hostap/src/eap_common/eap_eke_common.c
Sean Parkinson 0c3d49afd8 EAP-EKE: Use abstract crypto API
This makes it easier to use EAP-pwd with other crypto libraries.

Signed-off-by: Sean Parkinson <sean@wolfssl.com>
2017-12-24 17:38:17 +02:00

728 lines
17 KiB
C

/*
* EAP server/peer: EAP-EKE shared routines
* Copyright (c) 2011-2013, Jouni Malinen <j@w1.fi>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include "includes.h"
#include "common.h"
#include "crypto/aes.h"
#include "crypto/aes_wrap.h"
#include "crypto/crypto.h"
#include "crypto/dh_groups.h"
#include "crypto/random.h"
#include "crypto/sha1.h"
#include "crypto/sha256.h"
#include "eap_common/eap_defs.h"
#include "eap_eke_common.h"
static int eap_eke_dh_len(u8 group)
{
switch (group) {
case EAP_EKE_DHGROUP_EKE_2:
return 128;
case EAP_EKE_DHGROUP_EKE_5:
return 192;
case EAP_EKE_DHGROUP_EKE_14:
return 256;
case EAP_EKE_DHGROUP_EKE_15:
return 384;
case EAP_EKE_DHGROUP_EKE_16:
return 512;
}
return -1;
}
static int eap_eke_dhcomp_len(u8 dhgroup, u8 encr)
{
int dhlen;
dhlen = eap_eke_dh_len(dhgroup);
if (dhlen < 0 || encr != EAP_EKE_ENCR_AES128_CBC)
return -1;
return AES_BLOCK_SIZE + dhlen;
}
static const struct dh_group * eap_eke_dh_group(u8 group)
{
switch (group) {
case EAP_EKE_DHGROUP_EKE_2:
return dh_groups_get(2);
case EAP_EKE_DHGROUP_EKE_5:
return dh_groups_get(5);
case EAP_EKE_DHGROUP_EKE_14:
return dh_groups_get(14);
case EAP_EKE_DHGROUP_EKE_15:
return dh_groups_get(15);
case EAP_EKE_DHGROUP_EKE_16:
return dh_groups_get(16);
}
return NULL;
}
static int eap_eke_dh_generator(u8 group)
{
switch (group) {
case EAP_EKE_DHGROUP_EKE_2:
return 5;
case EAP_EKE_DHGROUP_EKE_5:
return 31;
case EAP_EKE_DHGROUP_EKE_14:
return 11;
case EAP_EKE_DHGROUP_EKE_15:
return 5;
case EAP_EKE_DHGROUP_EKE_16:
return 5;
}
return -1;
}
static int eap_eke_pnonce_len(u8 mac)
{
int mac_len;
if (mac == EAP_EKE_MAC_HMAC_SHA1)
mac_len = SHA1_MAC_LEN;
else if (mac == EAP_EKE_MAC_HMAC_SHA2_256)
mac_len = SHA256_MAC_LEN;
else
return -1;
return AES_BLOCK_SIZE + 16 + mac_len;
}
static int eap_eke_pnonce_ps_len(u8 mac)
{
int mac_len;
if (mac == EAP_EKE_MAC_HMAC_SHA1)
mac_len = SHA1_MAC_LEN;
else if (mac == EAP_EKE_MAC_HMAC_SHA2_256)
mac_len = SHA256_MAC_LEN;
else
return -1;
return AES_BLOCK_SIZE + 2 * 16 + mac_len;
}
static int eap_eke_prf_len(u8 prf)
{
if (prf == EAP_EKE_PRF_HMAC_SHA1)
return 20;
if (prf == EAP_EKE_PRF_HMAC_SHA2_256)
return 32;
return -1;
}
static int eap_eke_nonce_len(u8 prf)
{
int prf_len;
prf_len = eap_eke_prf_len(prf);
if (prf_len < 0)
return -1;
if (prf_len > 2 * 16)
return (prf_len + 1) / 2;
return 16;
}
static int eap_eke_auth_len(u8 prf)
{
switch (prf) {
case EAP_EKE_PRF_HMAC_SHA1:
return SHA1_MAC_LEN;
case EAP_EKE_PRF_HMAC_SHA2_256:
return SHA256_MAC_LEN;
}
return -1;
}
int eap_eke_dh_init(u8 group, u8 *ret_priv, u8 *ret_pub)
{
int generator;
u8 gen;
const struct dh_group *dh;
generator = eap_eke_dh_generator(group);
dh = eap_eke_dh_group(group);
if (generator < 0 || generator > 255 || !dh)
return -1;
gen = generator;
if (crypto_dh_init(gen, dh->prime, dh->prime_len, ret_priv,
