* CONFIG_WEP */
case WPA_CIPHER_TKIP:
return "TKIP";
case WPA_CIPHER_CCMP:
return "CCMP";
case WPA_CIPHER_CCMP | WPA_CIPHER_TKIP:
return "CCMP+TKIP";
case WPA_CIPHER_GCMP:
return "GCMP";
case WPA_CIPHER_GCMP_256:
return "GCMP-256";
case WPA_CIPHER_CCMP_256:
return "CCMP-256";
case WPA_CIPHER_AES_128_CMAC:
return "BIP";
case WPA_CIPHER_BIP_GMAC_128:
return "BIP-GMAC-128";
case WPA_CIPHER_BIP_GMAC_256:
return "BIP-GMAC-256";
case WPA_CIPHER_BIP_CMAC_256:
return "BIP-CMAC-256";
case WPA_CIPHER_GTK_NOT_USED:
return "GTK_NOT_USED";
default:
return "UNKNOWN";
}
}
/**
* wpa_key_mgmt_txt - Convert key management suite to a text string
* @key_mgmt: Key management suite (WPA_KEY_MGMT_* enum)
* @proto: WPA/WPA2 version (WPA_PROTO_*)
* Returns: Pointer to a text string of the key management suite name
*/
const char * wpa_key_mgmt_txt(int key_mgmt, int proto)
{
switch (key_mgmt) {
case WPA_KEY_MGMT_IEEE8021X:
if (proto == (WPA_PROTO_RSN | WPA_PROTO_WPA))
return "WPA2+WPA/IEEE 802.1X/EAP";
return proto == WPA_PROTO_RSN ?
"WPA2/IEEE 802.1X/EAP" : "WPA/IEEE 802.1X/EAP";
case WPA_KEY_MGMT_PSK:
if (proto == (WPA_PROTO_RSN | WPA_PROTO_WPA))
return "WPA2-PSK+WPA-PSK";
return proto == WPA_PROTO_RSN ?
"WPA2-PSK" : "WPA-PSK";
case WPA_KEY_MGMT_NONE:
return "NONE";
case WPA_KEY_MGMT_WPA_NONE:
return "WPA-NONE";
case WPA_KEY_MGMT_IEEE8021X_NO_WPA:
return "IEEE 802.1X (no WPA)";
#ifdef CONFIG_IEEE80211R
case WPA_KEY_MGMT_FT_IEEE8021X:
return "FT-EAP";
case WPA_KEY_MGMT_FT_IEEE8021X_SHA384:
return "FT-EAP-SHA384";
case WPA_KEY_MGMT_FT_PSK:
return "FT-PSK";
#endif /* CONFIG_IEEE80211R */
case WPA_KEY_MGMT_IEEE8021X_SHA256:
return "WPA2-EAP-SHA256";
case WPA_KEY_MGMT_PSK_SHA256:
return "WPA2-PSK-SHA256";
case WPA_KEY_MGMT_WPS:
return "WPS";
case WPA_KEY_MGMT_SAE:
return "SAE";
case WPA_KEY_MGMT_FT_SAE:
return "FT-SAE";
case WPA_KEY_MGMT_OSEN:
return "OSEN";
case WPA_KEY_MGMT_IEEE8021X_SUITE_B:
return "WPA2-EAP-SUITE-B";
case WPA_KEY_MGMT_IEEE8021X_SUITE_B_192:
return "WPA2-EAP-SUITE-B-192";
case WPA_KEY_MGMT_FILS_SHA256:
return "FILS-SHA256";
case WPA_KEY_MGMT_FILS_SHA384:
return "FILS-SHA384";
case WPA_KEY_MGMT_FT_FILS_SHA256:
return "FT-FILS-SHA256";
case WPA_KEY_MGMT_FT_FILS_SHA384:
return "FT-FILS-SHA384";
case WPA_KEY_MGMT_OWE:
return "OWE";
case WPA_KEY_MGMT_DPP:
return "DPP";
case WPA_KEY_MGMT_PASN:
return "PASN";
default:
return "UNKNOWN";
}
}
u32 wpa_akm_to_suite(int akm)
{
if (akm & WPA_KEY_MGMT_FT_IEEE8021X_SHA384)
return RSN_AUTH_KEY_MGMT_FT_802_1X_SHA384;
if (akm & WPA_KEY_MGMT_FT_IEEE8021X)
return RSN_AUTH_KEY_MGMT_FT_802_1X;
if (akm & WPA_KEY_MGMT_FT_PSK)
return RSN_AUTH_KEY_MGMT_FT_PSK;
if (akm & WPA_KEY_MGMT_IEEE8021X_SHA256)
return RSN_AUTH_KEY_MGMT_802_1X_SHA256;
if (akm & WPA_KEY_MGMT_IEEE8021X)
return RSN_AUTH_KEY_MGMT_UNSPEC_802_1X;
if (akm & WPA_KEY_MGMT_PSK_SHA256)
return RSN_AUTH_KEY_MGMT_PSK_SHA256;
if (akm & WPA_KEY_MGMT_PSK)
return RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X;
if (akm & WPA_KEY_MGMT_CCKM)
return RSN_AUTH_KEY_MGMT_CCKM;
if (akm & WPA_KEY_MGMT_OSEN)
return RSN_AUTH_KEY_MGMT_OSEN;
if (akm & WPA_KEY_MGMT_IEEE8021X_SUITE_B)
return RSN_AUTH_KEY_MGMT_802_1X_SUITE_B;
if (akm & WPA_KEY_MGMT_IEEE8021X_SUITE_B_192)
return RSN_AUTH_KEY_MGMT_802_1X_SUITE_B_192;
if (akm & WPA_KEY_MGMT_FILS_SHA256)
return RSN_AUTH_KEY_MGMT_FILS_SHA256;
if (akm & WPA_KEY_MGMT_FILS_SHA384)
return RSN_AUTH_KEY_MGMT_FILS_SHA384;
if (akm & WPA_KEY_MGMT_FT_FILS_SHA256)
return RSN_AUTH_KEY_MGMT_FT_FILS_SHA256;
if (akm & WPA_KEY_MGMT_FT_FILS_SHA384)
return RSN_AUTH_KEY_MGMT_FT_FILS_SHA384;
if (akm & WPA_KEY_MGMT_SAE)
return RSN_AUTH_KEY_MGMT_SAE;
if (akm & WPA_KEY_MGMT_FT_SAE)
return RSN_AUTH_KEY_MGMT_FT_SAE;
if (akm & WPA_KEY_MGMT_OWE)
return RSN_AUTH_KEY_MGMT_OWE;
if (akm & WPA_KEY_MGMT_DPP)
return RSN_AUTH_KEY_MGMT_DPP;
return 0;
}
int wpa_compare_rsn_ie(int ft_initial_assoc,
const u8 *ie1, size_t ie1len,
const u8 *ie2, size_t ie2len)
{
if (ie1 == NULL || ie2 == NULL)
return -1;
if (ie1len == ie2len && os_memcmp(ie1, ie2, ie1len) == 0)
return 0; /* identical IEs */
#ifdef CONFIG_IEEE80211R
if (ft_initial_assoc) {
struct wpa_ie_data ie1d, ie2d;
/*
* The PMKID-List in RSN IE is different between Beacon/Probe
* Response/(Re)Association Request frames and EAPOL-Key
* messages in FT initial mobility domain association. Allow
* for this, but verify that other parts of the RSN IEs are
* identical.
