hostap/wpa_supplicant/scan.c
Vamsi Krishna 658b6a0b08 Add support to estimate throughput for VHT 160/80+80 MHz supporting APs
Add support to calculate estimated throughputs for APs which support the
160 MHz (including 80+80 MHz) mode in VHT. The minimum SNR values for
VHT 160 MHz mode are derived from minimum SNR values used for VHT 80 MHz
mode + 3 dBm. The min-SNR values are derived relatively based on the
information that the minimum sensitivity levels defined in Table 21-25
(Receiver minimum input level sensitivity) in IEEE Std 802.11-2020 for
the 160 MHz mode are higher by 3 dBm compared to the values of the 80
MHz mode for each rate.

Signed-off-by: Jouni Malinen <jouni@codeaurora.org>
2021-05-07 12:28:46 +03:00

3170 lines
84 KiB
C

/*
* WPA Supplicant - Scanning
* Copyright (c) 2003-2019, Jouni Malinen <j@w1.fi>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include "utils/includes.h"
#include "utils/common.h"
#include "utils/eloop.h"
#include "common/ieee802_11_defs.h"
#include "common/wpa_ctrl.h"
#include "config.h"
#include "wpa_supplicant_i.h"
#include "driver_i.h"
#include "wps_supplicant.h"
#include "p2p_supplicant.h"
#include "p2p/p2p.h"
#include "hs20_supplicant.h"
#include "notify.h"
#include "bss.h"
#include "scan.h"
#include "mesh.h"
static void wpa_supplicant_gen_assoc_event(struct wpa_supplicant *wpa_s)
{
struct wpa_ssid *ssid;
union wpa_event_data data;
ssid = wpa_supplicant_get_ssid(wpa_s);
if (ssid == NULL)
return;
if (wpa_s->current_ssid == NULL) {
wpa_s->current_ssid = ssid;
wpas_notify_network_changed(wpa_s);
}
wpa_supplicant_initiate_eapol(wpa_s);
wpa_dbg(wpa_s, MSG_DEBUG, "Already associated with a configured "
"network - generating associated event");
os_memset(&data, 0, sizeof(data));
wpa_supplicant_event(wpa_s, EVENT_ASSOC, &data);
}
#ifdef CONFIG_WPS
static int wpas_wps_in_use(struct wpa_supplicant *wpa_s,
enum wps_request_type *req_type)
{
struct wpa_ssid *ssid;
int wps = 0;
for (ssid = wpa_s->conf->ssid; ssid; ssid = ssid->next) {
if (!(ssid->key_mgmt & WPA_KEY_MGMT_WPS))
continue;
wps = 1;
*req_type = wpas_wps_get_req_type(ssid);
if (ssid->eap.phase1 && os_strstr(ssid->eap.phase1, "pbc=1"))
return 2;
}
#ifdef CONFIG_P2P
if (!wpa_s->global->p2p_disabled && wpa_s->global->p2p &&
!wpa_s->conf->p2p_disabled) {
wpa_s->wps->dev.p2p = 1;
if (!wps) {
wps = 1;
*req_type = WPS_REQ_ENROLLEE_INFO;
}
}
#endif /* CONFIG_P2P */
return wps;
}
#endif /* CONFIG_WPS */
static int wpa_setup_mac_addr_rand_params(struct wpa_driver_scan_params *params,
const u8 *mac_addr)
{
u8 *tmp;
if (params->mac_addr) {
params->mac_addr_mask = NULL;
os_free(params->mac_addr);
params->mac_addr = NULL;
}
params->mac_addr_rand = 1;
if (!mac_addr)
return 0;
tmp = os_malloc(2 * ETH_ALEN);
if (!tmp)
return -1;
os_memcpy(tmp, mac_addr, 2 * ETH_ALEN);
params->mac_addr = tmp;
params->mac_addr_mask = tmp + ETH_ALEN;
return 0;
}
/**
* wpa_supplicant_enabled_networks - Check whether there are enabled networks
* @wpa_s: Pointer to wpa_supplicant data
* Returns: 0 if no networks are enabled, >0 if networks are enabled
*
* This function is used to figure out whether any networks (or Interworking
* with enabled credentials and auto_interworking) are present in the current
* configuration.
*/
int wpa_supplicant_enabled_networks(struct wpa_supplicant *wpa_s)
{
struct wpa_ssid *ssid = wpa_s->conf->ssid;
int count = 0, disabled = 0;
if (wpa_s->p2p_mgmt)
return 0; /* no normal network profiles on p2p_mgmt interface */
while (ssid) {
if (!wpas_network_disabled(wpa_s, ssid))
count++;
else
disabled++;
ssid = ssid->next;
}
if (wpa_s->conf->cred && wpa_s->conf->interworking &&
wpa_s->conf->auto_interworking)
count++;
if (count == 0 && disabled > 0) {
wpa_dbg(wpa_s, MSG_DEBUG, "No enabled networks (%d disabled "
"networks)", disabled);
}
return count;
}
static void wpa_supplicant_assoc_try(struct wpa_supplicant *wpa_s,
struct wpa_ssid *ssid)
{
int min_temp_disabled = 0;
while (ssid) {
if (!wpas_network_disabled(wpa_s, ssid)) {
int temp_disabled = wpas_temp_disabled(wpa_s, ssid);
if (temp_disabled <= 0)
break;
if (!min_temp_disabled ||
temp_disabled < min_temp_disabled)
min_temp_disabled = temp_disabled;
}
ssid = ssid->next;
}
/* ap_scan=2 mode - try to associate with each SSID. */
if (ssid == NULL) {
wpa_dbg(wpa_s, MSG_DEBUG, "wpa_supplicant_assoc_try: Reached "
"end of scan list - go back to beginning");
wpa_s->prev_scan_ssid = WILDCARD_SSID_SCAN;
wpa_supplicant_req_scan(wpa_s, min_temp_disabled, 0);
return;
}
if (ssid->next) {
/* Continue from the next SSID on the next attempt. */
wpa_s->prev_scan_ssid = ssid;
} else {
/* Start from the beginning of the SSID list. */
wpa_s->prev_scan_ssid = WILDCARD_SSID_SCAN;
}
wpa_supplicant_associate(wpa_s, NULL, ssid);
}
static void wpas_trigger_scan_cb(struct wpa_radio_work *work, int deinit)
{
struct wpa_supplicant *wpa_s = work->wpa_s;
struct wpa_driver_scan_params *params = work->ctx;
int ret;
if (deinit) {
if (!work->started) {
wpa_scan_free_params(params);
return;
}
wpa_supplicant_notify_scanning(wpa_s, 0);
wpas_notify_scan_done(wpa_s, 0);
wpa_s->scan_work = NULL;
return;
}
if ((wpa_s->mac_addr_rand_enable & MAC_ADDR_RAND_SCAN) &&
wpa_s->wpa_state <= WPA_SCANNING)
wpa_setup_mac_addr_rand_params(params, wpa_s->mac_addr_scan);
if (wpas_update_random_addr_disassoc(wpa_s) < 0) {
wpa_msg(wpa_s, MSG_INFO,
"Failed to assign random MAC address for a scan");
wpa_scan_free_params(params);
wpa_msg(wpa_s, MSG_INFO, WPA_EVENT_SCAN_FAILED "ret=-1");
radio_work_done(work);
return;
}
wpa_supplicant_notify_scanning(wpa_s, 1);
if (wpa_s->clear_driver_scan_cache) {
wpa_printf(MSG_DEBUG,
"Request driver to clear scan cache due to local BSS flush");
params->only_new_results = 1;
}
ret = wpa_drv_scan(wpa_s, params);
/*
* Store the obtained vendor scan cookie (if any) in wpa_s context.
* The current design is to allow only one scan request on each
* interface, hence having this scan cookie stored in wpa_s context is
* fine for now.
*
* Revisit this logic if concurrent scan operations per interface
* is supported.
*/
if (ret == 0)
wpa_s->curr_scan_cookie = params->scan_cookie;
wpa_scan_free_params(params);
work->ctx = NULL;
if (ret) {
int retry = wpa_s->last_scan_req != MANUAL_SCAN_REQ &&
!wpa_s->beacon_rep_data.token;
if (wpa_s->disconnected)
retry = 0;
/* do not retry if operation is not supported */
if (ret == -EOPNOTSUPP)
retry = 0;
wpa_supplicant_notify_scanning(wpa_s, 0);
wpas_notify_scan_done(wpa_s, 0);
if (wpa_s->wpa_state == WPA_SCANNING)
wpa_supplicant_set_state(wpa_s,
wpa_s->scan_prev_wpa_state);
wpa_msg(wpa_s, MSG_INFO, WPA_EVENT_SCAN_FAILED "ret=%d%s",
ret, retry ? " retry=1" : "");
radio_work_done(work);
if (retry) {
/* Restore scan_req since we will try to scan again */
wpa_s->scan_req = wpa_s->last_scan_req;
wpa_supplicant_req_scan(wpa_s, 1, 0);
} else if (wpa_s->scan_res_handler) {
/* Clear the scan_res_handler */
wpa_s->scan_res_handler = NULL;
}
if (wpa_s->beacon_rep_data.token)
wpas_rrm_refuse_request(wpa_s);
return;
}
os_get_reltime(&wpa_s->scan_trigger_time);
wpa_s->scan_runs++;
wpa_s->normal_scans++;
wpa_s->own_scan_requested = 1;
wpa_s->clear_driver_scan_cache = 0;
wpa_s->scan_work = work;
}
/**
* wpa_supplicant_trigger_scan - Request driver to start a scan
* @wpa_s: Pointer to wpa_supplicant data
* @params: Scan parameters
* Returns: 0 on success, -1 on failure
*/
int wpa_supplicant_trigger_scan(struct wpa_supplicant *wpa_s,
struct wpa_driver_scan_params *params)
{
struct wpa_driver_scan_params *ctx;
if (wpa_s->scan_work) {
wpa_dbg(wpa_s, MSG_INFO, "Reject scan trigger since one is already pending");
return -1;
}
ctx = wpa_scan_clone_params(params);
if (!ctx ||
radio_add_work(wpa_s, 0, "scan", 0, wpas_trigger_scan_cb, ctx) < 0)
{
wpa_scan_free_params(ctx);
wpa_msg(wpa_s, MSG_INFO, WPA_EVENT_SCAN_FAILED "ret=-1");
return -1;
}
return 0;
}
static void
wpa_supplicant_delayed_sched_scan_timeout(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_supplicant *wpa_s = eloop_ctx;
wpa_dbg(wpa_s, MSG_DEBUG, "Starting delayed sched scan");
if (wpa_supplicant_req_sched_scan(wpa_s))
wpa_supplicant_req_scan(wpa_s, 0, 0);
}
static void
wpa_supplicant_sched_scan_timeout(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_supplicant *wpa_s = eloop_ctx;
wpa_dbg(wpa_s, MSG_DEBUG, "Sched scan timeout - stopping it");
wpa_s->sched_scan_timed_out = 1;
wpa_supplicant_cancel_sched_scan(wpa_s);
}
static int
wpa_supplicant_start_sched_scan(struct wpa_supplicant *wpa_s,
struct wpa_driver_scan_params *params)
{
int ret;
wpa_supplicant_notify_scanning(wpa_s, 1);
ret = wpa_drv_sched_scan(wpa_s, params);
if (ret)
wpa_supplicant_notify_scanning(wpa_s, 0);
else
wpa_s->sched_scanning = 1;
return ret;
}
static int wpa_supplicant_stop_sched_scan(struct wpa_supplicant *wpa_s)
{
int ret;
ret = wpa_drv_stop_sched_scan(wpa_s);
if (ret) {
wpa_dbg(wpa_s, MSG_DEBUG, "stopping sched_scan failed!");
/* TODO: what to do if stopping fails? */
return -1;
}
return ret;
}
static struct wpa_driver_scan_filter *
wpa_supplicant_build_filter_ssids(struct wpa_config *conf, size_t *num_ssids)
{
struct wpa_driver_scan_filter *ssids;
struct wpa_ssid *ssid;
size_t count;
*num_ssids = 0;
if (!conf->filter_ssids)
return NULL;
for (count = 0, ssid = conf->ssid; ssid; ssid = ssid->next) {
if (ssid->ssid && ssid->ssid_len)
count++;
}
if (count == 0)
return NULL;
ssids = os_calloc(count, sizeof(struct wpa_driver_scan_filter));
if (ssids == NULL)
return NULL;
for (ssid = conf->ssid; ssid; ssid = ssid->next) {
if (!ssid->ssid || !ssid->ssid_len)
continue;
os_memcpy(ssids[*num_ssids].ssid, ssid->ssid, ssid->ssid_len);
ssids[*num_ssids].ssid_len = ssid->ssid_len;
(*num_ssids)++;
}
return ssids;
}
static void wpa_supplicant_optimize_freqs(
struct wpa_supplicant *wpa_s, struct wpa_driver_scan_params *params)
{
#ifdef CONFIG_P2P
if (params->freqs == NULL && wpa_s->p2p_in_provisioning &&
wpa_s->go_params) {
/* Optimize provisioning state scan based on GO information */
if (wpa_s->p2p_in_provisioning < 5 &&
wpa_s->go_params->freq > 0) {
wpa_dbg(wpa_s, MSG_DEBUG, "P2P: Scan only GO "
"preferred frequency %d MHz",
wpa_s->go_params->freq);
params->freqs = os_calloc(2, sizeof(int));
if (params->freqs)
params->freqs[0] = wpa_s->go_params->freq;
} else if (wpa_s->p2p_in_provisioning < 8 &&
wpa_s->go_params->freq_list[0]) {
wpa_dbg(wpa_s, MSG_DEBUG, "P2P: Scan only common "
"channels");
int_array_concat(&params->freqs,
wpa_s->go_params->freq_list);
if (params->freqs)
int_array_sort_unique(params->freqs);
}
wpa_s->p2p_in_provisioning++;
}
if (params->freqs == NULL && wpa_s->p2p_in_invitation) {
/*
* Optimize scan based on GO information during persistent
* group reinvocation
*/
if (wpa_s->p2p_in_invitation < 5 &&
wpa_s->p2p_invite_go_freq > 0) {
wpa_dbg(wpa_s, MSG_DEBUG, "P2P: Scan only GO preferred frequency %d MHz during invitation",
wpa_s->p2p_invite_go_freq);
params->freqs = os_calloc(2, sizeof(int));
if (params->freqs)
params->freqs[0] = wpa_s->p2p_invite_go_freq;
}
wpa_s->p2p_in_invitation++;
if (wpa_s->p2p_in_invitation > 20) {
/*
* This should not really happen since the variable is
* cleared on group removal, but if it does happen, make
* sure we do not get stuck in special invitation scan
* mode.