ret_pub) < 0)
return -1;
wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: DH private value",
ret_priv, dh->prime_len);
wpa_hexdump(MSG_DEBUG, "EAP-EKE: DH public value",
ret_pub, dh->prime_len);
return 0;
}
static int eap_eke_prf(u8 prf, const u8 *key, size_t key_len, const u8 *data,
size_t data_len, const u8 *data2, size_t data2_len,
u8 *res)
{
const u8 *addr[2];
size_t len[2];
size_t num_elem = 1;
addr[0] = data;
len[0] = data_len;
if (data2) {
num_elem++;
addr[1] = data2;
len[1] = data2_len;
}
if (prf == EAP_EKE_PRF_HMAC_SHA1)
return hmac_sha1_vector(key, key_len, num_elem, addr, len, res);
if (prf == EAP_EKE_PRF_HMAC_SHA2_256)
return hmac_sha256_vector(key, key_len, num_elem, addr, len,
res);
return -1;
}
static int eap_eke_prf_hmac_sha1(const u8 *key, size_t key_len, const u8 *data,
size_t data_len, u8 *res, size_t len)
{
u8 hash[SHA1_MAC_LEN];
u8 idx;
const u8 *addr[3];
size_t vlen[3];
int ret;
idx = 0;
addr[0] = hash;
vlen[0] = SHA1_MAC_LEN;
addr[1] = data;
vlen[1] = data_len;
addr[2] = &idx;
vlen[2] = 1;
while (len > 0) {
idx++;
if (idx == 1)
ret = hmac_sha1_vector(key, key_len, 2, &addr[1],
&vlen[1], hash);
else
ret = hmac_sha1_vector(key, key_len, 3, addr, vlen,
hash);
if (ret < 0)
return -1;
if (len > SHA1_MAC_LEN) {
os_memcpy(res, hash, SHA1_MAC_LEN);
res += SHA1_MAC_LEN;
len -= SHA1_MAC_LEN;
} else {
os_memcpy(res, hash, len);
len = 0;
}
}
return 0;
}
static int eap_eke_prf_hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
size_t data_len, u8 *res, size_t len)
{
u8 hash[SHA256_MAC_LEN];
u8 idx;
const u8 *addr[3];
size_t vlen[3];
int ret;
idx = 0;
addr[0] = hash;
vlen[0] = SHA256_MAC_LEN;
addr[1] = data;
vlen[1] = data_len;
addr[2] = &idx;
vlen[2] = 1;
while (len > 0) {
idx++;
if (idx == 1)
ret = hmac_sha256_vector(key, key_len, 2, &addr[1],
&vlen[1], hash);
else
ret = hmac_sha256_vector(key, key_len, 3, addr, vlen,
hash);
if (ret < 0)
return -1;
if (len > SHA256_MAC_LEN) {
os_memcpy(res, hash, SHA256_MAC_LEN);
res += SHA256_MAC_LEN;
len -= SHA256_MAC_LEN;
} else {
os_memcpy(res, hash, len);
len = 0;
}
}
return 0;
}
static int eap_eke_prfplus(u8 prf, const u8 *key, size_t key_len,
const u8 *data, size_t data_len, u8 *res, size_t len)
{
if (prf == EAP_EKE_PRF_HMAC_SHA1)
return eap_eke_prf_hmac_sha1(key, key_len, data, data_len, res,
len);
if (prf == EAP_EKE_PRF_HMAC_SHA2_256)
return eap_eke_prf_hmac_sha256(key, key_len, data, data_len,
res, len);
return -1;
}
int eap_eke_derive_key(struct eap_eke_session *sess,
const u8 *password, size_t password_len,
const u8 *id_s, size_t id_s_len, const u8 *id_p,
size_t id_p_len, u8 *key)
{
u8 zeros[EAP_EKE_MAX_HASH_LEN];
u8 temp[EAP_EKE_MAX_HASH_LEN];
size_t key_len = 16; /* Only AES-128-CBC is used here */
u8 *id;
/* temp = prf(0+, password) */
os_memset(zeros, 0, sess->prf_len);
if (eap_eke_prf(sess->prf, zeros, sess->prf_len,
password, password_len, NULL, 0, temp) < 0)
return -1;
wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: temp = prf(0+, password)",
temp, sess->prf_len);
/* key = prf+(temp, ID_S | ID_P) */
id = os_malloc(id_s_len + id_p_len);