*/
if (wpa_parse_wpa_ie_rsn(ie1, ie1len, &ie1d) < 0 ||
wpa_parse_wpa_ie_rsn(ie2, ie2len, &ie2d) < 0)
return -1;
if (ie1d.proto == ie2d.proto &&
ie1d.pairwise_cipher == ie2d.pairwise_cipher &&
ie1d.group_cipher == ie2d.group_cipher &&
ie1d.key_mgmt == ie2d.key_mgmt &&
ie1d.capabilities == ie2d.capabilities &&
ie1d.mgmt_group_cipher == ie2d.mgmt_group_cipher)
return 0;
}
#endif /* CONFIG_IEEE80211R */
return -1;
}
int wpa_insert_pmkid(u8 *ies, size_t *ies_len, const u8 *pmkid)
{
u8 *start, *end, *rpos, *rend;
int added = 0;
start = ies;
end = ies + *ies_len;
while (start < end) {
if (*start == WLAN_EID_RSN)
break;
start += 2 + start[1];
}
if (start >= end) {
wpa_printf(MSG_ERROR, "RSN: Could not find RSNE in IEs data");
return -1;
}
wpa_hexdump(MSG_DEBUG, "RSN: RSNE before modification",
start, 2 + start[1]);
/* Find start of PMKID-Count */
rpos = start + 2;
rend = rpos + start[1];
/* Skip Version and Group Data Cipher Suite */
rpos += 2 + 4;
/* Skip Pairwise Cipher Suite Count and List */
rpos += 2 + WPA_GET_LE16(rpos) * RSN_SELECTOR_LEN;
/* Skip AKM Suite Count and List */
rpos += 2 + WPA_GET_LE16(rpos) * RSN_SELECTOR_LEN;
if (rpos == rend) {
/* Add RSN Capabilities */
os_memmove(rpos + 2, rpos, end - rpos);
*rpos++ = 0;
*rpos++ = 0;
added += 2;
start[1] += 2;
rend = rpos;
} else {
/* Skip RSN Capabilities */
rpos += 2;
if (rpos > rend) {
wpa_printf(MSG_ERROR,
"RSN: Could not parse RSNE in IEs data");
return -1;
}
}
if (rpos == rend) {
/* No PMKID-Count field included; add it */
os_memmove(rpos + 2 + PMKID_LEN, rpos, end + added - rpos);
WPA_PUT_LE16(rpos, 1);
rpos += 2;
os_memcpy(rpos, pmkid, PMKID_LEN);
added += 2 + PMKID_LEN;
start[1] += 2 + PMKID_LEN;
} else {
u16 num_pmkid;
if (rend - rpos < 2)
return -1;
num_pmkid = WPA_GET_LE16(rpos);
/* PMKID-Count was included; use it */
if (num_pmkid != 0) {
u8 *after;
if (num_pmkid * PMKID_LEN > rend - rpos - 2)
return -1;
/*
* PMKID may have been included in RSN IE in
* (Re)Association Request frame, so remove the old
* PMKID(s) first before adding the new one.
*/
wpa_printf(MSG_DEBUG,
"RSN: Remove %u old PMKID(s) from RSNE",
num_pmkid);
after = rpos + 2 + num_pmkid * PMKID_LEN;
os_memmove(rpos + 2, after, end - after);
start[1] -= num_pmkid * PMKID_LEN;
added -= num_pmkid * PMKID_LEN;
}
WPA_PUT_LE16(rpos, 1);
rpos += 2;
os_memmove(rpos + PMKID_LEN, rpos, end + added - rpos);
os_memcpy(rpos, pmkid, PMKID_LEN);
added += PMKID_LEN;
start[1] += PMKID_LEN;
}
wpa_hexdump(MSG_DEBUG, "RSN: RSNE after modification (PMKID inserted)",
start, 2 + start[1]);
*ies_len += added;
return 0;
}
int wpa_cipher_key_len(int cipher)
{
switch (cipher) {
case WPA_CIPHER_CCMP_256:
case WPA_CIPHER_GCMP_256:
case WPA_CIPHER_BIP_GMAC_256:
case WPA_CIPHER_BIP_CMAC_256:
return 32;
case WPA_CIPHER_CCMP:
case WPA_CIPHER_GCMP:
case WPA_CIPHER_AES_128_CMAC:
case WPA_CIPHER_BIP_GMAC_128:
return 16;
case WPA_CIPHER_TKIP:
return 32;
}
return 0;
}
int wpa_cipher_rsc_len(int cipher)
{
switch (cipher) {
case WPA_CIPHER_CCMP_256:
case WPA_CIPHER_GCMP_256:
case WPA_CIPHER_CCMP:
case WPA_CIPHER_GCMP:
case WPA_CIPHER_TKIP:
return 6;
}
return 0;
}
enum wpa_alg wpa_cipher_to_alg(int cipher)
{
switch (cipher) {
case WPA_CIPHER_CCMP_256:
return WPA_ALG_CCMP_256;
case WPA_CIPHER_GCMP_256:
return WPA_ALG_GCMP_256;
case WPA_CIPHER_CCMP:
return WPA_ALG_CCMP;
case WPA_CIPHER_GCMP:
return WPA_ALG_GCMP;
case WPA_CIPHER_TKIP:
return WPA_ALG_TKIP;
case WPA_CIPHER_AES_128_CMAC:
return WPA_ALG_BIP_CMAC_128;
case WPA_CIPHER_BIP_GMAC_128:
return WPA_ALG_BIP_GMAC_128;
case WPA_CIPHER_BIP_GMAC_256:
return WPA_ALG_BIP_GMAC_256;
case WPA_CIPHER_BIP_CMAC_256:
return WPA_ALG_BIP_CMAC_256;
}
return WPA_ALG_NONE;
}
int wpa_cipher_valid_pairwise(int cipher)
{
#ifdef CONFIG_NO_TKIP
return cipher == WPA_CIPHER_CCMP_256 ||
cipher == WPA_CIPHER_GCMP_256 ||
cipher == WPA_CIPHER_CCMP ||
cipher == WPA_CIPHER_GCMP;
#else /* CONFIG_NO_TKIP */
return cipher == WPA_CIPHER_CCMP_256 ||
cipher == WPA_CIPHER_GCMP_256 ||
cipher == WPA_CIPHER_CCMP ||
cipher == WPA_CIPHER_GCMP ||
cipher == WPA_CIPHER_TKIP;
#endif /* CONFIG_NO_TKIP */
}
u32 wpa_cipher_to_suite(int proto, int cipher)
{
if (cipher & WPA_CIPHER_CCMP_256)
return RSN_CIPHER_SUITE_CCMP_256;
if (cipher & WPA_CIPHER_GCMP_256)
return RSN_CIPHER_SUITE_GCMP_256;
if (cipher & WPA_CIPHER_CCMP)
return (proto == WPA_PROTO_RSN ?