*/
wpa_dbg(wpa_s, MSG_DEBUG, "P2P: Clear p2p_in_invitation");
wpa_s->p2p_in_invitation = 0;
}
}
#endif /* CONFIG_P2P */
#ifdef CONFIG_WPS
if (params->freqs == NULL && wpa_s->after_wps && wpa_s->wps_freq) {
/*
* Optimize post-provisioning scan based on channel used
* during provisioning.
*/
wpa_dbg(wpa_s, MSG_DEBUG, "WPS: Scan only frequency %u MHz "
"that was used during provisioning", wpa_s->wps_freq);
params->freqs = os_calloc(2, sizeof(int));
if (params->freqs)
params->freqs[0] = wpa_s->wps_freq;
wpa_s->after_wps--;
} else if (wpa_s->after_wps)
wpa_s->after_wps--;
if (params->freqs == NULL && wpa_s->known_wps_freq && wpa_s->wps_freq)
{
/* Optimize provisioning scan based on already known channel */
wpa_dbg(wpa_s, MSG_DEBUG, "WPS: Scan only frequency %u MHz",
wpa_s->wps_freq);
params->freqs = os_calloc(2, sizeof(int));
if (params->freqs)
params->freqs[0] = wpa_s->wps_freq;
wpa_s->known_wps_freq = 0; /* only do this once */
}
#endif /* CONFIG_WPS */
}
#ifdef CONFIG_INTERWORKING
static void wpas_add_interworking_elements(struct wpa_supplicant *wpa_s,
struct wpabuf *buf)
{
wpabuf_put_u8(buf, WLAN_EID_INTERWORKING);
wpabuf_put_u8(buf, is_zero_ether_addr(wpa_s->conf->hessid) ? 1 :
1 + ETH_ALEN);
wpabuf_put_u8(buf, wpa_s->conf->access_network_type);
/* No Venue Info */
if (!is_zero_ether_addr(wpa_s->conf->hessid))
wpabuf_put_data(buf, wpa_s->conf->hessid, ETH_ALEN);
}
#endif /* CONFIG_INTERWORKING */
#ifdef CONFIG_MBO
static void wpas_fils_req_param_add_max_channel(struct wpa_supplicant *wpa_s,
struct wpabuf **ie)
{
if (wpabuf_resize(ie, 5)) {
wpa_printf(MSG_DEBUG,
"Failed to allocate space for FILS Request Parameters element");
return;
}
/* FILS Request Parameters element */
wpabuf_put_u8(*ie, WLAN_EID_EXTENSION);
wpabuf_put_u8(*ie, 3); /* FILS Request attribute length */
wpabuf_put_u8(*ie, WLAN_EID_EXT_FILS_REQ_PARAMS);
/* Parameter control bitmap */
wpabuf_put_u8(*ie, 0);
/* Max Channel Time field - contains the value of MaxChannelTime
* parameter of the MLME-SCAN.request primitive represented in units of
* TUs, as an unsigned integer. A Max Channel Time field value of 255
* is used to indicate any duration of more than 254 TUs, or an
* unspecified or unknown duration. (IEEE Std 802.11ai-2016, 9.4.2.178)
*/
wpabuf_put_u8(*ie, 255);
}
#endif /* CONFIG_MBO */
void wpa_supplicant_set_default_scan_ies(struct wpa_supplicant *wpa_s)
{
struct wpabuf *default_ies = NULL;
u8 ext_capab[18];
int ext_capab_len, frame_id;
enum wpa_driver_if_type type = WPA_IF_STATION;
#ifdef CONFIG_P2P
if (wpa_s->p2p_group_interface == P2P_GROUP_INTERFACE_CLIENT)
type = WPA_IF_P2P_CLIENT;
#endif /* CONFIG_P2P */
wpa_drv_get_ext_capa(wpa_s, type);
ext_capab_len = wpas_build_ext_capab(wpa_s, ext_capab,
sizeof(ext_capab));
if (ext_capab_len > 0 &&
wpabuf_resize(&default_ies, ext_capab_len) == 0)
wpabuf_put_data(default_ies, ext_capab, ext_capab_len);
#ifdef CONFIG_MBO
if (wpa_s->enable_oce & OCE_STA)
wpas_fils_req_param_add_max_channel(wpa_s, &default_ies);
/* Send MBO and OCE capabilities */
if (wpabuf_resize(&default_ies, 12) == 0)
wpas_mbo_scan_ie(wpa_s, default_ies);
#endif /* CONFIG_MBO */
if (type == WPA_IF_P2P_CLIENT)
frame_id = VENDOR_ELEM_PROBE_REQ_P2P;
else
frame_id = VENDOR_ELEM_PROBE_REQ;
if (wpa_s->vendor_elem[frame_id]) {
size_t len;
len = wpabuf_len(wpa_s->vendor_elem[frame_id]);
if (len > 0 && wpabuf_resize(&default_ies, len) == 0)
wpabuf_put_buf(default_ies,
wpa_s->vendor_elem[frame_id]);
}
if (default_ies)
wpa_drv_set_default_scan_ies(wpa_s, wpabuf_head(default_ies),
wpabuf_len(default_ies));
wpabuf_free(default_ies);
}
static struct wpabuf * wpa_supplicant_extra_ies(struct wpa_supplicant *wpa_s)
{
struct wpabuf *extra_ie = NULL;
u8 ext_capab[18];
int ext_capab_len;
#ifdef CONFIG_WPS
int wps = 0;
enum wps_request_type req_type = WPS_REQ_ENROLLEE_INFO;
#endif /* CONFIG_WPS */
#ifdef CONFIG_P2P
if (wpa_s->p2p_group_interface == P2P_GROUP_INTERFACE_CLIENT)
wpa_drv_get_ext_capa(wpa_s, WPA_IF_P2P_CLIENT);
else
#endif /* CONFIG_P2P */
wpa_drv_get_ext_capa(wpa_s, WPA_IF_STATION);
ext_capab_len = wpas_build_ext_capab(wpa_s, ext_capab,
sizeof(ext_capab));
if (ext_capab_len > 0 &&
wpabuf_resize(&extra_ie, ext_capab_len) == 0)
wpabuf_put_data(extra_ie, ext_capab, ext_capab_len);
#ifdef CONFIG_INTERWORKING
if (wpa_s->conf->interworking &&
wpabuf_resize(&extra_ie, 100) == 0)
wpas_add_interworking_elements(wpa_s, extra_ie);
#endif /* CONFIG_INTERWORKING */
#ifdef CONFIG_MBO
if (wpa_s->enable_oce & OCE_STA)
wpas_fils_req_param_add_max_channel(wpa_s, &extra_ie);
#endif /* CONFIG_MBO */
#ifdef CONFIG_WPS
wps = wpas_wps_in_use(wpa_s, &req_type);
if (wps) {
struct wpabuf *wps_ie;
wps_ie = wps_build_probe_req_ie(wps == 2 ? DEV_PW_PUSHBUTTON :
DEV_PW_DEFAULT,
&wpa_s->wps->dev,
wpa_s->wps->uuid, req_type,
0, NULL);
if (wps_ie) {
if (wpabuf_resize(&extra_ie, wpabuf_len(wps_ie)) == 0)
wpabuf_put_buf(extra_ie, wps_ie);
wpabuf_free(wps_ie);
}
}
#ifdef CONFIG_P2P
if (wps) {
size_t ielen = p2p_scan_ie_buf_len(wpa_s->global->p2p);
if (wpabuf_resize(&extra_ie, ielen) == 0)
wpas_p2p_scan_ie(wpa_s, extra_ie);
}
#endif /* CONFIG_P2P */
wpa_supplicant_mesh_add_scan_ie(wpa_s, &extra_ie);
#endif /* CONFIG_WPS */
#ifdef CONFIG_HS20
if (wpa_s->conf->hs20 && wpabuf_resize(&extra_ie, 9) == 0)
wpas_hs20_add_indication(extra_ie, -1, 0);
#endif /* CONFIG_HS20 */
#ifdef CONFIG_FST
if (wpa_s->fst_ies &&
wpabuf_resize(&extra_ie, wpabuf_len(wpa_s->fst_ies)) == 0)
wpabuf_put_buf(extra_ie, wpa_s->fst_ies);
#endif /* CONFIG_FST */
#ifdef CONFIG_MBO
/* Send MBO and OCE capabilities */
if (wpabuf_resize(&extra_ie, 12) == 0)
wpas_mbo_scan_ie(wpa_s, extra_ie);
#endif /* CONFIG_MBO */
if (wpa_s->vendor_elem[VENDOR_ELEM_PROBE_REQ]) {
struct wpabuf *buf = wpa_s->vendor_elem[VENDOR_ELEM_PROBE_REQ];
if (wpabuf_resize(&extra_ie, wpabuf_len(buf)) == 0)
wpabuf_put_buf(extra_ie, buf);
}
return extra_ie;
}
#ifdef CONFIG_P2P
/*
* Check whether there are any enabled networks or credentials that could be
* used for a non-P2P connection.
*/
static int non_p2p_network_enabled(struct wpa_supplicant *wpa_s)
{
struct wpa_ssid *ssid;
for (ssid = wpa_s->conf->ssid; ssid; ssid = ssid->next) {
if (wpas_network_disabled(wpa_s, ssid))
continue;
if (!ssid->p2p_group)
return 1;
}
if (wpa_s->conf->cred && wpa_s->conf->interworking &&
wpa_s->conf->auto_interworking)
return 1;
return 0;
}
#endif /* CONFIG_P2P */
int wpa_add_scan_freqs_list(struct wpa_supplicant *wpa_s,
enum hostapd_hw_mode band,
struct wpa_driver_scan_params *params, bool is_6ghz)
{
/* Include only supported channels for the specified band */
struct hostapd_hw_modes *mode;
int num_chans = 0;
int *freqs, i;
mode = get_mode(wpa_s->hw.modes, wpa_s->hw.num_modes, band, is_6ghz);
if (!mode)
return -1;
if (params->freqs) {
while (params->freqs[num_chans])
num_chans++;
}
freqs = os_realloc(params->freqs,
(num_chans + mode->num_channels + 1) * sizeof(int));
if (!freqs)
return -1;
params->freqs = freqs;
for (i = 0; i < mode->num_channels; i++) {
if (mode->channels[i].flag & HOSTAPD_CHAN_DISABLED)
continue;
params->freqs[num_chans++] = mode->channels[i].freq;
}
params->freqs[num_chans] = 0;
return 0;
}
static void wpa_setband_scan_freqs(struct wpa_supplicant *wpa_s,
struct wpa_driver_scan_params *params)
{
if (wpa_s->hw.modes == NULL)
return; /* unknown what channels the driver supports */
if (params->freqs)
return; /* already using a limited channel set */
if (wpa_s->setband_mask & WPA_SETBAND_5G)
wpa_add_scan_freqs_list(wpa_s, HOSTAPD_MODE_IEEE80211A, params,
0);
if (wpa_s->setband_mask & WPA_SETBAND_2G)
wpa_add_scan_freqs_list(wpa_s, HOSTAPD_MODE_IEEE80211G, params,
0);
if (wpa_s->setband_mask & WPA_SETBAND_6G)
wpa_add_scan_freqs_list(wpa_s, HOSTAPD_MODE_IEEE80211A, params,
1);
}
static void wpa_add_scan_ssid(struct wpa_supplicant *wpa_s,
struct wpa_driver_scan_params *params,
size_t max_ssids, const u8 *ssid, size_t ssid_len)
{
unsigned int j;
for (j = 0; j < params->num_ssids; j++) {
if (params->ssids[j].ssid_len == ssid_len &&
params->ssids[j].ssid &&
os_memcmp(params->ssids[j].ssid, ssid, ssid_len) == 0)
return; /* already in the list */
}
if (params->num_ssids + 1 > max_ssids) {
wpa_printf(MSG_DEBUG, "Over max scan SSIDs for manual request");
return;
}
wpa_printf(MSG_DEBUG, "Scan SSID (manual request): %s",
wpa_ssid_txt(ssid, ssid_len));
params->ssids[params->num_ssids].ssid = ssid;
params->ssids[params->num_ssids].ssid_len = ssid_len;
params->num_ssids++;
}
static void wpa_add_owe_scan_ssid(struct wpa_supplicant *wpa_s,
struct wpa_driver_scan_params *params,
struct wpa_ssid *ssid, size_t max_ssids)
{
#ifdef CONFIG_OWE
struct wpa_bss *bss;
if (!(ssid->key_mgmt & WPA_KEY_MGMT_OWE))
return;
wpa_printf(MSG_DEBUG, "OWE: Look for transition mode AP. ssid=%s",
wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
dl_list_for_each(bss, &wpa_s->bss, struct wpa_bss, list) {
const u8 *owe, *pos, *end;
const u8 *owe_ssid;
size_t owe_ssid_len;
if (bss->ssid_len != ssid->ssid_len ||
os_memcmp(bss->ssid, ssid->ssid, ssid->ssid_len) != 0)
continue;
owe = wpa_bss_get_vendor_ie(bss, OWE_IE_VENDOR_TYPE);
if (!owe || owe[1] < 4)
continue;
pos = owe + 6;
end = owe + 2 + owe[1];
/* Must include BSSID and ssid_len */
if (end - pos < ETH_ALEN + 1)
return;
/* Skip BSSID */
pos += ETH_ALEN;
owe_ssid_len = *pos++;
owe_ssid = pos;
if ((size_t) (end - pos) < owe_ssid_len ||
owe_ssid_len > SSID_MAX_LEN)
return;
wpa_printf(MSG_DEBUG,
"OWE: scan_ssids: transition mode OWE ssid=%s",
wpa_ssid_txt(owe_ssid, owe_ssid_len));
wpa_add_scan_ssid(wpa_s, params, max_ssids,
owe_ssid, owe_ssid_len);
return;
}
#endif /* CONFIG_OWE */
}
static void wpa_set_scan_ssids(struct wpa_supplicant *wpa_s,
struct wpa_driver_scan_params *params,
size_t max_ssids)
{
unsigned int i;
struct wpa_ssid *ssid;
/*
* For devices with max_ssids greater than 1, leave the last slot empty
* for adding the wildcard scan entry.