if (id == NULL)
return -1;
os_memcpy(id, id_s, id_s_len);
os_memcpy(id + id_s_len, id_p, id_p_len);
wpa_hexdump_ascii(MSG_DEBUG, "EAP-EKE: ID_S | ID_P",
id, id_s_len + id_p_len);
if (eap_eke_prfplus(sess->prf, temp, sess->prf_len,
id, id_s_len + id_p_len, key, key_len) < 0) {
os_free(id);
return -1;
}
os_free(id);
wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: key = prf+(temp, ID_S | ID_P)",
key, key_len);
return 0;
}
int eap_eke_dhcomp(struct eap_eke_session *sess, const u8 *key, const u8 *dhpub,
u8 *ret_dhcomp)
{
u8 pub[EAP_EKE_MAX_DH_LEN];
int dh_len;
u8 iv[AES_BLOCK_SIZE];
dh_len = eap_eke_dh_len(sess->dhgroup);
if (dh_len < 0)
return -1;
/*
* DHComponent = Encr(key, y)
*
* All defined DH groups use primes that have length devisible by 16, so
* no need to do extra padding for y (= pub).
*/
if (sess->encr != EAP_EKE_ENCR_AES128_CBC)
return -1;
if (random_get_bytes(iv, AES_BLOCK_SIZE))
return -1;
wpa_hexdump(MSG_DEBUG, "EAP-EKE: IV for Encr(key, y)",
iv, AES_BLOCK_SIZE);
os_memcpy(pub, dhpub, dh_len);
if (aes_128_cbc_encrypt(key, iv, pub, dh_len) < 0)
return -1;
os_memcpy(ret_dhcomp, iv, AES_BLOCK_SIZE);
os_memcpy(ret_dhcomp + AES_BLOCK_SIZE, pub, dh_len);
wpa_hexdump(MSG_DEBUG, "EAP-EKE: DHComponent = Encr(key, y)",
ret_dhcomp, AES_BLOCK_SIZE + dh_len);
return 0;
}
int eap_eke_shared_secret(struct eap_eke_session *sess, const u8 *key,
const u8 *dhpriv, const u8 *peer_dhcomp)
{
u8 zeros[EAP_EKE_MAX_HASH_LEN];
u8 peer_pub[EAP_EKE_MAX_DH_LEN];
u8 modexp[EAP_EKE_MAX_DH_LEN];
size_t len;
const struct dh_group *dh;
dh = eap_eke_dh_group(sess->dhgroup);
if (sess->encr != EAP_EKE_ENCR_AES128_CBC || !dh)
return -1;
/* Decrypt peer DHComponent */
os_memcpy(peer_pub, peer_dhcomp + AES_BLOCK_SIZE, dh->prime_len);
if (aes_128_cbc_decrypt(key, peer_dhcomp, peer_pub, dh->prime_len) < 0) {
wpa_printf(MSG_INFO, "EAP-EKE: Failed to decrypt DHComponent");
return -1;
}
wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: Decrypted peer DH pubkey",
peer_pub, dh->prime_len);
/* SharedSecret = prf(0+, g ^ (x_s * x_p) (mod p)) */
len = dh->prime_len;
if (crypto_dh_derive_secret(*dh->generator, dh->prime, dh->prime_len,
dhpriv, dh->prime_len, peer_pub,
dh->prime_len, modexp, &len) < 0)
return -1;
if (len < dh->prime_len) {
size_t pad = dh->prime_len - len;
os_memmove(modexp + pad, modexp, len);
os_memset(modexp, 0, pad);
}
os_memset(zeros, 0, sess->auth_len);
if (eap_eke_prf(sess->prf, zeros, sess->auth_len, modexp, dh->prime_len,
NULL, 0, sess->shared_secret) < 0)
return -1;
wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: SharedSecret",
sess->shared_secret, sess->auth_len);
return 0;
}
int eap_eke_derive_ke_ki(struct eap_eke_session *sess,
const u8 *id_s, size_t id_s_len,
const u8 *id_p, size_t id_p_len)
{
u8 buf[EAP_EKE_MAX_KE_LEN + EAP_EKE_MAX_KI_LEN];
size_t ke_len, ki_len;
u8 *data;
size_t data_len;
const char *label = "EAP-EKE Keys";
size_t label_len;
/*
* Ke | Ki = prf+(SharedSecret, "EAP-EKE Keys" | ID_S | ID_P)
* Ke = encryption key
* Ki = integrity protection key
* Length of each key depends on the selected algorithms.