RSN_CIPHER_SUITE_CCMP : WPA_CIPHER_SUITE_CCMP);
if (cipher & WPA_CIPHER_GCMP)
return RSN_CIPHER_SUITE_GCMP;
if (cipher & WPA_CIPHER_TKIP)
return (proto == WPA_PROTO_RSN ?
RSN_CIPHER_SUITE_TKIP : WPA_CIPHER_SUITE_TKIP);
if (cipher & WPA_CIPHER_NONE)
return (proto == WPA_PROTO_RSN ?
RSN_CIPHER_SUITE_NONE : WPA_CIPHER_SUITE_NONE);
if (cipher & WPA_CIPHER_GTK_NOT_USED)
return RSN_CIPHER_SUITE_NO_GROUP_ADDRESSED;
if (cipher & WPA_CIPHER_AES_128_CMAC)
return RSN_CIPHER_SUITE_AES_128_CMAC;
if (cipher & WPA_CIPHER_BIP_GMAC_128)
return RSN_CIPHER_SUITE_BIP_GMAC_128;
if (cipher & WPA_CIPHER_BIP_GMAC_256)
return RSN_CIPHER_SUITE_BIP_GMAC_256;
if (cipher & WPA_CIPHER_BIP_CMAC_256)
return RSN_CIPHER_SUITE_BIP_CMAC_256;
return 0;
}
int rsn_cipher_put_suites(u8 *start, int ciphers)
{
u8 *pos = start;
if (ciphers & WPA_CIPHER_CCMP_256) {
RSN_SELECTOR_PUT(pos, RSN_CIPHER_SUITE_CCMP_256);
pos += RSN_SELECTOR_LEN;
}
if (ciphers & WPA_CIPHER_GCMP_256) {
RSN_SELECTOR_PUT(pos, RSN_CIPHER_SUITE_GCMP_256);
pos += RSN_SELECTOR_LEN;
}
if (ciphers & WPA_CIPHER_CCMP) {
RSN_SELECTOR_PUT(pos, RSN_CIPHER_SUITE_CCMP);
pos += RSN_SELECTOR_LEN;
}
if (ciphers & WPA_CIPHER_GCMP) {
RSN_SELECTOR_PUT(pos, RSN_CIPHER_SUITE_GCMP);
pos += RSN_SELECTOR_LEN;
}
if (ciphers & WPA_CIPHER_TKIP) {
RSN_SELECTOR_PUT(pos, RSN_CIPHER_SUITE_TKIP);
pos += RSN_SELECTOR_LEN;
}
if (ciphers & WPA_CIPHER_NONE) {
RSN_SELECTOR_PUT(pos, RSN_CIPHER_SUITE_NONE);
pos += RSN_SELECTOR_LEN;
}
return (pos - start) / RSN_SELECTOR_LEN;
}
int wpa_cipher_put_suites(u8 *start, int ciphers)
{
u8 *pos = start;
if (ciphers & WPA_CIPHER_CCMP) {
RSN_SELECTOR_PUT(pos, WPA_CIPHER_SUITE_CCMP);
pos += WPA_SELECTOR_LEN;
}
if (ciphers & WPA_CIPHER_TKIP) {
RSN_SELECTOR_PUT(pos, WPA_CIPHER_SUITE_TKIP);
pos += WPA_SELECTOR_LEN;
}
if (ciphers & WPA_CIPHER_NONE) {
RSN_SELECTOR_PUT(pos, WPA_CIPHER_SUITE_NONE);
pos += WPA_SELECTOR_LEN;
}
return (pos - start) / RSN_SELECTOR_LEN;
}
int wpa_pick_pairwise_cipher(int ciphers, int none_allowed)
{
if (ciphers & WPA_CIPHER_CCMP_256)
return WPA_CIPHER_CCMP_256;
if (ciphers & WPA_CIPHER_GCMP_256)
return WPA_CIPHER_GCMP_256;
if (ciphers & WPA_CIPHER_CCMP)
return WPA_CIPHER_CCMP;
if (ciphers & WPA_CIPHER_GCMP)
return WPA_CIPHER_GCMP;
if (ciphers & WPA_CIPHER_TKIP)
return WPA_CIPHER_TKIP;
if (none_allowed && (ciphers & WPA_CIPHER_NONE))
return WPA_CIPHER_NONE;
return -1;
}
int wpa_pick_group_cipher(int ciphers)
{
if (ciphers & WPA_CIPHER_CCMP_256)
return WPA_CIPHER_CCMP_256;
if (ciphers & WPA_CIPHER_GCMP_256)
return WPA_CIPHER_GCMP_256;
if (ciphers & WPA_CIPHER_CCMP)
return WPA_CIPHER_CCMP;
if (ciphers & WPA_CIPHER_GCMP)
return WPA_CIPHER_GCMP;
if (ciphers & WPA_CIPHER_GTK_NOT_USED)
return WPA_CIPHER_GTK_NOT_USED;
if (ciphers & WPA_CIPHER_TKIP)
return WPA_CIPHER_TKIP;
return -1;
}
int wpa_parse_cipher(const char *value)
{
int val = 0, last;
char *start, *end, *buf;
buf = os_strdup(value);
if (buf == NULL)
return -1;
start = buf;
while (*start != '\0') {
while (*start == ' ' || *start == '\t')
start++;
if (*start == '\0')
break;
end = start;
while (*end != ' ' && *end != '\t' && *end != '\0')
end++;
last = *end == '\0';
*end = '\0';
if (os_strcmp(start, "CCMP-256") == 0)
val |= WPA_CIPHER_CCMP_256;
else if (os_strcmp(start, "GCMP-256") == 0)
val |= WPA_CIPHER_GCMP_256;
else if (os_strcmp(start, "CCMP") == 0)
val |= WPA_CIPHER_CCMP;
else if (os_strcmp(start, "GCMP") == 0)
val |= WPA_CIPHER_GCMP;
#ifndef CONFIG_NO_TKIP
else if (os_strcmp(start, "TKIP") == 0)
val |= WPA_CIPHER_TKIP;
#endif /* CONFIG_NO_TKIP */
#ifdef CONFIG_WEP
else if (os_strcmp(start, "WEP104") == 0)
val |= WPA_CIPHER_WEP104;
else if (os_strcmp(start, "WEP40") == 0)
val |= WPA_CIPHER_WEP40;
#endif /* CONFIG_WEP */
else if (os_strcmp(start, "NONE") == 0)
val |= WPA_CIPHER_NONE;
else if (os_strcmp(start, "GTK_NOT_USED") == 0)
val |= WPA_CIPHER_GTK_NOT_USED;
else if (os_strcmp(start, "AES-128-CMAC") == 0)
val |= WPA_CIPHER_AES_128_CMAC;
else if (os_strcmp(start, "BIP-GMAC-128") == 0)
val |= WPA_CIPHER_BIP_GMAC_128;
else if (os_strcmp(start, "BIP-GMAC-256") == 0)
val |= WPA_CIPHER_BIP_GMAC_256;
else if (os_strcmp(start, "BIP-CMAC-256") == 0)
val |= WPA_CIPHER_BIP_CMAC_256;
else {
os_free(buf);