*/
max_ssids = max_ssids > 1 ? max_ssids - 1 : max_ssids;
for (i = 0; i < wpa_s->scan_id_count; i++) {
ssid = wpa_config_get_network(wpa_s->conf, wpa_s->scan_id[i]);
if (!ssid)
continue;
if (ssid->scan_ssid)
wpa_add_scan_ssid(wpa_s, params, max_ssids,
ssid->ssid, ssid->ssid_len);
/*
* Also add the SSID of the OWE BSS, to allow discovery of
* transition mode APs more quickly.
*/
wpa_add_owe_scan_ssid(wpa_s, params, ssid, max_ssids);
}
wpa_s->scan_id_count = 0;
}
static int wpa_set_ssids_from_scan_req(struct wpa_supplicant *wpa_s,
struct wpa_driver_scan_params *params,
size_t max_ssids)
{
unsigned int i;
if (wpa_s->ssids_from_scan_req == NULL ||
wpa_s->num_ssids_from_scan_req == 0)
return 0;
if (wpa_s->num_ssids_from_scan_req > max_ssids) {
wpa_s->num_ssids_from_scan_req = max_ssids;
wpa_printf(MSG_DEBUG, "Over max scan SSIDs from scan req: %u",
(unsigned int) max_ssids);
}
for (i = 0; i < wpa_s->num_ssids_from_scan_req; i++) {
params->ssids[i].ssid = wpa_s->ssids_from_scan_req[i].ssid;
params->ssids[i].ssid_len =
wpa_s->ssids_from_scan_req[i].ssid_len;
wpa_hexdump_ascii(MSG_DEBUG, "specific SSID",
params->ssids[i].ssid,
params->ssids[i].ssid_len);
}
params->num_ssids = wpa_s->num_ssids_from_scan_req;
wpa_s->num_ssids_from_scan_req = 0;
return 1;
}
static void wpa_supplicant_scan(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_supplicant *wpa_s = eloop_ctx;
struct wpa_ssid *ssid;
int ret, p2p_in_prog;
struct wpabuf *extra_ie = NULL;
struct wpa_driver_scan_params params;
struct wpa_driver_scan_params *scan_params;
size_t max_ssids;
int connect_without_scan = 0;
wpa_s->ignore_post_flush_scan_res = 0;
if (wpa_s->wpa_state == WPA_INTERFACE_DISABLED) {
wpa_dbg(wpa_s, MSG_DEBUG, "Skip scan - interface disabled");
return;
}
if (wpa_s->disconnected && wpa_s->scan_req == NORMAL_SCAN_REQ) {
wpa_dbg(wpa_s, MSG_DEBUG, "Disconnected - do not scan");
wpa_supplicant_set_state(wpa_s, WPA_DISCONNECTED);
return;
}
if (wpa_s->scanning) {
/*
* If we are already in scanning state, we shall reschedule the
* the incoming scan request.
*/
wpa_dbg(wpa_s, MSG_DEBUG, "Already scanning - Reschedule the incoming scan req");
wpa_supplicant_req_scan(wpa_s, 1, 0);
return;
}
if (!wpa_supplicant_enabled_networks(wpa_s) &&
wpa_s->scan_req == NORMAL_SCAN_REQ) {
wpa_dbg(wpa_s, MSG_DEBUG, "No enabled networks - do not scan");
wpa_supplicant_set_state(wpa_s, WPA_INACTIVE);
return;
}
if (wpa_s->conf->ap_scan != 0 &&
(wpa_s->drv_flags & WPA_DRIVER_FLAGS_WIRED)) {
wpa_dbg(wpa_s, MSG_DEBUG, "Using wired authentication - "
"overriding ap_scan configuration");
wpa_s->conf->ap_scan = 0;
wpas_notify_ap_scan_changed(wpa_s);
}
if (wpa_s->conf->ap_scan == 0) {
wpa_supplicant_gen_assoc_event(wpa_s);
return;
}
ssid = NULL;
if (wpa_s->scan_req != MANUAL_SCAN_REQ &&
wpa_s->connect_without_scan) {
connect_without_scan = 1;
for (ssid = wpa_s->conf->ssid; ssid; ssid = ssid->next) {
if (ssid == wpa_s->connect_without_scan)
break;
}
}
p2p_in_prog = wpas_p2p_in_progress(wpa_s);
if (p2p_in_prog && p2p_in_prog != 2 &&
(!ssid ||
(ssid->mode != WPAS_MODE_AP && ssid->mode != WPAS_MODE_P2P_GO))) {
wpa_dbg(wpa_s, MSG_DEBUG, "Delay station mode scan while P2P operation is in progress");
wpa_supplicant_req_scan(wpa_s, 5, 0);
return;
}
/*
* Don't cancel the scan based on ongoing PNO; defer it. Some scans are
* used for changing modes inside wpa_supplicant (roaming,
* auto-reconnect, etc). Discarding the scan might hurt these processes.
* The normal use case for PNO is to suspend the host immediately after
* starting PNO, so the periodic 100 ms attempts to run the scan do not
* normally happen in practice multiple times, i.e., this is simply
* restarting scanning once the host is woken up and PNO stopped.
*/
if (wpa_s->pno || wpa_s->pno_sched_pending) {
wpa_dbg(wpa_s, MSG_DEBUG, "Defer scan - PNO is in progress");
wpa_supplicant_req_scan(wpa_s, 0, 100000);
return;
}
if (wpa_s->conf->ap_scan == 2)
max_ssids = 1;
else {
max_ssids = wpa_s->max_scan_ssids;
if (max_ssids > WPAS_MAX_SCAN_SSIDS)
max_ssids = WPAS_MAX_SCAN_SSIDS;
}
wpa_s->last_scan_req = wpa_s->scan_req;
wpa_s->scan_req = NORMAL_SCAN_REQ;
if (connect_without_scan) {
wpa_s->connect_without_scan = NULL;
if (ssid) {
wpa_printf(MSG_DEBUG, "Start a pre-selected network "
"without scan step");
wpa_supplicant_associate(wpa_s, NULL, ssid);
return;
}
}
os_memset(&params, 0, sizeof(params));
wpa_s->scan_prev_wpa_state = wpa_s->wpa_state;
if (wpa_s->wpa_state == WPA_DISCONNECTED ||
wpa_s->wpa_state == WPA_INACTIVE)
wpa_supplicant_set_state(wpa_s, WPA_SCANNING);
/*
* If autoscan has set its own scanning parameters
*/
if (wpa_s->autoscan_params != NULL) {
scan_params = wpa_s->autoscan_params;
goto scan;
}
if (wpa_s->last_scan_req == MANUAL_SCAN_REQ &&
wpa_set_ssids_from_scan_req(wpa_s, &params, max_ssids)) {
wpa_printf(MSG_DEBUG, "Use specific SSIDs from SCAN command");
goto ssid_list_set;
}
#ifdef CONFIG_P2P
if ((wpa_s->p2p_in_provisioning || wpa_s->show_group_started) &&
wpa_s->go_params && !wpa_s->conf->passive_scan) {
wpa_printf(MSG_DEBUG, "P2P: Use specific SSID for scan during P2P group formation (p2p_in_provisioning=%d show_group_started=%d)",
wpa_s->p2p_in_provisioning,
wpa_s->show_group_started);
params.ssids[0].ssid = wpa_s->go_params->ssid;
params.ssids[0].ssid_len = wpa_s->go_params->ssid_len;
params.num_ssids = 1;
goto ssid_list_set;
}
if (wpa_s->p2p_in_invitation) {
if (wpa_s->current_ssid) {
wpa_printf(MSG_DEBUG, "P2P: Use specific SSID for scan during invitation");
params.ssids[0].ssid = wpa_s->current_ssid->ssid;
params.ssids[0].ssid_len =
wpa_s->current_ssid->ssid_len;
params.num_ssids = 1;
} else {
wpa_printf(MSG_DEBUG, "P2P: No specific SSID known for scan during invitation");
}
goto ssid_list_set;
}
#endif /* CONFIG_P2P */
/* Find the starting point from which to continue scanning */
ssid = wpa_s->conf->ssid;
if (wpa_s->prev_scan_ssid != WILDCARD_SSID_SCAN) {
while (ssid) {
if (ssid == wpa_s->prev_scan_ssid) {
ssid = ssid->next;
break;
}
ssid = ssid->next;
}
}
if (wpa_s->last_scan_req != MANUAL_SCAN_REQ &&
#ifdef CONFIG_AP
!wpa_s->ap_iface &&
#endif /* CONFIG_AP */
wpa_s->conf->ap_scan == 2) {
wpa_s->connect_without_scan = NULL;
wpa_s->prev_scan_wildcard = 0;
wpa_supplicant_assoc_try(wpa_s, ssid);
return;
} else if (wpa_s->conf->ap_scan == 2) {
/*
* User-initiated scan request in ap_scan == 2; scan with
* wildcard SSID.
*/
ssid = NULL;
} else if (wpa_s->reattach && wpa_s->current_ssid != NULL) {
/*
* Perform single-channel single-SSID scan for
* reassociate-to-same-BSS operation.
*/
/* Setup SSID */
ssid = wpa_s->current_ssid;
wpa_hexdump_ascii(MSG_DEBUG, "Scan SSID",
ssid->ssid, ssid->ssid_len);
params.ssids[0].ssid = ssid->ssid;
params.ssids[0].ssid_len = ssid->ssid_len;
params.num_ssids = 1;
/*
* Allocate memory for frequency array, allocate one extra
* slot for the zero-terminator.
*/
params.freqs = os_malloc(sizeof(int) * 2);
if (params.freqs) {
params.freqs[0] = wpa_s->assoc_freq;
params.freqs[1] = 0;
}
/*
* Reset the reattach flag so that we fall back to full scan if
* this scan fails.
*/
wpa_s->reattach = 0;
} else {
struct wpa_ssid *start = ssid, *tssid;
int freqs_set = 0;
if (ssid == NULL && max_ssids > 1)
ssid = wpa_s->conf->ssid;
while (ssid) {
if (!wpas_network_disabled(wpa_s, ssid) &&
ssid->scan_ssid) {
wpa_hexdump_ascii(MSG_DEBUG, "Scan SSID",
ssid->ssid, ssid->ssid_len);
params.ssids[params.num_ssids].ssid =
ssid->ssid;
params.ssids[params.num_ssids].ssid_len =
ssid->ssid_len;
params.num_ssids++;
if (params.num_ssids + 1 >= max_ssids)
break;
}
if (!wpas_network_disabled(wpa_s, ssid)) {
/*
* Also add the SSID of the OWE BSS, to allow
* discovery of transition mode APs more
* quickly.
*/
wpa_add_owe_scan_ssid(wpa_s, &params, ssid,
max_ssids);
}
ssid = ssid->next;
if (ssid == start)
break;
if (ssid == NULL && max_ssids > 1 &&
start != wpa_s->conf->ssid)
ssid = wpa_s->conf->ssid;
}
if (wpa_s->scan_id_count &&
wpa_s->last_scan_req == MANUAL_SCAN_REQ)
wpa_set_scan_ssids(wpa_s, &params, max_ssids);
for (tssid = wpa_s->conf->ssid;
wpa_s->last_scan_req != MANUAL_SCAN_REQ && tssid;
tssid = tssid->next) {
if (wpas_network_disabled(wpa_s, tssid))
continue;
if (((params.freqs || !freqs_set) &&
tssid->scan_freq) &&
int_array_len(params.freqs) < 100) {
int_array_concat(&params.freqs,
tssid->scan_freq);
} else {
os_free(params.freqs);
params.freqs = NULL;
}
freqs_set = 1;
}
int_array_sort_unique(params.freqs);
}
if (ssid && max_ssids == 1) {
/*
* If the driver is limited to 1 SSID at a time interleave
* wildcard SSID scans with specific SSID scans to avoid
* waiting a long time for a wildcard scan.
*/
if (!wpa_s->prev_scan_wildcard) {
params.ssids[0].ssid = NULL;
params.ssids[0].ssid_len = 0;
wpa_s->prev_scan_wildcard = 1;
wpa_dbg(wpa_s, MSG_DEBUG, "Starting AP scan for "
"wildcard SSID (Interleave with specific)");
} else {
wpa_s->prev_scan_ssid = ssid;
wpa_s->prev_scan_wildcard = 0;
wpa_dbg(wpa_s, MSG_DEBUG,
"Starting AP scan for specific SSID: %s",
wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
}
} else if (ssid) {
/* max_ssids > 1 */
wpa_s->prev_scan_ssid = ssid;
wpa_dbg(wpa_s, MSG_DEBUG, "Include wildcard SSID in "
"the scan request");
params.num_ssids++;
} else if (wpa_s->last_scan_req == MANUAL_SCAN_REQ &&
wpa_s->manual_scan_passive && params.num_ssids == 0) {
wpa_dbg(wpa_s, MSG_DEBUG, "Use passive scan based on manual request");
} else if (wpa_s->conf->passive_scan) {
wpa_dbg(wpa_s, MSG_DEBUG,
"Use passive scan based on configuration");
} else {
wpa_s->prev_scan_ssid = WILDCARD_SSID_SCAN;
params.num_ssids++;
wpa_dbg(wpa_s, MSG_DEBUG, "Starting AP scan for wildcard "
"SSID");
}
ssid_list_set:
wpa_supplicant_optimize_freqs(wpa_s, &params);
extra_ie = wpa_supplicant_extra_ies(wpa_s);
if (wpa_s->last_scan_req == MANUAL_SCAN_REQ &&
wpa_s->manual_scan_only_new) {
wpa_printf(MSG_DEBUG,
"Request driver to clear scan cache due to manual only_new=1 scan");
params.only_new_results = 1;
}
if (wpa_s->last_scan_req == MANUAL_SCAN_REQ && params.freqs == NULL &&
wpa_s->manual_scan_freqs) {
wpa_dbg(wpa_s, MSG_DEBUG, "Limit manual scan to specified channels");
params.freqs = wpa_s->manual_scan_freqs;
wpa_s->manual_scan_freqs = NULL;
}
if (params.freqs == NULL && wpa_s->select_network_scan_freqs) {
wpa_dbg(wpa_s, MSG_DEBUG,
"Limit select_network scan to specified channels");
params.freqs = wpa_s->select_network_scan_freqs;
wpa_s->select_network_scan_freqs = NULL;
}
if (params.freqs == NULL && wpa_s->next_scan_freqs) {
wpa_dbg(wpa_s, MSG_DEBUG, "Optimize scan based on previously "
"generated frequency list");
params.freqs = wpa_s->next_scan_freqs;
} else
os_free(wpa_s->next_scan_freqs);
wpa_s->next_scan_freqs = NULL;
wpa_setband_scan_freqs(wpa_s, &params);
/* See if user specified frequencies. If so, scan only those. */
if (wpa_s->last_scan_req == INITIAL_SCAN_REQ &&
wpa_s->conf->initial_freq_list && !params.freqs) {
wpa_dbg(wpa_s, MSG_DEBUG,
"Optimize scan based on conf->initial_freq_list");
int_array_concat(&params.freqs, wpa_s->conf->initial_freq_list);
} else if (wpa_s->conf->freq_list && !params.freqs) {
wpa_dbg(wpa_s, MSG_DEBUG,
"Optimize scan based on conf->freq_list");
int_array_concat(&params.freqs, wpa_s->conf->freq_list);
}
/* Use current associated channel? */
if (wpa_s->conf->scan_cur_freq && !params.freqs) {
unsigned int num = wpa_s->num_multichan_concurrent;
params.freqs = os_calloc(num + 1, sizeof(int));
if (params.freqs) {
num = get_shared_radio_freqs(wpa_s, params.freqs, num);
if (num > 0) {
wpa_dbg(wpa_s, MSG_DEBUG, "Scan only the "
"current operating channels since "
"scan_cur_freq is enabled");
} else {
os_free(params.freqs);
params.freqs = NULL;
}
}
}
#ifdef CONFIG_MBO
if (wpa_s->enable_oce & OCE_STA)
params.oce_scan = 1;
#endif /* CONFIG_MBO */
params.filter_ssids = wpa_supplicant_build_filter_ssids(
wpa_s->conf, &params.num_filter_ssids);
if (extra_ie) {
params.extra_ies = wpabuf_head(extra_ie);
params.extra_ies_len = wpabuf_len(extra_ie);
}
#ifdef CONFIG_P2P
if (wpa_s->p2p_in_provisioning || wpa_s->p2p_in_invitation ||
(wpa_s->show_group_started && wpa_s->go_params)) {
/*
* The interface may not yet be in P2P mode, so we have to
* explicitly request P2P probe to disable CCK rates.
*/
params.p2p_probe = 1;
}
#endif /* CONFIG_P2P */
if ((wpa_s->mac_addr_rand_enable & MAC_ADDR_RAND_SCAN) &&
wpa_s->wpa_state <= WPA_SCANNING)
wpa_setup_mac_addr_rand_params(&params, wpa_s->mac_addr_scan);
if (!is_zero_ether_addr(wpa_s->next_scan_bssid)) {
struct wpa_bss *bss;
params.bssid = wpa_s->next_scan_bssid;
bss = wpa_bss_get_bssid_latest(wpa_s, params.bssid);
if (!wpa_s->next_scan_bssid_wildcard_ssid &&
bss && bss->ssid_len && params.num_ssids == 1 &&
params.ssids[0].ssid_len == 0) {
params.ssids[0].ssid = bss->ssid;
params.ssids[0].ssid_len = bss->ssid_len;
wpa_dbg(wpa_s, MSG_DEBUG,
"Scan a previously specified BSSID " MACSTR
" and SSID %s",
MAC2STR(params.bssid),
wpa_ssid_txt(bss->ssid, bss->ssid_len));
} else {
wpa_dbg(wpa_s, MSG_DEBUG,
"Scan a previously specified BSSID " MACSTR,
MAC2STR(params.bssid));
}
}
scan_params = &params;
scan:
#ifdef CONFIG_P2P
/*
* If the driver does not support multi-channel concurrency and a
* virtual interface that shares the same radio with the wpa_s interface
* is operating there may not be need to scan other channels apart from
* the current operating channel on the other virtual interface. Filter
* out other channels in case we are trying to find a connection for a
* station interface when we are not configured to prefer station
* connection and a concurrent operation is already in process.
*/
if (wpa_s->scan_for_connection &&
wpa_s->last_scan_req == NORMAL_SCAN_REQ &&
!scan_params->freqs && !params.freqs &&
wpas_is_p2p_prioritized(wpa_s) &&
wpa_s->p2p_group_interface == NOT_P2P_GROUP_INTERFACE &&
non_p2p_network_enabled(wpa_s)) {
unsigned int num = wpa_s->num_multichan_concurrent;
params.freqs = os_calloc(num + 1, sizeof(int));
if (params.freqs) {
num = get_shared_radio_freqs(wpa_s, params.freqs, num);
if (num > 0 && num == wpa_s->num_multichan_concurrent) {
wpa_dbg(wpa_s, MSG_DEBUG, "Scan only the current operating channels since all channels are already used");
} else {
os_free(params.freqs);
params.freqs = NULL;
}
}
}
#endif /* CONFIG_P2P */
ret = wpa_supplicant_trigger_scan(wpa_s, scan_params);
if (ret && wpa_s->last_scan_req == MANUAL_SCAN_REQ && params.freqs &&
!wpa_s->manual_scan_freqs) {
/* Restore manual_scan_freqs for the next attempt */
wpa_s->manual_scan_freqs = params.freqs;
params.freqs = NULL;
}
wpabuf_free(extra_ie);
os_free(params.freqs);
os_free(params.filter_ssids);
os_free(params.mac_addr);
if (ret) {
wpa_msg(wpa_s, MSG_WARNING, "Failed to initiate AP scan");
if (wpa_s->scan_prev_wpa_state != wpa_s->wpa_state)
wpa_supplicant_set_state(wpa_s,
wpa_s->scan_prev_wpa_state);
/* Restore scan_req since we will try to scan again */
wpa_s->scan_req = wpa_s->last_scan_req;
wpa_supplicant_req_scan(wpa_s, 1, 0);
} else {
wpa_s->scan_for_connection = 0;
#ifdef CONFIG_INTERWORKING
wpa_s->interworking_fast_assoc_tried = 0;
#endif /* CONFIG_INTERWORKING */
wpa_s->next_scan_bssid_wildcard_ssid = 0;
if (params.bssid)
os_memset(wpa_s->next_scan_bssid, 0, ETH_ALEN);
}
}
void wpa_supplicant_update_scan_int(struct wpa_supplicant *wpa_s, int sec)
{
struct os_reltime remaining, new_int;
int cancelled;
cancelled = eloop_cancel_timeout_one(wpa_supplicant_scan, wpa_s, NULL,
&remaining);
new_int.sec = sec;
new_int.usec = 0;
if (cancelled && os_reltime_before(&remaining, &new_int)) {
new_int.sec = remaining.sec;
new_int.usec = remaining.usec;
}
if (cancelled) {
eloop_register_timeout(new_int.sec, new_int.usec,
wpa_supplicant_scan, wpa_s, NULL);
}
wpa_s->scan_interval = sec;
}
/**
* wpa_supplicant_req_scan - Schedule a scan for neighboring access points
* @wpa_s: Pointer to wpa_supplicant data
* @sec: Number of seconds after which to scan
* @usec: Number of microseconds after which to scan
*
* This function is used to schedule a scan for neighboring access points after
* the specified time.
*/
void wpa_supplicant_req_scan(struct wpa_supplicant *wpa_s, int sec, int usec)
{
int res;
if (wpa_s->p2p_mgmt) {
wpa_dbg(wpa_s, MSG_DEBUG,
"Ignore scan request (%d.%06d sec) on p2p_mgmt interface",
sec, usec);
return;
}
res = eloop_deplete_timeout(sec, usec, wpa_supplicant_scan, wpa_s,
NULL);
if (res == 1) {
wpa_dbg(wpa_s, MSG_DEBUG, "Rescheduling scan request: %d.%06d sec",
sec, usec);
} else if (res == 0) {
wpa_dbg(wpa_s, MSG_DEBUG, "Ignore new scan request for %d.%06d sec since an earlier request is scheduled to trigger sooner",
sec, usec);
} else {
wpa_dbg(wpa_s, MSG_DEBUG, "Setting scan request: %d.%06d sec",
sec, usec);
eloop_register_timeout(sec, usec, wpa_supplicant_scan, wpa_s, NULL);
}
}
/**
* wpa_supplicant_delayed_sched_scan - Request a delayed scheduled scan
* @wpa_s: Pointer to wpa_supplicant data
* @sec: Number of seconds after which to scan
* @usec: Number of microseconds after which to scan
* Returns: 0 on success or -1 otherwise
*
* This function is used to schedule periodic scans for neighboring
* access points after the specified time.
*/
int wpa_supplicant_delayed_sched_scan(struct wpa_supplicant *wpa_s,
int sec, int usec)
{
if (!wpa_s->sched_scan_supported)
return -1;
eloop_register_timeout(sec, usec,
wpa_supplicant_delayed_sched_scan_timeout,
wpa_s, NULL);
return 0;
}
static void
wpa_scan_set_relative_rssi_params(struct wpa_supplicant *wpa_s,
struct wpa_driver_scan_params *params)
{
if (wpa_s->wpa_state != WPA_COMPLETED ||
!(wpa_s->drv_flags & WPA_DRIVER_FLAGS_SCHED_SCAN_RELATIVE_RSSI) ||
wpa_s->srp.relative_rssi_set == 0)
return;
params->relative_rssi_set = 1;
params->relative_rssi = wpa_s->srp.relative_rssi;
if (wpa_s->srp.relative_adjust_rssi == 0)
return;
params->relative_adjust_band = wpa_s->srp.relative_adjust_band;
params->relative_adjust_rssi = wpa_s->srp.relative_adjust_rssi;
}
/**
* wpa_supplicant_req_sched_scan - Start a periodic scheduled scan
* @wpa_s: Pointer to wpa_supplicant data
* Returns: 0 is sched_scan was started or -1 otherwise
*
* This function is used to schedule periodic scans for neighboring
* access points repeating the scan continuously.
*/
int wpa_supplicant_req_sched_scan(struct wpa_supplicant *wpa_s)
{
struct wpa_driver_scan_params params;
struct wpa_driver_scan_params *scan_params;
enum wpa_states prev_state;
struct wpa_ssid *ssid = NULL;
struct wpabuf *extra_ie = NULL;
int ret;
unsigned int max_sched_scan_ssids;
int wildcard = 0;
int need_ssids;
struct sched_scan_plan scan_plan;
if (!wpa_s->sched_scan_supported)
return -1;
if (wpa_s->max_sched_scan_ssids > WPAS_MAX_SCAN_SSIDS)
max_sched_scan_ssids = WPAS_MAX_SCAN_SSIDS;
else
max_sched_scan_ssids = wpa_s->max_sched_scan_ssids;
if (max_sched_scan_ssids < 1 || wpa_s->conf->disable_scan_offload)
return -1;
wpa_s->sched_scan_stop_req = 0;
if (wpa_s->sched_scanning) {
wpa_dbg(wpa_s, MSG_DEBUG, "Already sched scanning");
return 0;
}
need_ssids = 0;
for (ssid = wpa_s->conf->ssid; ssid; ssid = ssid->next) {
if (!wpas_network_disabled(wpa_s, ssid) && !ssid->scan_ssid) {
/* Use wildcard SSID to find this network */
wildcard = 1;
} else if (!wpas_network_disabled(wpa_s, ssid) &&
ssid->ssid_len)
need_ssids++;
#ifdef CONFIG_WPS
if (!wpas_network_disabled(wpa_s, ssid) &&
ssid->key_mgmt == WPA_KEY_MGMT_WPS) {
/*
* Normal scan is more reliable and faster for WPS
* operations and since these are for short periods of
* time, the benefit of trying to use sched_scan would
* be limited.