return -1;
}
if (last)
break;
start = end + 1;
}
os_free(buf);
return val;
}
int wpa_write_ciphers(char *start, char *end, int ciphers, const char *delim)
{
char *pos = start;
int ret;
if (ciphers & WPA_CIPHER_CCMP_256) {
ret = os_snprintf(pos, end - pos, "%sCCMP-256",
pos == start ? "" : delim);
if (os_snprintf_error(end - pos, ret))
return -1;
pos += ret;
}
if (ciphers & WPA_CIPHER_GCMP_256) {
ret = os_snprintf(pos, end - pos, "%sGCMP-256",
pos == start ? "" : delim);
if (os_snprintf_error(end - pos, ret))
return -1;
pos += ret;
}
if (ciphers & WPA_CIPHER_CCMP) {
ret = os_snprintf(pos, end - pos, "%sCCMP",
pos == start ? "" : delim);
if (os_snprintf_error(end - pos, ret))
return -1;
pos += ret;
}
if (ciphers & WPA_CIPHER_GCMP) {
ret = os_snprintf(pos, end - pos, "%sGCMP",
pos == start ? "" : delim);
if (os_snprintf_error(end - pos, ret))
return -1;
pos += ret;
}
if (ciphers & WPA_CIPHER_TKIP) {
ret = os_snprintf(pos, end - pos, "%sTKIP",
pos == start ? "" : delim);
if (os_snprintf_error(end - pos, ret))
return -1;
pos += ret;
}
if (ciphers & WPA_CIPHER_AES_128_CMAC) {
ret = os_snprintf(pos, end - pos, "%sAES-128-CMAC",
pos == start ? "" : delim);
if (os_snprintf_error(end - pos, ret))
return -1;
pos += ret;
}
if (ciphers & WPA_CIPHER_BIP_GMAC_128) {
ret = os_snprintf(pos, end - pos, "%sBIP-GMAC-128",
pos == start ? "" : delim);
if (os_snprintf_error(end - pos, ret))
return -1;
pos += ret;
}
if (ciphers & WPA_CIPHER_BIP_GMAC_256) {
ret = os_snprintf(pos, end - pos, "%sBIP-GMAC-256",
pos == start ? "" : delim);
if (os_snprintf_error(end - pos, ret))
return -1;
pos += ret;
}
if (ciphers & WPA_CIPHER_BIP_CMAC_256) {
ret = os_snprintf(pos, end - pos, "%sBIP-CMAC-256",
pos == start ? "" : delim);
if (os_snprintf_error(end - pos, ret))
return -1;
pos += ret;
}
if (ciphers & WPA_CIPHER_NONE) {
ret = os_snprintf(pos, end - pos, "%sNONE",
pos == start ? "" : delim);
if (os_snprintf_error(end - pos, ret))
return -1;
pos += ret;
}
return pos - start;
}
int wpa_select_ap_group_cipher(int wpa, int wpa_pairwise, int rsn_pairwise)
{
int pairwise = 0;
/* Select group cipher based on the enabled pairwise cipher suites */
if (wpa & 1)
pairwise |= wpa_pairwise;
if (wpa & 2)
pairwise |= rsn_pairwise;
if (pairwise & WPA_CIPHER_TKIP)
return WPA_CIPHER_TKIP;
if ((pairwise & (WPA_CIPHER_CCMP | WPA_CIPHER_GCMP)) == WPA_CIPHER_GCMP)
return WPA_CIPHER_GCMP;
if ((pairwise & (WPA_CIPHER_GCMP_256 | WPA_CIPHER_CCMP |
WPA_CIPHER_GCMP)) == WPA_CIPHER_GCMP_256)
return WPA_CIPHER_GCMP_256;
if ((pairwise & (WPA_CIPHER_CCMP_256 | WPA_CIPHER_CCMP |
WPA_CIPHER_GCMP)) == WPA_CIPHER_CCMP_256)
return WPA_CIPHER_CCMP_256;
return WPA_CIPHER_CCMP;
}
#ifdef CONFIG_FILS
int fils_domain_name_hash(const char *domain, u8 *hash)
{
char buf[255], *wpos = buf;
const char *pos = domain;
size_t len;
const u8 *addr[1];
u8 mac[SHA256_MAC_LEN];
for (len = 0; len < sizeof(buf) && *pos; len++) {
if (isalpha(*pos) && isupper(*pos))
*wpos++ = tolower(*pos);
else
*wpos++ = *pos;
pos++;
}
addr[0] = (const u8 *) buf;
if (sha256_vector(1, addr, &len, mac) < 0)
return -1;
os_memcpy(hash, mac, 2);
return 0;
}
#endif /* CONFIG_FILS */
/**
* wpa_parse_vendor_specific - Parse Vendor Specific IEs
* @pos: Pointer to the IE header
* @end: Pointer to the end of the Key Data buffer
* @ie: Pointer to parsed IE data
*/
static void wpa_parse_vendor_specific(const u8 *pos, const u8 *end,
struct wpa_eapol_ie_parse *ie)
{
unsigned int oui;
if (pos[1] < 4) {
wpa_printf(MSG_MSGDUMP,
"Too short vendor specific IE ignored (len=%u)",
pos[1]);
return;
}
oui = WPA_GET_BE24(&pos[2]);
if (oui == OUI_MICROSOFT && pos[5] == WMM_OUI_TYPE && pos[1] > 4) {
if (pos[6] == WMM_OUI_SUBTYPE_INFORMATION_ELEMENT) {
ie->wmm = &pos[2];
ie->wmm_len = pos[1];
wpa_hexdump(MSG_DEBUG, "WPA: WMM IE",
ie->wmm, ie->wmm_len);
} else if (pos[6] == WMM_OUI_SUBTYPE_PARAMETER_ELEMENT) {
ie->wmm = &pos[2];
ie->wmm_len = pos[1];
wpa_hexdump(MSG_DEBUG, "WPA: WMM Parameter Element",
ie->wmm, ie->wmm_len);
}
}
}
/**
* wpa_parse_generic - Parse EAPOL-Key Key Data Generic IEs
* @pos: Pointer to the IE header
* @ie: Pointer to parsed IE data
* Returns: 0 on success, 1 if end mark is found, 2 if KDE is not recognized
*/
static int wpa_parse_generic(const u8 *pos, struct wpa_eapol_ie_parse *ie)
{
if (pos[1] == 0)
return 1;
if (pos[1] >= 6 &&
RSN_SELECTOR_GET(pos + 2) == WPA_OUI_TYPE &&
pos[2 + WPA_SELECTOR_LEN] == 1 &&
pos[2 + WPA_SELECTOR_LEN + 1] == 0) {
ie->wpa_ie = pos;
ie->wpa_ie_len = pos[1] + 2;
wpa_hexdump(MSG_DEBUG, "WPA: WPA IE in EAPOL-Key",
ie->wpa_ie, ie->wpa_ie_len);
return 0;
}
if (pos[1] >= 4 && WPA_GET_BE32(pos + 2) == OSEN_IE_VENDOR_TYPE) {
ie->osen = pos;
ie->osen_len = pos[1] + 2;
return 0;
}
if (pos[1] >= RSN_SELECTOR_LEN + PMKID_LEN &&
RSN_SELECTOR_GET(pos + 2) == RSN_KEY_DATA_PMKID) {
ie->pmkid = pos + 2 + RSN_SELECTOR_LEN;
wpa_hexdump(MSG_DEBUG, "WPA: PMKID in EAPOL-Key",
pos, pos[1] + 2);
return 0;
}
if (pos[1] >= RSN_SELECTOR_LEN + 2 &&
RSN_SELECTOR_GET(pos + 2) == RSN_KEY_DATA_KEYID) {
ie->key_id = pos + 2 + RSN_SELECTOR_LEN;
wpa_hexdump(MSG_DEBUG, "WPA: KeyID in EAPOL-Key",
pos, pos[1] + 2);
return 0;
}
if (pos[1] > RSN_SELECTOR_LEN + 2 &&
RSN_SELECTOR_GET(pos + 2) == RSN_KEY_DATA_GROUPKEY) {
ie->gtk = pos + 2 + RSN_SELECTOR_LEN;
ie->gtk_len = pos[1] - RSN_SELECTOR_LEN;
wpa_hexdump_key(MSG_DEBUG, "WPA: GTK in EAPOL-Key",
pos, pos[1] + 2);
return 0;
}
if (pos[1] > RSN_SELECTOR_LEN + 2 &&
RSN_SELECTOR_GET(pos + 2) == RSN_KEY_DATA_MAC_ADDR) {
ie->mac_addr = pos + 2 + RSN_SELECTOR_LEN;
ie->mac_addr_len = pos[1] - RSN_SELECTOR_LEN;
wpa_hexdump(MSG_DEBUG, "WPA: MAC Address in EAPOL-Key",
pos, pos[1] + 2);
return 0;
}
if (pos[1] > RSN_SELECTOR_LEN + 2 &&
RSN_SELECTOR_GET(pos + 2) == RSN_KEY_DATA_IGTK) {
ie->igtk = pos + 2 + RSN_SELECTOR_LEN;
ie->igtk_len = pos[1] - RSN_SELECTOR_LEN;
wpa_hexdump_key(MSG_DEBUG, "WPA: IGTK in EAPOL-Key",
pos, pos[1] + 2);
return 0;
}
if (pos[1] > RSN_SELECTOR_LEN + 2 &&
RSN_SELECTOR_GET(pos + 2) == RSN_KEY_DATA_BIGTK) {
ie->bigtk = pos + 2 + RSN_SELECTOR_LEN;
ie->bigtk_len = pos[1] - RSN_SELECTOR_LEN;
wpa_hexdump_key(MSG_DEBUG, "WPA: BIGTK in EAPOL-Key",
pos, pos[1] + 2);
return 0;
}
if (pos[1] >= RSN_SELECTOR_LEN + 1 &&
RSN_SELECTOR_GET(pos + 2) == WFA_KEY_DATA_IP_ADDR_REQ) {
ie->ip_addr_req = pos + 2 + RSN_SELECTOR_LEN;
wpa_hexdump(MSG_DEBUG, "WPA: IP Address Request in EAPOL-Key",
ie->ip_addr_req, pos[1] - RSN_SELECTOR_LEN);
return 0;
}
if (pos[1] >= RSN_SELECTOR_LEN + 3 * 4 &&
RSN_SELECTOR_GET(pos + 2) == WFA_KEY_DATA_IP_ADDR_ALLOC) {
ie->ip_addr_alloc = pos + 2 + RSN_SELECTOR_LEN;
wpa_hexdump(MSG_DEBUG,
"WPA: IP Address Allocation in EAPOL-Key",
ie->ip_addr_alloc, pos[1] - RSN_SELECTOR_LEN);
return 0;
}
if (pos[1] > RSN_SELECTOR_LEN + 2 &&
RSN_SELECTOR_GET(pos + 2) == RSN_KEY_DATA_OCI) {
ie->oci = pos + 2 + RSN_SELECTOR_LEN;
ie->oci_len = pos[1] - RSN_SELECTOR_LEN;
wpa_hexdump(MSG_DEBUG, "WPA: OCI KDE in EAPOL-Key",
pos, pos[1] + 2);
return 0;
}
if (pos[1] >= RSN_SELECTOR_LEN + 1 &&
RSN_SELECTOR_GET(pos + 2) == WFA_KEY_DATA_TRANSITION_DISABLE) {
ie->transition_disable = pos + 2 + RSN_SELECTOR_LEN;
ie->transition_disable_len = pos[1] - RSN_SELECTOR_LEN;
wpa_hexdump(MSG_DEBUG,
"WPA: Transition Disable KDE in EAPOL-Key",
pos, pos[1] + 2);
return 0;
}
if (pos[1] >= RSN_SELECTOR_LEN + 2 &&
RSN_SELECTOR_GET(pos + 2) == WFA_KEY_DATA_DPP) {
ie->dpp_kde = pos + 2 + RSN_SELECTOR_LEN;
ie->dpp_kde_len = pos[1] - RSN_SELECTOR_LEN;
wpa_hexdump(MSG_DEBUG, "WPA: DPP KDE in EAPOL-Key",
pos, pos[1] + 2);
return 0;
}
return 2;
}
/**
* wpa_parse_kde_ies - Parse EAPOL-Key Key Data IEs
* @buf: Pointer to the Key Data buffer
* @len: Key Data Length
* @ie: Pointer to parsed IE data
* Returns: 0 on success, -1 on failure
*/
int wpa_parse_kde_ies(const u8 *buf, size_t len, struct wpa_eapol_ie_parse *ie)
{
const u8 *pos, *end;
int ret = 0;
os_memset(ie, 0, sizeof(*ie));
for (pos = buf, end = pos + len; end - pos > 1; pos += 2 + pos[1]) {
if (pos[0] == 0xdd &&
((pos == buf + len - 1) || pos[1] == 0)) {
/* Ignore padding */
break;
}
if (2 + pos[1] > end - pos) {
wpa_printf(MSG_DEBUG,
"WPA: EAPOL-Key Key Data underflow (ie=%d len=%d pos=%d)",
pos[0], pos[1], (int) (pos - buf));
wpa_hexdump_key(MSG_DEBUG, "WPA: Key Data", buf, len);
ret = -1;
break;
}
if (*pos == WLAN_EID_RSN) {
ie->rsn_ie = pos;
ie->rsn_ie_len = pos[1] + 2;
wpa_hexdump(MSG_DEBUG, "WPA: RSN IE in EAPOL-Key",
ie->rsn_ie, ie->rsn_ie_len);