*/
wpa_dbg(wpa_s, MSG_DEBUG, "Use normal scan instead of "
"sched_scan for WPS");
return -1;
}
#endif /* CONFIG_WPS */
}
if (wildcard)
need_ssids++;
if (wpa_s->normal_scans < 3 &&
(need_ssids <= wpa_s->max_scan_ssids ||
wpa_s->max_scan_ssids >= (int) max_sched_scan_ssids)) {
/*
* When normal scan can speed up operations, use that for the
* first operations before starting the sched_scan to allow
* user space sleep more. We do this only if the normal scan
* has functionality that is suitable for this or if the
* sched_scan does not have better support for multiple SSIDs.
*/
wpa_dbg(wpa_s, MSG_DEBUG, "Use normal scan instead of "
"sched_scan for initial scans (normal_scans=%d)",
wpa_s->normal_scans);
return -1;
}
os_memset(&params, 0, sizeof(params));
/* If we can't allocate space for the filters, we just don't filter */
params.filter_ssids = os_calloc(wpa_s->max_match_sets,
sizeof(struct wpa_driver_scan_filter));
prev_state = wpa_s->wpa_state;
if (wpa_s->wpa_state == WPA_DISCONNECTED ||
wpa_s->wpa_state == WPA_INACTIVE)
wpa_supplicant_set_state(wpa_s, WPA_SCANNING);
if (wpa_s->autoscan_params != NULL) {
scan_params = wpa_s->autoscan_params;
goto scan;
}
/* Find the starting point from which to continue scanning */
ssid = wpa_s->conf->ssid;
if (wpa_s->prev_sched_ssid) {
while (ssid) {
if (ssid == wpa_s->prev_sched_ssid) {
ssid = ssid->next;
break;
}
ssid = ssid->next;
}
}
if (!ssid || !wpa_s->prev_sched_ssid) {
wpa_dbg(wpa_s, MSG_DEBUG, "Beginning of SSID list");
wpa_s->sched_scan_timeout = max_sched_scan_ssids * 2;
wpa_s->first_sched_scan = 1;
ssid = wpa_s->conf->ssid;
wpa_s->prev_sched_ssid = ssid;
}
if (wildcard) {
wpa_dbg(wpa_s, MSG_DEBUG, "Add wildcard SSID to sched_scan");
params.num_ssids++;
}
while (ssid) {
if (wpas_network_disabled(wpa_s, ssid))
goto next;
if (params.num_filter_ssids < wpa_s->max_match_sets &&
params.filter_ssids && ssid->ssid && ssid->ssid_len) {
wpa_dbg(wpa_s, MSG_DEBUG, "add to filter ssid: %s",
wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
os_memcpy(params.filter_ssids[params.num_filter_ssids].ssid,
ssid->ssid, ssid->ssid_len);
params.filter_ssids[params.num_filter_ssids].ssid_len =
ssid->ssid_len;
params.num_filter_ssids++;
} else if (params.filter_ssids && ssid->ssid && ssid->ssid_len)
{
wpa_dbg(wpa_s, MSG_DEBUG, "Not enough room for SSID "
"filter for sched_scan - drop filter");
os_free(params.filter_ssids);
params.filter_ssids = NULL;
params.num_filter_ssids = 0;
}
if (ssid->scan_ssid && ssid->ssid && ssid->ssid_len) {
if (params.num_ssids == max_sched_scan_ssids)
break; /* only room for broadcast SSID */
wpa_dbg(wpa_s, MSG_DEBUG,
"add to active scan ssid: %s",
wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
params.ssids[params.num_ssids].ssid =
ssid->ssid;
params.ssids[params.num_ssids].ssid_len =
ssid->ssid_len;
params.num_ssids++;
if (params.num_ssids >= max_sched_scan_ssids) {
wpa_s->prev_sched_ssid = ssid;
do {
ssid = ssid->next;
} while (ssid &&
(wpas_network_disabled(wpa_s, ssid) ||
!ssid->scan_ssid));
break;
}
}
next:
wpa_s->prev_sched_ssid = ssid;
ssid = ssid->next;
}
if (params.num_filter_ssids == 0) {
os_free(params.filter_ssids);
params.filter_ssids = NULL;
}
extra_ie = wpa_supplicant_extra_ies(wpa_s);
if (extra_ie) {
params.extra_ies = wpabuf_head(extra_ie);
params.extra_ies_len = wpabuf_len(extra_ie);
}
if (wpa_s->conf->filter_rssi)
params.filter_rssi = wpa_s->conf->filter_rssi;
/* See if user specified frequencies. If so, scan only those. */
if (wpa_s->conf->freq_list && !params.freqs) {
wpa_dbg(wpa_s, MSG_DEBUG,
"Optimize scan based on conf->freq_list");
int_array_concat(&params.freqs, wpa_s->conf->freq_list);
}
#ifdef CONFIG_MBO
if (wpa_s->enable_oce & OCE_STA)
params.oce_scan = 1;
#endif /* CONFIG_MBO */
scan_params = &params;
scan:
wpa_s->sched_scan_timed_out = 0;
/*
* We cannot support multiple scan plans if the scan request includes
* too many SSID's, so in this case use only the last scan plan and make
* it run infinitely. It will be stopped by the timeout.
*/
if (wpa_s->sched_scan_plans_num == 1 ||
(wpa_s->sched_scan_plans_num && !ssid && wpa_s->first_sched_scan)) {
params.sched_scan_plans = wpa_s->sched_scan_plans;
params.sched_scan_plans_num = wpa_s->sched_scan_plans_num;
} else if (wpa_s->sched_scan_plans_num > 1) {
wpa_dbg(wpa_s, MSG_DEBUG,
"Too many SSIDs. Default to using single scheduled_scan plan");
params.sched_scan_plans =
&wpa_s->sched_scan_plans[wpa_s->sched_scan_plans_num -
1];
params.sched_scan_plans_num = 1;
} else {
if (wpa_s->conf->sched_scan_interval)
scan_plan.interval = wpa_s->conf->sched_scan_interval;
else
scan_plan.interval = 10;
if (scan_plan.interval > wpa_s->max_sched_scan_plan_interval) {
wpa_printf(MSG_WARNING,
"Scan interval too long(%u), use the maximum allowed(%u)",
scan_plan.interval,
wpa_s->max_sched_scan_plan_interval);
scan_plan.interval =
wpa_s->max_sched_scan_plan_interval;
}
scan_plan.iterations = 0;
params.sched_scan_plans = &scan_plan;
params.sched_scan_plans_num = 1;
}
params.sched_scan_start_delay = wpa_s->conf->sched_scan_start_delay;
if (ssid || !wpa_s->first_sched_scan) {
wpa_dbg(wpa_s, MSG_DEBUG,
"Starting sched scan after %u seconds: interval %u timeout %d",
params.sched_scan_start_delay,
params.sched_scan_plans[0].interval,
wpa_s->sched_scan_timeout);
} else {
wpa_dbg(wpa_s, MSG_DEBUG,
"Starting sched scan after %u seconds (no timeout)",
params.sched_scan_start_delay);
}
wpa_setband_scan_freqs(wpa_s, scan_params);
if ((wpa_s->mac_addr_rand_enable & MAC_ADDR_RAND_SCHED_SCAN) &&
wpa_s->wpa_state <= WPA_SCANNING)
wpa_setup_mac_addr_rand_params(&params,
wpa_s->mac_addr_sched_scan);
wpa_scan_set_relative_rssi_params(wpa_s, scan_params);
ret = wpa_supplicant_start_sched_scan(wpa_s, scan_params);
wpabuf_free(extra_ie);
os_free(params.filter_ssids);
os_free(params.mac_addr);
if (ret) {
wpa_msg(wpa_s, MSG_WARNING, "Failed to initiate sched scan");
if (prev_state != wpa_s->wpa_state)
wpa_supplicant_set_state(wpa_s, prev_state);
return ret;
}
/* If we have more SSIDs to scan, add a timeout so we scan them too */
if (ssid || !wpa_s->first_sched_scan) {
wpa_s->sched_scan_timed_out = 0;
eloop_register_timeout(wpa_s->sched_scan_timeout, 0,
wpa_supplicant_sched_scan_timeout,
wpa_s, NULL);
wpa_s->first_sched_scan = 0;
wpa_s->sched_scan_timeout /= 2;
params.sched_scan_plans[0].interval *= 2;
if ((unsigned int) wpa_s->sched_scan_timeout <
params.sched_scan_plans[0].interval ||
params.sched_scan_plans[0].interval >
wpa_s->max_sched_scan_plan_interval) {
params.sched_scan_plans[0].interval = 10;
wpa_s->sched_scan_timeout = max_sched_scan_ssids * 2;
}
}
/* If there is no more ssids, start next time from the beginning */
if (!ssid)
wpa_s->prev_sched_ssid = NULL;
return 0;
}
/**
* wpa_supplicant_cancel_scan - Cancel a scheduled scan request
* @wpa_s: Pointer to wpa_supplicant data
*
* This function is used to cancel a scan request scheduled with
* wpa_supplicant_req_scan().
*/
void wpa_supplicant_cancel_scan(struct wpa_supplicant *wpa_s)
{
wpa_dbg(wpa_s, MSG_DEBUG, "Cancelling scan request");
eloop_cancel_timeout(wpa_supplicant_scan, wpa_s, NULL);
}
/**
* wpa_supplicant_cancel_delayed_sched_scan - Stop a delayed scheduled scan
* @wpa_s: Pointer to wpa_supplicant data
*
* This function is used to stop a delayed scheduled scan.
*/
void wpa_supplicant_cancel_delayed_sched_scan(struct wpa_supplicant *wpa_s)
{
if (!wpa_s->sched_scan_supported)
return;
wpa_dbg(wpa_s, MSG_DEBUG, "Cancelling delayed sched scan");
eloop_cancel_timeout(wpa_supplicant_delayed_sched_scan_timeout,
wpa_s, NULL);
}
/**
* wpa_supplicant_cancel_sched_scan - Stop running scheduled scans
* @wpa_s: Pointer to wpa_supplicant data
*
* This function is used to stop a periodic scheduled scan.
*/
void wpa_supplicant_cancel_sched_scan(struct wpa_supplicant *wpa_s)
{
if (!wpa_s->sched_scanning)
return;
if (wpa_s->sched_scanning)
wpa_s->sched_scan_stop_req = 1;
wpa_dbg(wpa_s, MSG_DEBUG, "Cancelling sched scan");
eloop_cancel_timeout(wpa_supplicant_sched_scan_timeout, wpa_s, NULL);
wpa_supplicant_stop_sched_scan(wpa_s);
}
/**
* wpa_supplicant_notify_scanning - Indicate possible scan state change
* @wpa_s: Pointer to wpa_supplicant data
* @scanning: Whether scanning is currently in progress
*
* This function is to generate scanning notifycations. It is called whenever
* there may have been a change in scanning (scan started, completed, stopped).
* wpas_notify_scanning() is called whenever the scanning state changed from the
* previously notified state.
*/
void wpa_supplicant_notify_scanning(struct wpa_supplicant *wpa_s,
int scanning)
{
if (wpa_s->scanning != scanning) {
wpa_s->scanning = scanning;
wpas_notify_scanning(wpa_s);
}
}
static int wpa_scan_get_max_rate(const struct wpa_scan_res *res)
{
int rate = 0;
const u8 *ie;
int i;
ie = wpa_scan_get_ie(res, WLAN_EID_SUPP_RATES);
for (i = 0; ie && i < ie[1]; i++) {
if ((ie[i + 2] & 0x7f) > rate)
rate = ie[i + 2] & 0x7f;
}
ie = wpa_scan_get_ie(res, WLAN_EID_EXT_SUPP_RATES);
for (i = 0; ie && i < ie[1]; i++) {
if ((ie[i + 2] & 0x7f) > rate)
rate = ie[i + 2] & 0x7f;
}
return rate;
}
/**
* wpa_scan_get_ie - Fetch a specified information element from a scan result
* @res: Scan result entry
* @ie: Information element identitifier (WLAN_EID_*)
* Returns: Pointer to the information element (id field) or %NULL if not found
*
* This function returns the first matching information element in the scan
* result.
*/
const u8 * wpa_scan_get_ie(const struct wpa_scan_res *res, u8 ie)
{
size_t ie_len = res->ie_len;
/* Use the Beacon frame IEs if res->ie_len is not available */
if (!ie_len)
ie_len = res->beacon_ie_len;
return get_ie((const u8 *) (res + 1), ie_len, ie);
}
/**
* wpa_scan_get_vendor_ie - Fetch vendor information element from a scan result
* @res: Scan result entry
* @vendor_type: Vendor type (four octets starting the IE payload)
* Returns: Pointer to the information element (id field) or %NULL if not found
*
* This function returns the first matching information element in the scan
* result.
*/
const u8 * wpa_scan_get_vendor_ie(const struct wpa_scan_res *res,
u32 vendor_type)
{
const u8 *ies;
const struct element *elem;
ies = (const u8 *) (res + 1);
for_each_element_id(elem, WLAN_EID_VENDOR_SPECIFIC, ies, res->ie_len) {
if (elem->datalen >= 4 &&
vendor_type == WPA_GET_BE32(elem->data))
return &elem->id;
}
return NULL;
}
/**
* wpa_scan_get_vendor_ie_beacon - Fetch vendor information from a scan result
* @res: Scan result entry
* @vendor_type: Vendor type (four octets starting the IE payload)
* Returns: Pointer to the information element (id field) or %NULL if not found
*
* This function returns the first matching information element in the scan
* result.
*
* This function is like wpa_scan_get_vendor_ie(), but uses IE buffer only
* from Beacon frames instead of either Beacon or Probe Response frames.