} else if (*pos == WLAN_EID_RSNX) {
ie->rsnxe = pos;
ie->rsnxe_len = pos[1] + 2;
wpa_hexdump(MSG_DEBUG, "WPA: RSNXE in EAPOL-Key",
ie->rsnxe, ie->rsnxe_len);
} else if (*pos == WLAN_EID_MOBILITY_DOMAIN) {
ie->mdie = pos;
ie->mdie_len = pos[1] + 2;
wpa_hexdump(MSG_DEBUG, "WPA: MDIE in EAPOL-Key",
ie->mdie, ie->mdie_len);
} else if (*pos == WLAN_EID_FAST_BSS_TRANSITION) {
ie->ftie = pos;
ie->ftie_len = pos[1] + 2;
wpa_hexdump(MSG_DEBUG, "WPA: FTIE in EAPOL-Key",
ie->ftie, ie->ftie_len);
} else if (*pos == WLAN_EID_TIMEOUT_INTERVAL && pos[1] >= 5) {
if (pos[2] == WLAN_TIMEOUT_REASSOC_DEADLINE) {
ie->reassoc_deadline = pos;
wpa_hexdump(MSG_DEBUG, "WPA: Reassoc Deadline "
"in EAPOL-Key",
ie->reassoc_deadline, pos[1] + 2);
} else if (pos[2] == WLAN_TIMEOUT_KEY_LIFETIME) {
ie->key_lifetime = pos;
wpa_hexdump(MSG_DEBUG, "WPA: KeyLifetime "
"in EAPOL-Key",
ie->key_lifetime, pos[1] + 2);
} else {
wpa_hexdump(MSG_DEBUG, "WPA: Unrecognized "
"EAPOL-Key Key Data IE",
pos, 2 + pos[1]);
}
} else if (*pos == WLAN_EID_LINK_ID) {
if (pos[1] >= 18) {
ie->lnkid = pos;
ie->lnkid_len = pos[1] + 2;
}
} else if (*pos == WLAN_EID_EXT_CAPAB) {
ie->ext_capab = pos;
ie->ext_capab_len = pos[1] + 2;
} else if (*pos == WLAN_EID_SUPP_RATES) {
ie->supp_rates = pos;
ie->supp_rates_len = pos[1] + 2;
} else if (*pos == WLAN_EID_EXT_SUPP_RATES) {
ie->ext_supp_rates = pos;
ie->ext_supp_rates_len = pos[1] + 2;
} else if (*pos == WLAN_EID_HT_CAP &&
pos[1] >= sizeof(struct ieee80211_ht_capabilities)) {
ie->ht_capabilities = pos + 2;
} else if (*pos == WLAN_EID_VHT_AID) {
if (pos[1] >= 2)
ie->aid = WPA_GET_LE16(pos + 2) & 0x3fff;
} else if (*pos == WLAN_EID_VHT_CAP &&
pos[1] >= sizeof(struct ieee80211_vht_capabilities))
{
ie->vht_capabilities = pos + 2;
} else if (*pos == WLAN_EID_EXTENSION &&
pos[1] >= 1 + IEEE80211_HE_CAPAB_MIN_LEN &&
pos[2] == WLAN_EID_EXT_HE_CAPABILITIES) {
ie->he_capabilities = pos + 3;
ie->he_capab_len = pos[1] - 1;
} else if (*pos == WLAN_EID_EXTENSION &&
pos[1] >= 1 +
sizeof(struct ieee80211_he_6ghz_band_cap) &&
pos[2] == WLAN_EID_EXT_HE_6GHZ_BAND_CAP) {
ie->he_6ghz_capabilities = pos + 3;
} else if (*pos == WLAN_EID_QOS && pos[1] >= 1) {
ie->qosinfo = pos[2];
} else if (*pos == WLAN_EID_SUPPORTED_CHANNELS) {
ie->supp_channels = pos + 2;
ie->supp_channels_len = pos[1];
} else if (*pos == WLAN_EID_SUPPORTED_OPERATING_CLASSES) {
/*
* The value of the Length field of the Supported
* Operating Classes element is between 2 and 253.
* Silently skip invalid elements to avoid interop
* issues when trying to use the value.
*/
if (pos[1] >= 2 && pos[1] <= 253) {
ie->supp_oper_classes = pos + 2;
ie->supp_oper_classes_len = pos[1];
}
} else if (*pos == WLAN_EID_VENDOR_SPECIFIC) {
ret = wpa_parse_generic(pos, ie);
if (ret == 1) {
/* end mark found */
ret = 0;
break;
}
if (ret == 2) {
/* not a known KDE */
wpa_parse_vendor_specific(pos, end, ie);
}
ret = 0;
} else {
wpa_hexdump(MSG_DEBUG,
"WPA: Unrecognized EAPOL-Key Key Data IE",
pos, 2 + pos[1]);
}
}
return ret;
}
#ifdef CONFIG_PASN
/*
* wpa_pasn_build_auth_header - Add the MAC header and initialize Authentication
* frame for PASN
*
* @buf: Buffer in which the header will be added
* @bssid: The BSSID of the AP
* @src: Source address
* @dst: Destination address
* @trans_seq: Authentication transaction sequence number
* @status: Authentication status
*/
void wpa_pasn_build_auth_header(struct wpabuf *buf, const u8 *bssid,
const u8 *src, const u8 *dst,
u8 trans_seq, u16 status)
{
struct ieee80211_mgmt *auth;
wpa_printf(MSG_DEBUG, "PASN: Add authentication header. trans_seq=%u",
trans_seq);
auth = wpabuf_put(buf, offsetof(struct ieee80211_mgmt,
u.auth.variable));
auth->frame_control = host_to_le16((WLAN_FC_TYPE_MGMT << 2) |
(WLAN_FC_STYPE_AUTH << 4));
os_memcpy(auth->da, dst, ETH_ALEN);
os_memcpy(auth->sa, src, ETH_ALEN);
os_memcpy(auth->bssid, bssid, ETH_ALEN);
auth->seq_ctrl = 0;
auth->u.auth.auth_alg = host_to_le16(WLAN_AUTH_PASN);
auth->u.auth.auth_transaction = host_to_le16(trans_seq);
auth->u.auth.status_code = host_to_le16(status);
}
/*
* wpa_pasn_add_rsne - Add an RSNE for PASN authentication
* @buf: Buffer in which the IE will be added
* @pmkid: Optional PMKID. Can be NULL.
* @akmp: Authentication and key management protocol
* @cipher: The cipher suite
*/
int wpa_pasn_add_rsne(struct wpabuf *buf, const u8 *pmkid, int akmp, int cipher)
{
struct rsn_ie_hdr *hdr;
u32 suite;
u16 capab;
u8 *pos;
u8 rsne_len;
wpa_printf(MSG_DEBUG, "PASN: Add RSNE");
rsne_len = sizeof(*hdr) + RSN_SELECTOR_LEN +
2 + RSN_SELECTOR_LEN + 2 + RSN_SELECTOR_LEN +
2 + RSN_SELECTOR_LEN + 2 + (pmkid ? PMKID_LEN : 0);
if (wpabuf_tailroom(buf) < rsne_len)
return -1;
hdr = wpabuf_put(buf, rsne_len);
hdr->elem_id = WLAN_EID_RSN;
hdr->len = rsne_len - 2;
WPA_PUT_LE16(hdr->version, RSN_VERSION);
pos = (u8 *) (hdr + 1);
/* Group addressed data is not allowed */
RSN_SELECTOR_PUT(pos, RSN_CIPHER_SUITE_NO_GROUP_ADDRESSED);
pos += RSN_SELECTOR_LEN;
/* Add the pairwise cipher */
WPA_PUT_LE16(pos, 1);
pos += 2;
suite = wpa_cipher_to_suite(WPA_PROTO_RSN, cipher);
RSN_SELECTOR_PUT(pos, suite);
pos += RSN_SELECTOR_LEN;
/* Add the AKM suite */
WPA_PUT_LE16(pos, 1);
pos += 2;
switch (akmp) {
case WPA_KEY_MGMT_PASN:
RSN_SELECTOR_PUT(pos, RSN_AUTH_KEY_MGMT_PASN);
break;
#ifdef CONFIG_SAE
case WPA_KEY_MGMT_SAE:
RSN_SELECTOR_PUT(pos, RSN_AUTH_KEY_MGMT_SAE);
break;
#endif /* CONFIG_SAE */
#ifdef CONFIG_FILS
case WPA_KEY_MGMT_FILS_SHA256:
RSN_SELECTOR_PUT(pos, RSN_AUTH_KEY_MGMT_FILS_SHA256);
break;
case WPA_KEY_MGMT_FILS_SHA384:
RSN_SELECTOR_PUT(pos, RSN_AUTH_KEY_MGMT_FILS_SHA384);
break;
#endif /* CONFIG_FILS */
#ifdef CONFIG_IEEE80211R
case WPA_KEY_MGMT_FT_PSK:
RSN_SELECTOR_PUT(pos, RSN_AUTH_KEY_MGMT_FT_PSK);
break;
case WPA_KEY_MGMT_FT_IEEE8021X:
RSN_SELECTOR_PUT(pos, RSN_AUTH_KEY_MGMT_FT_802_1X);
break;
case WPA_KEY_MGMT_FT_IEEE8021X_SHA384:
RSN_SELECTOR_PUT(pos, RSN_AUTH_KEY_MGMT_FT_802_1X_SHA384);
break;
#endif /* CONFIG_IEEE80211R */
default:
wpa_printf(MSG_ERROR, "PASN: Invalid AKMP=0x%x", akmp);
return -1;
}
pos += RSN_SELECTOR_LEN;
/* RSN Capabilities: PASN mandates both MFP capable and required */
capab = WPA_CAPABILITY_MFPC | WPA_CAPABILITY_MFPR;
WPA_PUT_LE16(pos, capab);
pos += 2;
if (pmkid) {
wpa_printf(MSG_DEBUG, "PASN: Adding PMKID");
WPA_PUT_LE16(pos, 1);
pos += 2;
os_memcpy(pos, pmkid, PMKID_LEN);
pos += PMKID_LEN;
} else {
WPA_PUT_LE16(pos, 0);
pos += 2;
}
/* Group addressed management is not allowed */
RSN_SELECTOR_PUT(pos, RSN_CIPHER_SUITE_NO_GROUP_ADDRESSED);
return 0;
}
/*
* wpa_pasn_add_parameter_ie - Add PASN Parameters IE for PASN authentication
* @buf: Buffer in which the IE will be added
* @pasn_group: Finite Cyclic Group ID for PASN authentication
* @wrapped_data_format: Format of the data in the Wrapped Data IE
* @pubkey: A buffer holding the local public key. Can be NULL
* @compressed: In case pubkey is included, indicates if the public key is
* compressed (only x coordinate is included) or not (both x and y
* coordinates are included)
* @comeback: A buffer holding the comeback token. Can be NULL
* @after: If comeback is set, defined the comeback time in seconds. -1 to not
* include the Comeback After field (frames from non-AP STA).
*/
void wpa_pasn_add_parameter_ie(struct wpabuf *buf, u16 pasn_group,
u8 wrapped_data_format,
const struct wpabuf *pubkey, bool compressed,
const struct wpabuf *comeback, int after)
{
struct pasn_parameter_ie *params;
wpa_printf(MSG_DEBUG, "PASN: Add PASN Parameters element");
params = wpabuf_put(buf, sizeof(*params));
params->id = WLAN_EID_EXTENSION;
params->len = sizeof(*params) - 2;
params->id_ext = WLAN_EID_EXT_PASN_PARAMS;
params->control = 0;
params->wrapped_data_format = wrapped_data_format;
if (comeback) {
wpa_printf(MSG_DEBUG, "PASN: Adding comeback data");
/*
* 2 octets for the 'after' field + 1 octet for the length +
* actual cookie data
*/
if (after >= 0)
params->len += 2;
params->len += 1 + wpabuf_len(comeback);
params->control |= WPA_PASN_CTRL_COMEBACK_INFO_PRESENT;
if (after >= 0)
wpabuf_put_le16(buf, after);
wpabuf_put_u8(buf, wpabuf_len(comeback));
wpabuf_put_buf(buf, comeback);
}
if (pubkey) {
wpa_printf(MSG_DEBUG,
"PASN: Adding public key and group ID %u",
pasn_group);
/*
* 2 octets for the finite cyclic group + 2 octets public key
* length + 1 octet for the compressed/uncompressed indication +
* the actual key.
*/
params->len += 2 + 1 + 1 + wpabuf_len(pubkey);
params->control |= WPA_PASN_CTRL_GROUP_AND_KEY_PRESENT;
wpabuf_put_le16(buf, pasn_group);
/*
* The first octet indicates whether the public key is
* compressed, as defined in RFC 5480 section 2.2.
*/
wpabuf_put_u8(buf, wpabuf_len(pubkey) + 1);
wpabuf_put_u8(buf, compressed ? WPA_PASN_PUBKEY_COMPRESSED_0 :
WPA_PASN_PUBKEY_UNCOMPRESSED);
wpabuf_put_buf(buf, pubkey);
}
}
/*
* wpa_pasn_add_wrapped_data - Add a Wrapped Data IE to PASN Authentication
* frame. If needed, the Wrapped Data IE would be fragmented.