*/
const u8 * wpa_scan_get_vendor_ie_beacon(const struct wpa_scan_res *res,
u32 vendor_type)
{
const u8 *ies;
const struct element *elem;
if (res->beacon_ie_len == 0)
return NULL;
ies = (const u8 *) (res + 1);
ies += res->ie_len;
for_each_element_id(elem, WLAN_EID_VENDOR_SPECIFIC, ies,
res->beacon_ie_len) {
if (elem->datalen >= 4 &&
vendor_type == WPA_GET_BE32(elem->data))
return &elem->id;
}
return NULL;
}
/**
* wpa_scan_get_vendor_ie_multi - Fetch vendor IE data from a scan result
* @res: Scan result entry
* @vendor_type: Vendor type (four octets starting the IE payload)
* Returns: Pointer to the information element payload or %NULL if not found
*
* This function returns concatenated payload of possibly fragmented vendor
* specific information elements in the scan result. The caller is responsible
* for freeing the returned buffer.
*/
struct wpabuf * wpa_scan_get_vendor_ie_multi(const struct wpa_scan_res *res,
u32 vendor_type)
{
struct wpabuf *buf;
const u8 *end, *pos;
buf = wpabuf_alloc(res->ie_len);
if (buf == NULL)
return NULL;
pos = (const u8 *) (res + 1);
end = pos + res->ie_len;
while (end - pos > 1) {
u8 ie, len;
ie = pos[0];
len = pos[1];
if (len > end - pos - 2)
break;
pos += 2;
if (ie == WLAN_EID_VENDOR_SPECIFIC && len >= 4 &&
vendor_type == WPA_GET_BE32(pos))
wpabuf_put_data(buf, pos + 4, len - 4);
pos += len;
}
if (wpabuf_len(buf) == 0) {
wpabuf_free(buf);
buf = NULL;
}
return buf;
}
/* Compare function for sorting scan results. Return >0 if @b is considered
* better. */
static int wpa_scan_result_compar(const void *a, const void *b)
{
#define MIN(a,b) a < b ? a : b
struct wpa_scan_res **_wa = (void *) a;
struct wpa_scan_res **_wb = (void *) b;
struct wpa_scan_res *wa = *_wa;
struct wpa_scan_res *wb = *_wb;
int wpa_a, wpa_b;
int snr_a, snr_b, snr_a_full, snr_b_full;
/* WPA/WPA2 support preferred */
wpa_a = wpa_scan_get_vendor_ie(wa, WPA_IE_VENDOR_TYPE) != NULL ||
wpa_scan_get_ie(wa, WLAN_EID_RSN) != NULL;
wpa_b = wpa_scan_get_vendor_ie(wb, WPA_IE_VENDOR_TYPE) != NULL ||
wpa_scan_get_ie(wb, WLAN_EID_RSN) != NULL;
if (wpa_b && !wpa_a)
return 1;
if (!wpa_b && wpa_a)
return -1;
/* privacy support preferred */
if ((wa->caps & IEEE80211_CAP_PRIVACY) == 0 &&
(wb->caps & IEEE80211_CAP_PRIVACY))
return 1;
if ((wa->caps & IEEE80211_CAP_PRIVACY) &&
(wb->caps & IEEE80211_CAP_PRIVACY) == 0)
return -1;
if (wa->flags & wb->flags & WPA_SCAN_LEVEL_DBM) {
snr_a_full = wa->snr;
snr_a = MIN(wa->snr, GREAT_SNR);
snr_b_full = wb->snr;
snr_b = MIN(wb->snr, GREAT_SNR);
} else {
/* Level is not in dBm, so we can't calculate
* SNR. Just use raw level (units unknown). */
snr_a = snr_a_full = wa->level;
snr_b = snr_b_full = wb->level;
}
/* if SNR is close, decide by max rate or frequency band */
if (snr_a && snr_b && abs(snr_b - snr_a) < 7) {
if (wa->est_throughput != wb->est_throughput)
return (int) wb->est_throughput -
(int) wa->est_throughput;
}
if ((snr_a && snr_b && abs(snr_b - snr_a) < 5) ||
(wa->qual && wb->qual && abs(wb->qual - wa->qual) < 10)) {
if (IS_5GHZ(wa->freq) ^ IS_5GHZ(wb->freq))
return IS_5GHZ(wa->freq) ? -1 : 1;
}
/* all things being equal, use SNR; if SNRs are
* identical, use quality values since some drivers may only report
* that value and leave the signal level zero */
if (snr_b_full == snr_a_full)
return wb->qual - wa->qual;
return snr_b_full - snr_a_full;
#undef MIN
}
#ifdef CONFIG_WPS
/* Compare function for sorting scan results when searching a WPS AP for
* provisioning. Return >0 if @b is considered better. */
static int wpa_scan_result_wps_compar(const void *a, const void *b)
{
struct wpa_scan_res **_wa = (void *) a;
struct wpa_scan_res **_wb = (void *) b;
struct wpa_scan_res *wa = *_wa;
struct wpa_scan_res *wb = *_wb;
int uses_wps_a, uses_wps_b;
struct wpabuf *wps_a, *wps_b;
int res;
/* Optimization - check WPS IE existence before allocated memory and
* doing full reassembly. */
uses_wps_a = wpa_scan_get_vendor_ie(wa, WPS_IE_VENDOR_TYPE) != NULL;
uses_wps_b = wpa_scan_get_vendor_ie(wb, WPS_IE_VENDOR_TYPE) != NULL;
if (uses_wps_a && !uses_wps_b)
return -1;
if (!uses_wps_a && uses_wps_b)
return 1;
if (uses_wps_a && uses_wps_b) {
wps_a = wpa_scan_get_vendor_ie_multi(wa, WPS_IE_VENDOR_TYPE);
wps_b = wpa_scan_get_vendor_ie_multi(wb, WPS_IE_VENDOR_TYPE);
res = wps_ap_priority_compar(wps_a, wps_b);
wpabuf_free(wps_a);
wpabuf_free(wps_b);
if (res)
return res;
}
/*
* Do not use current AP security policy as a sorting criteria during
* WPS provisioning step since the AP may get reconfigured at the
* completion of provisioning.
*/
/* all things being equal, use signal level; if signal levels are
* identical, use quality values since some drivers may only report
* that value and leave the signal level zero */
if (wb->level == wa->level)
return wb->qual - wa->qual;
return wb->level - wa->level;
}
#endif /* CONFIG_WPS */
static void dump_scan_res(struct wpa_scan_results *scan_res)
{
#ifndef CONFIG_NO_STDOUT_DEBUG
size_t i;
if (scan_res->res == NULL || scan_res->num == 0)
return;
wpa_printf(MSG_EXCESSIVE, "Sorted scan results");
for (i = 0; i < scan_res->num; i++) {
struct wpa_scan_res *r = scan_res->res[i];
u8 *pos;
if (r->flags & WPA_SCAN_LEVEL_DBM) {
int noise_valid = !(r->flags & WPA_SCAN_NOISE_INVALID);
wpa_printf(MSG_EXCESSIVE, MACSTR " freq=%d qual=%d "
"noise=%d%s level=%d snr=%d%s flags=0x%x age=%u est=%u",
MAC2STR(r->bssid), r->freq, r->qual,
r->noise, noise_valid ? "" : "~", r->level,
r->snr, r->snr >= GREAT_SNR ? "*" : "",
r->flags,
r->age, r->est_throughput);
} else {
wpa_printf(MSG_EXCESSIVE, MACSTR " freq=%d qual=%d "
"noise=%d level=%d flags=0x%x age=%u est=%u",
MAC2STR(r->bssid), r->freq, r->qual,
r->noise, r->level, r->flags, r->age,
r->est_throughput);
}
pos = (u8 *) (r + 1);
if (r->ie_len)
wpa_hexdump(MSG_EXCESSIVE, "IEs", pos, r->ie_len);
pos += r->ie_len;
if (r->beacon_ie_len)
wpa_hexdump(MSG_EXCESSIVE, "Beacon IEs",
pos, r->beacon_ie_len);
}
#endif /* CONFIG_NO_STDOUT_DEBUG */
}
/**
* wpa_supplicant_filter_bssid_match - Is the specified BSSID allowed
* @wpa_s: Pointer to wpa_supplicant data
* @bssid: BSSID to check
* Returns: 0 if the BSSID is filtered or 1 if not
*
* This function is used to filter out specific BSSIDs from scan reslts mainly
* for testing purposes (SET bssid_filter ctrl_iface command).
*/
int wpa_supplicant_filter_bssid_match(struct wpa_supplicant *wpa_s,
const u8 *bssid)
{
size_t i;
if (wpa_s->bssid_filter == NULL)
return 1;
for (i = 0; i < wpa_s->bssid_filter_count; i++) {
if (os_memcmp(wpa_s->bssid_filter + i * ETH_ALEN, bssid,
ETH_ALEN) == 0)
return 1;
}
return 0;
}
void filter_scan_res(struct wpa_supplicant *wpa_s,
struct wpa_scan_results *res)
{
size_t i, j;
if (wpa_s->bssid_filter == NULL)
return;
for (i = 0, j = 0; i < res->num; i++) {
if (wpa_supplicant_filter_bssid_match(wpa_s,
res->res[i]->bssid)) {
res->res[j++] = res->res[i];
} else {
os_free(res->res[i]);
res->res[i] = NULL;
}
}
if (res->num != j) {
wpa_printf(MSG_DEBUG, "Filtered out %d scan results",
(int) (res->num - j));
res->num = j;
}
}
void scan_snr(struct wpa_scan_res *res)
{
if (res->flags & WPA_SCAN_NOISE_INVALID) {
res->noise = IS_5GHZ(res->freq) ?
DEFAULT_NOISE_FLOOR_5GHZ :
DEFAULT_NOISE_FLOOR_2GHZ;
}
if (res->flags & WPA_SCAN_LEVEL_DBM) {
res->snr = res->level - res->noise;
} else {
/* Level is not in dBm, so we can't calculate
* SNR. Just use raw level (units unknown). */
res->snr = res->level;
}
}
/* Minimum SNR required to achieve a certain bitrate. */
struct minsnr_bitrate_entry {
int minsnr;
unsigned int bitrate; /* in Mbps */
};
/* VHT needs to be enabled in order to achieve MCS8 and MCS9 rates. */
static const int vht_mcs = 8;
static const struct minsnr_bitrate_entry vht20_table[] = {
{ 0, 0 },
{ 2, 6500 }, /* HT20 MCS0 */
{ 5, 13000 }, /* HT20 MCS1 */
{ 9, 19500 }, /* HT20 MCS2 */
{ 11, 26000 }, /* HT20 MCS3 */
{ 15, 39000 }, /* HT20 MCS4 */
{ 18, 52000 }, /* HT20 MCS5 */
{ 20, 58500 }, /* HT20 MCS6 */
{ 25, 65000 }, /* HT20 MCS7 */
{ 29, 78000 }, /* VHT20 MCS8 */
{ -1, 78000 } /* SNR > 29 */
};
static const struct minsnr_bitrate_entry vht40_table[] = {
{ 0, 0 },
{ 5, 13500 }, /* HT40 MCS0 */
{ 8, 27000 }, /* HT40 MCS1 */
{ 12, 40500 }, /* HT40 MCS2 */
{ 14, 54000 }, /* HT40 MCS3 */
{ 18, 81000 }, /* HT40 MCS4 */
{ 21, 108000 }, /* HT40 MCS5 */
{ 23, 121500 }, /* HT40 MCS6 */
{ 28, 135000 }, /* HT40 MCS7 */
{ 32, 162000 }, /* VHT40 MCS8 */
{ 34, 180000 }, /* VHT40 MCS9 */
{ -1, 180000 } /* SNR > 34 */
};
static const struct minsnr_bitrate_entry vht80_table[] = {
{ 0, 0 },
{ 8, 29300 }, /* VHT80 MCS0 */
{ 11, 58500 }, /* VHT80 MCS1 */
{ 15, 87800 }, /* VHT80 MCS2 */
{ 17, 117000 }, /* VHT80 MCS3 */
{ 21, 175500 }, /* VHT80 MCS4 */
{ 24, 234000 }, /* VHT80 MCS5 */
{ 26, 263300 }, /* VHT80 MCS6 */
{ 31, 292500 }, /* VHT80 MCS7 */
{ 35, 351000 }, /* VHT80 MCS8 */
{ 37, 390000 }, /* VHT80 MCS9 */
{ -1, 390000 } /* SNR > 37 */
};
static const struct minsnr_bitrate_entry vht160_table[] = {
{ 0, 0 },
{ 11, 58500 }, /* VHT160 MCS0 */
{ 14, 117000 }, /* VHT160 MCS1 */
{ 18, 175500 }, /* VHT160 MCS2 */
{ 20, 234000 }, /* VHT160 MCS3 */
{ 24, 351000 }, /* VHT160 MCS4 */
{ 27, 468000 }, /* VHT160 MCS5 */
{ 29, 526500 }, /* VHT160 MCS6 */
{ 34, 585000 }, /* VHT160 MCS7 */
{ 38, 702000 }, /* VHT160 MCS8 */
{ 40, 780000 }, /* VHT160 MCS9 */
{ -1, 780000 } /* SNR > 37 */
};
static unsigned int interpolate_rate(int snr, int snr0, int snr1,
int rate0, int rate1)
{
return rate0 + (snr - snr0) * (rate1 - rate0) / (snr1 - snr0);
}
static unsigned int max_rate(const struct minsnr_bitrate_entry table[],
int snr, bool vht)
{
const struct minsnr_bitrate_entry *prev, *entry = table;
while ((entry->minsnr != -1) &&
(snr >= entry->minsnr) &&
(vht || entry - table <= vht_mcs))
entry++;
if (entry == table)
return entry->bitrate;
prev = entry - 1;
if (entry->minsnr == -1 || (!vht && entry - table > vht_mcs))
return prev->bitrate;
return interpolate_rate(snr, prev->minsnr, entry->minsnr, prev->bitrate,
entry->bitrate);
}
static unsigned int max_ht20_rate(int snr, bool vht)
{
return max_rate(vht20_table, snr, vht);
}
static unsigned int max_ht40_rate(int snr, bool vht)
{
return max_rate(vht40_table, snr, vht);
}
static unsigned int max_vht80_rate(int snr)
{
return max_rate(vht80_table, snr, 1);
}
static unsigned int max_vht160_rate(int snr)
{
return max_rate(vht160_table, snr, 1);
}
unsigned int wpas_get_est_tpt(const struct wpa_supplicant *wpa_s,
const u8 *ies, size_t ies_len, int rate,
int snr, int freq)
{
struct hostapd_hw_modes *hw_mode;
unsigned int est, tmp;
const u8 *ie;
/* Limit based on estimated SNR */
if (rate > 1 * 2 && snr < 1)
rate = 1 * 2;
else if (rate > 2 * 2 && snr < 4)
rate = 2 * 2;
else if (rate > 6 * 2 && snr < 5)
rate = 6 * 2;
else if (rate > 9 * 2 && snr < 6)
rate = 9 * 2;
else if (rate > 12 * 2 && snr < 7)
rate = 12 * 2;
else if (rate > 12 * 2 && snr < 8)
rate = 14 * 2;
else if (rate > 12 * 2 && snr < 9)
rate = 16 * 2;
else if (rate > 18 * 2 && snr < 10)
rate = 18 * 2;
else if (rate > 24 * 2 && snr < 11)
rate = 24 * 2;
else if (rate > 24 * 2 && snr < 12)
rate = 27 * 2;
else if (rate > 24 * 2 && snr < 13)
rate = 30 * 2;
else if (rate > 24 * 2 && snr < 14)
rate = 33 * 2;
else if (rate > 36 * 2 && snr < 15)
rate = 36 * 2;
else if (rate > 36 * 2 && snr < 16)
rate = 39 * 2;
else if (rate > 36 * 2 && snr < 17)
rate = 42 * 2;
else if (rate > 36 * 2 && snr < 18)
rate = 45 * 2;
else if (rate > 48 * 2 && snr < 19)
rate = 48 * 2;
else if (rate > 48 * 2 && snr < 20)
rate = 51 * 2;
else if (rate > 54 * 2 && snr < 21)
rate = 54 * 2;
est = rate * 500;
hw_mode = get_mode_with_freq(wpa_s->hw.modes, wpa_s->hw.num_modes,
freq);
if (hw_mode && hw_mode->ht_capab) {
ie = get_ie(ies, ies_len, WLAN_EID_HT_CAP);
if (ie) {
tmp = max_ht20_rate(snr, false);
if (tmp > est)
est = tmp;
}
}
if (hw_mode &&
(hw_mode->ht_capab & HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET)) {
ie = get_ie(ies, ies_len, WLAN_EID_HT_OPERATION);
if (ie && ie[1] >= 2 &&
(ie[3] & HT_INFO_HT_PARAM_SECONDARY_CHNL_OFF_MASK)) {
tmp = max_ht40_rate(snr, false);
if (tmp > est)
est = tmp;
}
}
if (hw_mode && hw_mode->vht_capab) {
/* Use +1 to assume VHT is always faster than HT */
ie = get_ie(ies, ies_len, WLAN_EID_VHT_CAP);
if (ie) {
bool vht80 = false, vht160 = false;
tmp = max_ht20_rate(snr, true) + 1;
if (tmp > est)
est = tmp;
ie = get_ie(ies, ies_len, WLAN_EID_HT_OPERATION);
if (ie && ie[1] >= 2 &&
(ie[3] &
HT_INFO_HT_PARAM_SECONDARY_CHNL_OFF_MASK)) {
tmp = max_ht40_rate(snr, true) + 1;
if (tmp > est)
est = tmp;
}
/* Determine VHT BSS bandwidth based on IEEE Std
* 802.11-2020, Table 11-23 (VHT BSs bandwidth) */
ie = get_ie(ies, ies_len, WLAN_EID_VHT_OPERATION);
if (ie && ie[1] >= 3) {
u8 cw = ie[2] & VHT_OPMODE_CHANNEL_WIDTH_MASK;
u8 seg0 = ie[3];
u8 seg1 = ie[4];
if (cw)
vht80 = true;
if (cw == 2 ||
(cw == 3 &&
(seg1 > 0 && abs(seg1 - seg0) == 16)))
vht160 = true;
if (cw == 1 &&
((seg1 > 0 && abs(seg1 - seg0) == 8) ||
(seg1 > 0 && abs(seg1 - seg0) == 16)))
vht160 = true;
}
if (vht80) {
tmp = max_vht80_rate(snr) + 1;
if (tmp > est)
est = tmp;
}
if (vht160 &&
(hw_mode->vht_capab &
(VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ))) {
tmp = max_vht160_rate(snr) + 1;
if (tmp > est)
est = tmp;
}
}
}
return est;
}
void scan_est_throughput(struct wpa_supplicant *wpa_s,
struct wpa_scan_res *res)
{
int rate; /* max legacy rate in 500 kb/s units */
int snr = res->snr;
const u8 *ies = (const void *) (res + 1);
size_t ie_len = res->ie_len;
if (res->est_throughput)
return;
/* Get maximum legacy rate */
rate = wpa_scan_get_max_rate(res);
if (!ie_len)
ie_len = res->beacon_ie_len;
res->est_throughput =
wpas_get_est_tpt(wpa_s, ies, ie_len, rate, snr, res->freq);
/* TODO: channel utilization and AP load (e.g., from AP Beacon) */
}
/**
* wpa_supplicant_get_scan_results - Get scan results
* @wpa_s: Pointer to wpa_supplicant data
* @info: Information about what was scanned or %NULL if not available
* @new_scan: Whether a new scan was performed
* Returns: Scan results, %NULL on failure
*
* This function request the current scan results from the driver and updates
* the local BSS list wpa_s->bss. The caller is responsible for freeing the
* results with wpa_scan_results_free().
*/
struct wpa_scan_results *
wpa_supplicant_get_scan_results(struct wpa_supplicant *wpa_s,
struct scan_info *info, int new_scan)
{
struct wpa_scan_results *scan_res;
size_t i;
int (*compar)(const void *, const void *) = wpa_scan_result_compar;
scan_res = wpa_drv_get_scan_results2(wpa_s);
if (scan_res == NULL) {
wpa_dbg(wpa_s, MSG_DEBUG, "Failed to get scan results");
return NULL;
}
if (scan_res->fetch_time.sec == 0) {
/*
* Make sure we have a valid timestamp if the driver wrapper
* does not set this.
*/
os_get_reltime(&scan_res->fetch_time);
}
filter_scan_res(wpa_s, scan_res);
for (i = 0; i < scan_res->num; i++) {
struct wpa_scan_res *scan_res_item = scan_res->res[i];
scan_snr(scan_res_item);
scan_est_throughput(wpa_s, scan_res_item);
}
#ifdef CONFIG_WPS
if (wpas_wps_searching(wpa_s)) {
wpa_dbg(wpa_s, MSG_DEBUG, "WPS: Order scan results with WPS "
"provisioning rules");
compar = wpa_scan_result_wps_compar;
}
#endif /* CONFIG_WPS */
if (scan_res->res) {
qsort(scan_res->res, scan_res->num,
sizeof(struct wpa_scan_res *), compar);
}
dump_scan_res(scan_res);
if (wpa_s->ignore_post_flush_scan_res) {
/* FLUSH command aborted an ongoing scan and these are the
* results from the aborted scan. Do not process the results to
* maintain flushed state. */
wpa_dbg(wpa_s, MSG_DEBUG,
"Do not update BSS table based on pending post-FLUSH scan results");
wpa_s->ignore_post_flush_scan_res = 0;
return scan_res;
}
wpa_bss_update_start(wpa_s);
for (i = 0; i < scan_res->num; i++)
wpa_bss_update_scan_res(wpa_s, scan_res->res[i],
&scan_res->fetch_time);
wpa_bss_update_end(wpa_s, info, new_scan);
return scan_res;
}
/**
* wpa_supplicant_update_scan_results - Update scan results from the driver
* @wpa_s: Pointer to wpa_supplicant data
* Returns: 0 on success, -1 on failure
*
* This function updates the BSS table within wpa_supplicant based on the
* currently available scan results from the driver without requesting a new
* scan. This is used in cases where the driver indicates an association
* (including roaming within ESS) and wpa_supplicant does not yet have the
* needed information to complete the connection (e.g., to perform validation
* steps in 4-way handshake).
*/
int wpa_supplicant_update_scan_results(struct wpa_supplicant *wpa_s)
{
struct wpa_scan_results *scan_res;
scan_res = wpa_supplicant_get_scan_results(wpa_s, NULL, 0);
if (scan_res == NULL)
return -1;
wpa_scan_results_free(scan_res);
return 0;
}
/**
* scan_only_handler - Reports scan results
*/
void scan_only_handler(struct wpa_supplicant *wpa_s,
struct wpa_scan_results *scan_res)
{
wpa_dbg(wpa_s, MSG_DEBUG, "Scan-only results received");
if (wpa_s->last_scan_req == MANUAL_SCAN_REQ &&
wpa_s->manual_scan_use_id && wpa_s->own_scan_running) {
wpa_msg_ctrl(wpa_s, MSG_INFO, WPA_EVENT_SCAN_RESULTS "id=%u",
wpa_s->manual_scan_id);
wpa_s->manual_scan_use_id = 0;
} else {
wpa_msg_ctrl(wpa_s, MSG_INFO, WPA_EVENT_SCAN_RESULTS);
}
wpas_notify_scan_results(wpa_s);
wpas_notify_scan_done(wpa_s, 1);
if (wpa_s->scan_work) {
struct wpa_radio_work *work = wpa_s->scan_work;
wpa_s->scan_work = NULL;
radio_work_done(work);
}
if (wpa_s->wpa_state == WPA_SCANNING)
wpa_supplicant_set_state(wpa_s, wpa_s->scan_prev_wpa_state);
}
int wpas_scan_scheduled(struct wpa_supplicant *wpa_s)
{
return eloop_is_timeout_registered(wpa_supplicant_scan, wpa_s, NULL);
}
struct wpa_driver_scan_params *
wpa_scan_clone_params(const struct wpa_driver_scan_params *src)
{
struct wpa_driver_scan_params *params;
size_t i;
u8 *n;
params = os_zalloc(sizeof(*params));
if (params == NULL)
return NULL;
for (i = 0; i < src->num_ssids; i++) {
if (src->ssids[i].ssid) {
n = os_memdup(src->ssids[i].ssid,
src->ssids[i].ssid_len);
if (n == NULL)
goto failed;
params->ssids[i].ssid = n;
params->ssids[i].ssid_len = src->ssids[i].ssid_len;
}
}
params->num_ssids = src->num_ssids;
if (src->extra_ies) {
n = os_memdup(src->extra_ies, src->extra_ies_len);
if (n == NULL)
goto failed;
params->extra_ies = n;
params->extra_ies_len = src->extra_ies_len;
}
if (src->freqs) {
int len = int_array_len(src->freqs);
params->freqs = os_memdup(src->freqs, (len + 1) * sizeof(int));
if (params->freqs == NULL)
goto failed;
}
if (src->filter_ssids) {
params->filter_ssids = os_memdup(src->filter_ssids,
sizeof(*params->filter_ssids) *
src->num_filter_ssids);
if (params->filter_ssids == NULL)
goto failed;
params->num_filter_ssids = src->num_filter_ssids;
}
params->filter_rssi = src->filter_rssi;
params->p2p_probe = src->p2p_probe;
params->only_new_results = src->only_new_results;
params->low_priority = src->low_priority;
params->duration = src->duration;
params->duration_mandatory = src->duration_mandatory;
params->oce_scan = src->oce_scan;
if (src->sched_scan_plans_num > 0) {
params->sched_scan_plans =
os_memdup(src->sched_scan_plans,
sizeof(*src->sched_scan_plans) *
src->sched_scan_plans_num);
if (!params->sched_scan_plans)
goto failed;
params->sched_scan_plans_num = src->sched_scan_plans_num;
}
if (src->mac_addr_rand &&
wpa_setup_mac_addr_rand_params(params, src->mac_addr))
goto failed;
if (src->bssid) {
u8 *bssid;
bssid = os_memdup(src->bssid, ETH_ALEN);
if (!bssid)
goto failed;
params->bssid = bssid;
}
params->relative_rssi_set = src->relative_rssi_set;
params->relative_rssi = src->relative_rssi;
params->relative_adjust_band = src->relative_adjust_band;
params->relative_adjust_rssi = src->relative_adjust_rssi;
return params;
failed:
wpa_scan_free_params(params);
return NULL;
}
void wpa_scan_free_params(struct wpa_driver_scan_params *params)
{
size_t i;
if (params == NULL)
return;
for (i = 0; i < params->num_ssids; i++)
os_free((u8 *) params->ssids[i].ssid);
os_free((u8 *) params->extra_ies);
os_free(params->freqs);
os_free(params->filter_ssids);
os_free(params->sched_scan_plans);
/*
* Note: params->mac_addr_mask points to same memory allocation and
* must not be freed separately.