*
* @buf: Buffer in which the IE will be added
* @wrapped_data_buf: Buffer holding the wrapped data
*/
int wpa_pasn_add_wrapped_data(struct wpabuf *buf,
struct wpabuf *wrapped_data_buf)
{
const u8 *data;
size_t data_len;
u8 len;
if (!wrapped_data_buf)
return 0;
wpa_printf(MSG_DEBUG, "PASN: Add wrapped data");
data = wpabuf_head_u8(wrapped_data_buf);
data_len = wpabuf_len(wrapped_data_buf);
/* nothing to add */
if (!data_len)
return 0;
if (data_len <= 254)
len = 1 + data_len;
else
len = 255;
if (wpabuf_tailroom(buf) < 3 + data_len)
return -1;
wpabuf_put_u8(buf, WLAN_EID_EXTENSION);
wpabuf_put_u8(buf, len);
wpabuf_put_u8(buf, WLAN_EID_EXT_WRAPPED_DATA);
wpabuf_put_data(buf, data, len - 1);
data += len - 1;
data_len -= len - 1;
while (data_len) {
if (wpabuf_tailroom(buf) < 1 + data_len)
return -1;
wpabuf_put_u8(buf, WLAN_EID_FRAGMENT);
len = data_len > 255 ? 255 : data_len;
wpabuf_put_u8(buf, len);
wpabuf_put_data(buf, data, len);
data += len;
data_len -= len;
}
return 0;
}
/*
* wpa_pasn_validate_rsne - Validate PSAN specific data of RSNE
* @data: Parsed representation of an RSNE
* Returns -1 for invalid data; otherwise 0
*/
int wpa_pasn_validate_rsne(const struct wpa_ie_data *data)
{
u16 capab = WPA_CAPABILITY_MFPC | WPA_CAPABILITY_MFPR;
if (data->proto != WPA_PROTO_RSN)
return -1;
if ((data->capabilities & capab) != capab) {
wpa_printf(MSG_DEBUG, "PASN: Invalid RSNE capabilities");
return -1;
}
if (!data->has_group || data->group_cipher != WPA_CIPHER_GTK_NOT_USED) {
wpa_printf(MSG_DEBUG, "PASN: Invalid group data cipher");
return -1;
}
if (!data->has_pairwise || !data->pairwise_cipher ||
(data->pairwise_cipher & (data->pairwise_cipher - 1))) {
wpa_printf(MSG_DEBUG, "PASN: No valid pairwise suite");
return -1;
}
switch (data->key_mgmt) {
#ifdef CONFIG_SAE
case WPA_KEY_MGMT_SAE:
/* fall through */
#endif /* CONFIG_SAE */
#ifdef CONFIG_FILS
case WPA_KEY_MGMT_FILS_SHA256:
case WPA_KEY_MGMT_FILS_SHA384:
/* fall through */
#endif /* CONFIG_FILS */
#ifdef CONFIG_IEEE80211R
case WPA_KEY_MGMT_FT_PSK:
case WPA_KEY_MGMT_FT_IEEE8021X:
case WPA_KEY_MGMT_FT_IEEE8021X_SHA384:
/* fall through */
#endif /* CONFIG_IEEE80211R */
case WPA_KEY_MGMT_PASN:
break;
default:
wpa_printf(MSG_ERROR, "PASN: invalid key_mgmt: 0x%0x",
data->key_mgmt);
return -1;
}
if (data->mgmt_group_cipher != WPA_CIPHER_GTK_NOT_USED) {
wpa_printf(MSG_DEBUG, "PASN: Invalid group mgmt cipher");
return -1;
}
if (data->num_pmkid > 1) {
wpa_printf(MSG_DEBUG, "PASN: Invalid number of PMKIDs");
return -1;
}
return 0;
}
/*
* wpa_pasn_parse_parameter_ie - Validates PASN Parameters IE
* @data: Pointer to the PASN Parameters IE (starting with the EID).
* @len: Length of the data in the PASN Parameters IE
* @from_ap: Whether this was received from an AP
* @pasn_params: On successful return would hold the parsed PASN parameters.
* Returns: -1 for invalid data; otherwise 0
*
* Note: On successful return, the pointers in &pasn_params point to the data in
* the IE and are not locally allocated (so they should not be freed etc.).
*/
int wpa_pasn_parse_parameter_ie(const u8 *data, u8 len, bool from_ap,
struct wpa_pasn_params_data *pasn_params)
{
struct pasn_parameter_ie *params = (struct pasn_parameter_ie *) data;
const u8 *pos = (const u8 *) (params + 1);
if (!pasn_params) {
wpa_printf(MSG_DEBUG, "PASN: Invalid params");
return -1;
}
if (!params || ((size_t) (params->len + 2) < sizeof(*params)) ||
len < sizeof(*params) || params->len + 2 != len) {
wpa_printf(MSG_DEBUG,
"PASN: Invalid parameters IE. len=(%u, %u)",
params ? params->len : 0, len);
return -1;
}
os_memset(pasn_params, 0, sizeof(*pasn_params));
switch (params->wrapped_data_format) {
case WPA_PASN_WRAPPED_DATA_NO:
case WPA_PASN_WRAPPED_DATA_SAE:
case WPA_PASN_WRAPPED_DATA_FILS_SK:
case WPA_PASN_WRAPPED_DATA_FT:
break;
default:
wpa_printf(MSG_DEBUG, "PASN: Invalid wrapped data format");
return -1;
}
pasn_params->wrapped_data_format = params->wrapped_data_format;
len -= sizeof(*params);
if (params->control & WPA_PASN_CTRL_COMEBACK_INFO_PRESENT) {
if (from_ap) {
if (len < 2) {
wpa_printf(MSG_DEBUG,
"PASN: Invalid Parameters IE: Truncated Comeback After");
return -1;
}
pasn_params->after = WPA_GET_LE16(pos);
pos += 2;
len -= 2;
}
if (len < 1 || len < 1 + *pos) {
wpa_printf(MSG_DEBUG,
"PASN: Invalid Parameters IE: comeback len");
return -1;
}
pasn_params->comeback_len = *pos++;
len--;
pasn_params->comeback = pos;
len -= pasn_params->comeback_len;
pos += pasn_params->comeback_len;
}
if (params->control & WPA_PASN_CTRL_GROUP_AND_KEY_PRESENT) {
if (len < 3 || len < 3 + pos[2]) {
wpa_printf(MSG_DEBUG,
"PASN: Invalid Parameters IE: group and key");
return -1;
}
pasn_params->group = WPA_GET_LE16(pos);
pos += 2;
len -= 2;
pasn_params->pubkey_len = *pos++;
len--;
pasn_params->pubkey = pos;
len -= pasn_params->pubkey_len;
pos += pasn_params->pubkey_len;
}
if (len) {
wpa_printf(MSG_DEBUG,
"PASN: Invalid Parameters IE. Bytes left=%u", len);
return -1;
}
return 0;
}
void wpa_pasn_add_rsnxe(struct wpabuf *buf, u16 capab)
{
size_t flen;
flen = (capab & 0xff00) ? 2 : 1;
if (!capab)
return; /* no supported extended RSN capabilities */
if (wpabuf_tailroom(buf) < 2 + flen)
return;
capab |= flen - 1; /* bit 0-3 = Field length (n - 1) */
wpabuf_put_u8(buf, WLAN_EID_RSNX);
wpabuf_put_u8(buf, flen);
wpabuf_put_u8(buf, capab & 0x00ff);
capab >>= 8;
if (capab)
wpabuf_put_u8(buf, capab);
}
#endif /* CONFIG_PASN */