*/
os_free((u8 *) params->mac_addr);
os_free((u8 *) params->bssid);
os_free(params);
}
int wpas_start_pno(struct wpa_supplicant *wpa_s)
{
int ret;
size_t prio, i, num_ssid, num_match_ssid;
struct wpa_ssid *ssid;
struct wpa_driver_scan_params params;
struct sched_scan_plan scan_plan;
unsigned int max_sched_scan_ssids;
if (!wpa_s->sched_scan_supported)
return -1;
if (wpa_s->max_sched_scan_ssids > WPAS_MAX_SCAN_SSIDS)
max_sched_scan_ssids = WPAS_MAX_SCAN_SSIDS;
else
max_sched_scan_ssids = wpa_s->max_sched_scan_ssids;
if (max_sched_scan_ssids < 1)
return -1;
if (wpa_s->pno || wpa_s->pno_sched_pending)
return 0;
if ((wpa_s->wpa_state > WPA_SCANNING) &&
(wpa_s->wpa_state < WPA_COMPLETED)) {
wpa_printf(MSG_ERROR, "PNO: In assoc process");
return -EAGAIN;
}
if (wpa_s->wpa_state == WPA_SCANNING) {
wpa_supplicant_cancel_scan(wpa_s);
if (wpa_s->sched_scanning) {
wpa_printf(MSG_DEBUG, "Schedule PNO on completion of "
"ongoing sched scan");
wpa_supplicant_cancel_sched_scan(wpa_s);
wpa_s->pno_sched_pending = 1;
return 0;
}
}
if (wpa_s->sched_scan_stop_req) {
wpa_printf(MSG_DEBUG,
"Schedule PNO after previous sched scan has stopped");
wpa_s->pno_sched_pending = 1;
return 0;
}
os_memset(&params, 0, sizeof(params));
num_ssid = num_match_ssid = 0;
ssid = wpa_s->conf->ssid;
while (ssid) {
if (!wpas_network_disabled(wpa_s, ssid)) {
num_match_ssid++;
if (ssid->scan_ssid)
num_ssid++;
}
ssid = ssid->next;
}
if (num_match_ssid == 0) {
wpa_printf(MSG_DEBUG, "PNO: No configured SSIDs");
return -1;
}
if (num_match_ssid > num_ssid) {
params.num_ssids++; /* wildcard */
num_ssid++;
}
if (num_ssid > max_sched_scan_ssids) {
wpa_printf(MSG_DEBUG, "PNO: Use only the first %u SSIDs from "
"%u", max_sched_scan_ssids, (unsigned int) num_ssid);
num_ssid = max_sched_scan_ssids;
}
if (num_match_ssid > wpa_s->max_match_sets) {
num_match_ssid = wpa_s->max_match_sets;
wpa_dbg(wpa_s, MSG_DEBUG, "PNO: Too many SSIDs to match");
}
params.filter_ssids = os_calloc(num_match_ssid,
sizeof(struct wpa_driver_scan_filter));
if (params.filter_ssids == NULL)
return -1;
i = 0;
prio = 0;
ssid = wpa_s->conf->pssid[prio];
while (ssid) {
if (!wpas_network_disabled(wpa_s, ssid)) {
if (ssid->scan_ssid && params.num_ssids < num_ssid) {
params.ssids[params.num_ssids].ssid =
ssid->ssid;
params.ssids[params.num_ssids].ssid_len =
ssid->ssid_len;
params.num_ssids++;
}
os_memcpy(params.filter_ssids[i].ssid, ssid->ssid,
ssid->ssid_len);
params.filter_ssids[i].ssid_len = ssid->ssid_len;
params.num_filter_ssids++;
i++;
if (i == num_match_ssid)
break;
}
if (ssid->pnext)
ssid = ssid->pnext;
else if (prio + 1 == wpa_s->conf->num_prio)
break;
else
ssid = wpa_s->conf->pssid[++prio];
}
if (wpa_s->conf->filter_rssi)
params.filter_rssi = wpa_s->conf->filter_rssi;
if (wpa_s->sched_scan_plans_num) {
params.sched_scan_plans = wpa_s->sched_scan_plans;
params.sched_scan_plans_num = wpa_s->sched_scan_plans_num;
} else {
/* Set one scan plan that will run infinitely */
if (wpa_s->conf->sched_scan_interval)
scan_plan.interval = wpa_s->conf->sched_scan_interval;
else
scan_plan.interval = 10;
scan_plan.iterations = 0;
params.sched_scan_plans = &scan_plan;
params.sched_scan_plans_num = 1;
}
params.sched_scan_start_delay = wpa_s->conf->sched_scan_start_delay;
if (params.freqs == NULL && wpa_s->manual_sched_scan_freqs) {
wpa_dbg(wpa_s, MSG_DEBUG, "Limit sched scan to specified channels");
params.freqs = wpa_s->manual_sched_scan_freqs;
}
if ((wpa_s->mac_addr_rand_enable & MAC_ADDR_RAND_PNO) &&
wpa_s->wpa_state <= WPA_SCANNING)
wpa_setup_mac_addr_rand_params(&params, wpa_s->mac_addr_pno);
wpa_scan_set_relative_rssi_params(wpa_s, &params);
ret = wpa_supplicant_start_sched_scan(wpa_s, &params);
os_free(params.filter_ssids);
os_free(params.mac_addr);
if (ret == 0)
wpa_s->pno = 1;
else
wpa_msg(wpa_s, MSG_ERROR, "Failed to schedule PNO");
return ret;
}
int wpas_stop_pno(struct wpa_supplicant *wpa_s)
{
int ret = 0;
if (!wpa_s->pno)
return 0;
ret = wpa_supplicant_stop_sched_scan(wpa_s);
wpa_s->sched_scan_stop_req = 1;
wpa_s->pno = 0;
wpa_s->pno_sched_pending = 0;
if (wpa_s->wpa_state == WPA_SCANNING)
wpa_supplicant_req_scan(wpa_s, 0, 0);
return ret;
}
void wpas_mac_addr_rand_scan_clear(struct wpa_supplicant *wpa_s,
unsigned int type)
{
type &= MAC_ADDR_RAND_ALL;
wpa_s->mac_addr_rand_enable &= ~type;
if (type & MAC_ADDR_RAND_SCAN) {
os_free(wpa_s->mac_addr_scan);
wpa_s->mac_addr_scan = NULL;
}
if (type & MAC_ADDR_RAND_SCHED_SCAN) {
os_free(wpa_s->mac_addr_sched_scan);
wpa_s->mac_addr_sched_scan = NULL;
}
if (type & MAC_ADDR_RAND_PNO) {
os_free(wpa_s->mac_addr_pno);
wpa_s->mac_addr_pno = NULL;
}
}
int wpas_mac_addr_rand_scan_set(struct wpa_supplicant *wpa_s,
unsigned int type, const u8 *addr,
const u8 *mask)
{
u8 *tmp = NULL;
if ((wpa_s->mac_addr_rand_supported & type) != type ) {
wpa_printf(MSG_INFO,
"scan: MAC randomization type %u != supported=%u",
type, wpa_s->mac_addr_rand_supported);
return -1;
}
wpas_mac_addr_rand_scan_clear(wpa_s, type);
if (addr) {
tmp = os_malloc(2 * ETH_ALEN);
if (!tmp)
return -1;
os_memcpy(tmp, addr, ETH_ALEN);
os_memcpy(tmp + ETH_ALEN, mask, ETH_ALEN);
}
if (type == MAC_ADDR_RAND_SCAN) {
wpa_s->mac_addr_scan = tmp;
} else if (type == MAC_ADDR_RAND_SCHED_SCAN) {
wpa_s->mac_addr_sched_scan = tmp;
} else if (type == MAC_ADDR_RAND_PNO) {
wpa_s->mac_addr_pno = tmp;
} else {
wpa_printf(MSG_INFO,
"scan: Invalid MAC randomization type=0x%x",
type);
os_free(tmp);
return -1;
}
wpa_s->mac_addr_rand_enable |= type;
return 0;
}
int wpas_mac_addr_rand_scan_get_mask(struct wpa_supplicant *wpa_s,
unsigned int type, u8 *mask)
{
const u8 *to_copy;
if ((wpa_s->mac_addr_rand_enable & type) != type)
return -1;
if (type == MAC_ADDR_RAND_SCAN) {
to_copy = wpa_s->mac_addr_scan;
} else if (type == MAC_ADDR_RAND_SCHED_SCAN) {
to_copy = wpa_s->mac_addr_sched_scan;
} else if (type == MAC_ADDR_RAND_PNO) {
to_copy = wpa_s->mac_addr_pno;
} else {
wpa_printf(MSG_DEBUG,
"scan: Invalid MAC randomization type=0x%x",
type);
return -1;
}
os_memcpy(mask, to_copy + ETH_ALEN, ETH_ALEN);
return 0;
}
int wpas_abort_ongoing_scan(struct wpa_supplicant *wpa_s)
{
struct wpa_radio_work *work;
struct wpa_radio *radio = wpa_s->radio;
dl_list_for_each(work, &radio->work, struct wpa_radio_work, list) {
if (work->wpa_s != wpa_s || !work->started ||
(os_strcmp(work->type, "scan") != 0 &&
os_strcmp(work->type, "p2p-scan") != 0))
continue;
wpa_dbg(wpa_s, MSG_DEBUG, "Abort an ongoing scan");
return wpa_drv_abort_scan(wpa_s, wpa_s->curr_scan_cookie);
}
wpa_dbg(wpa_s, MSG_DEBUG, "No ongoing scan/p2p-scan found to abort");
return -1;
}
int wpas_sched_scan_plans_set(struct wpa_supplicant *wpa_s, const char *cmd)
{
struct sched_scan_plan *scan_plans = NULL;
const char *token, *context = NULL;
unsigned int num = 0;
if (!cmd)
return -1;
if (!cmd[0]) {
wpa_printf(MSG_DEBUG, "Clear sched scan plans");
os_free(wpa_s->sched_scan_plans);
wpa_s->sched_scan_plans = NULL;
wpa_s->sched_scan_plans_num = 0;
return 0;
}
while ((token = cstr_token(cmd, " ", &context))) {
int ret;
struct sched_scan_plan *scan_plan, *n;
n = os_realloc_array(scan_plans, num + 1, sizeof(*scan_plans));
if (!n)
goto fail;
scan_plans = n;
scan_plan = &scan_plans[num];
num++;
ret = sscanf(token, "%u:%u", &scan_plan->interval,
&scan_plan->iterations);
if (ret <= 0 || ret > 2 || !scan_plan->interval) {
wpa_printf(MSG_ERROR,
"Invalid sched scan plan input: %s", token);
goto fail;
}
if (scan_plan->interval > wpa_s->max_sched_scan_plan_interval) {
wpa_printf(MSG_WARNING,
"scan plan %u: Scan interval too long(%u), use the maximum allowed(%u)",
num, scan_plan->interval,
wpa_s->max_sched_scan_plan_interval);
scan_plan->interval =
wpa_s->max_sched_scan_plan_interval;
}
if (ret == 1) {
scan_plan->iterations = 0;
break;
}
if (!scan_plan->iterations) {
wpa_printf(MSG_ERROR,
"scan plan %u: Number of iterations cannot be zero",
num);
goto fail;
}
if (scan_plan->iterations >
wpa_s->max_sched_scan_plan_iterations) {
wpa_printf(MSG_WARNING,
"scan plan %u: Too many iterations(%u), use the maximum allowed(%u)",
num, scan_plan->iterations,
wpa_s->max_sched_scan_plan_iterations);
scan_plan->iterations =
wpa_s->max_sched_scan_plan_iterations;
}
wpa_printf(MSG_DEBUG,
"scan plan %u: interval=%u iterations=%u",
num, scan_plan->interval, scan_plan->iterations);
}
if (!scan_plans) {
wpa_printf(MSG_ERROR, "Invalid scan plans entry");
goto fail;
}
if (cstr_token(cmd, " ", &context) || scan_plans[num - 1].iterations) {
wpa_printf(MSG_ERROR,
"All scan plans but the last must specify a number of iterations");
goto fail;
}
wpa_printf(MSG_DEBUG, "scan plan %u (last plan): interval=%u",
num, scan_plans[num - 1].interval);
if (num > wpa_s->max_sched_scan_plans) {
wpa_printf(MSG_WARNING,
"Too many scheduled scan plans (only %u supported)",
wpa_s->max_sched_scan_plans);
wpa_printf(MSG_WARNING,
"Use only the first %u scan plans, and the last one (in infinite loop)",
wpa_s->max_sched_scan_plans - 1);
os_memcpy(&scan_plans[wpa_s->max_sched_scan_plans - 1],
&scan_plans[num - 1], sizeof(*scan_plans));
num = wpa_s->max_sched_scan_plans;
}
os_free(wpa_s->sched_scan_plans);
wpa_s->sched_scan_plans = scan_plans;
wpa_s->sched_scan_plans_num = num;
return 0;
fail:
os_free(scan_plans);
wpa_printf(MSG_ERROR, "invalid scan plans list");
return -1;
}
/**
* wpas_scan_reset_sched_scan - Reset sched_scan state
* @wpa_s: Pointer to wpa_supplicant data
*
* This function is used to cancel a running scheduled scan and to reset an
* internal scan state to continue with a regular scan on the following
* wpa_supplicant_req_scan() calls.
*/
void wpas_scan_reset_sched_scan(struct wpa_supplicant *wpa_s)
{
wpa_s->normal_scans = 0;
if (wpa_s->sched_scanning) {
wpa_s->sched_scan_timed_out = 0;
wpa_s->prev_sched_ssid = NULL;
wpa_supplicant_cancel_sched_scan(wpa_s);
}
}
void wpas_scan_restart_sched_scan(struct wpa_supplicant *wpa_s)
{
/* simulate timeout to restart the sched scan */
wpa_s->sched_scan_timed_out = 1;
wpa_s->prev_sched_ssid = NULL;
wpa_supplicant_cancel_sched_scan(wpa_s);
}