*/
if (sess->encr == EAP_EKE_ENCR_AES128_CBC)
ke_len = 16;
else
return -1;
if (sess->mac == EAP_EKE_PRF_HMAC_SHA1)
ki_len = 20;
else if (sess->mac == EAP_EKE_PRF_HMAC_SHA2_256)
ki_len = 32;
else
return -1;
label_len = os_strlen(label);
data_len = label_len + id_s_len + id_p_len;
data = os_malloc(data_len);
if (data == NULL)
return -1;
os_memcpy(data, label, label_len);
os_memcpy(data + label_len, id_s, id_s_len);
os_memcpy(data + label_len + id_s_len, id_p, id_p_len);
if (eap_eke_prfplus(sess->prf, sess->shared_secret, sess->prf_len,
data, data_len, buf, ke_len + ki_len) < 0) {
os_free(data);
return -1;
}
os_memcpy(sess->ke, buf, ke_len);
wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: Ke", sess->ke, ke_len);
os_memcpy(sess->ki, buf + ke_len, ki_len);
wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: Ki", sess->ki, ki_len);
os_free(data);
return 0;
}
int eap_eke_derive_ka(struct eap_eke_session *sess,
const u8 *id_s, size_t id_s_len,
const u8 *id_p, size_t id_p_len,
const u8 *nonce_p, const u8 *nonce_s)
{
u8 *data, *pos;
size_t data_len;
const char *label = "EAP-EKE Ka";
size_t label_len;
/*
* Ka = prf+(SharedSecret, "EAP-EKE Ka" | ID_S | ID_P | Nonce_P |
* Nonce_S)
* Ka = authentication key
* Length of the key depends on the selected algorithms.
*/
label_len = os_strlen(label);
data_len = label_len + id_s_len + id_p_len + 2 * sess->nonce_len;
data = os_malloc(data_len);
if (data == NULL)
return -1;
pos = data;
os_memcpy(pos, label, label_len);
pos += label_len;
os_memcpy(pos, id_s, id_s_len);
pos += id_s_len;
os_memcpy(pos, id_p, id_p_len);
pos += id_p_len;
os_memcpy(pos, nonce_p, sess->nonce_len);
pos += sess->nonce_len;
os_memcpy(pos, nonce_s, sess->nonce_len);
if (eap_eke_prfplus(sess->prf, sess->shared_secret, sess->prf_len,
data, data_len, sess->ka, sess->prf_len) < 0) {
os_free(data);
return -1;
}
os_free(data);
wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: Ka", sess->ka, sess->prf_len);
return 0;
}
int eap_eke_derive_msk(struct eap_eke_session *sess,
const u8 *id_s, size_t id_s_len,
const u8 *id_p, size_t id_p_len,
const u8 *nonce_p, const u8 *nonce_s,
u8 *msk, u8 *emsk)
{
u8 *data, *pos;
size_t data_len;
const char *label = "EAP-EKE Exported Keys";
size_t label_len;
u8 buf[EAP_MSK_LEN + EAP_EMSK_LEN];
/*
* MSK | EMSK = prf+(SharedSecret, "EAP-EKE Exported Keys" | ID_S |
* ID_P | Nonce_P | Nonce_S)
*/
label_len = os_strlen(label);
data_len = label_len + id_s_len + id_p_len + 2 * sess->nonce_len;
data = os_malloc(data_len);
if (data == NULL)
return -1;
pos = data;
os_memcpy(pos, label, label_len);
pos += label_len;
os_memcpy(pos, id_s, id_s_len);
pos += id_s_len;
os_memcpy(pos, id_p, id_p_len);
pos += id_p_len;
os_memcpy(pos, nonce_p, sess->nonce_len);
pos += sess->nonce_len;
os_memcpy(pos, nonce_s, sess->nonce_len);
if (eap_eke_prfplus(sess->prf, sess->shared_secret, sess->prf_len,
data, data_len, buf, EAP_MSK_LEN + EAP_EMSK_LEN) <
0) {
os_free(data);
return -1;
}
os_free(data);
os_memcpy(msk, buf, EAP_MSK_LEN);
os_memcpy(emsk, buf + EAP_MSK_LEN, EAP_EMSK_LEN);
os_memset(buf, 0, sizeof(buf));
wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: MSK", msk, EAP_MSK_LEN);
wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: EMSK", msk, EAP_EMSK_LEN);
return 0;
}
static int eap_eke_mac(u8 mac, const u8 *key, const u8 *data, size_t data_len,
u8 *res)
{
if (mac == EAP_EKE_MAC_HMAC_SHA1)
return hmac_sha1(key, SHA1_MAC_LEN, data, data_len, res);
if (mac == EAP_EKE_MAC_HMAC_SHA2_256)
return hmac_sha256(key, SHA256_MAC_LEN, data, data_len, res);
return -1;
}
int eap_eke_prot(struct eap_eke_session *sess,
const u8 *data, size_t data_len,
u8 *prot, size_t *prot_len)
{
size_t block_size, icv_len, pad;
u8 *pos, *iv, *e;
if (sess->encr == EAP_EKE_ENCR_AES128_CBC)
block_size = AES_BLOCK_SIZE;
else
return -1;
if (sess->mac == EAP_EKE_PRF_HMAC_SHA1)
icv_len = SHA1_MAC_LEN;
else if (sess->mac == EAP_EKE_PRF_HMAC_SHA2_256)
icv_len = SHA256_MAC_LEN;
else
return -1;
pad = data_len % block_size;
if (pad)
pad = block_size - pad;
if (*prot_len < block_size + data_len + pad + icv_len) {
wpa_printf(MSG_INFO, "EAP-EKE: Not enough room for Prot() data");
return -1;
}
pos = prot;
if (random_get_bytes(pos, block_size))
return -1;
iv = pos;
wpa_hexdump(MSG_DEBUG, "EAP-EKE: IV for Prot()", iv, block_size);
pos += block_size;
e = pos;
os_memcpy(pos, data, data_len);
pos += data_len;
if (pad) {
if (random_get_bytes(pos, pad))
return -1;
pos += pad;
}
if (aes_128_cbc_encrypt(sess->ke, iv, e, data_len + pad) < 0 ||
eap_eke_mac(sess->mac, sess->ki, e, data_len + pad, pos) < 0)
return -1;
pos += icv_len;
*prot_len = pos - prot;
return 0;
}
int eap_eke_decrypt_prot(struct eap_eke_session *sess,
const u8 *prot, size_t prot_len,
u8 *data, size_t *data_len)
{
size_t block_size, icv_len;
u8 icv[EAP_EKE_MAX_HASH_LEN];
if (sess->encr == EAP_EKE_ENCR_AES128_CBC)
block_size = AES_BLOCK_SIZE;
else
return -1;
if (sess->mac == EAP_EKE_PRF_HMAC_SHA1)
icv_len = SHA1_MAC_LEN;
else if (sess->mac == EAP_EKE_PRF_HMAC_SHA2_256)
icv_len = SHA256_MAC_LEN;
else
return -1;
if (prot_len < 2 * block_size + icv_len ||
(prot_len - icv_len) % block_size)
return -1;
if (eap_eke_mac(sess->mac, sess->ki, prot + block_size,
prot_len - block_size - icv_len, icv) < 0)
return -1;
if (os_memcmp_const(icv, prot + prot_len - icv_len, icv_len) != 0) {
wpa_printf(MSG_INFO, "EAP-EKE: ICV mismatch in Prot() data");
return -1;
}
if (*data_len < prot_len - block_size - icv_len) {
wpa_printf(MSG_INFO, "EAP-EKE: Not enough room for decrypted Prot() data");
return -1;
}
*data_len = prot_len - block_size - icv_len;
os_memcpy(data, prot + block_size, *data_len);
if (aes_128_cbc_decrypt(sess->ke, prot, data, *data_len) < 0) {
wpa_printf(MSG_INFO, "EAP-EKE: Failed to decrypt Prot() data");
return -1;
}
wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: Decrypted Prot() data",
data, *data_len);
return 0;
}
int eap_eke_auth(struct eap_eke_session *sess, const char *label,
const struct wpabuf *msgs, u8 *auth)
{
wpa_printf(MSG_DEBUG, "EAP-EKE: Auth(%s)", label);
wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: Ka for Auth",
sess->ka, sess->auth_len);
wpa_hexdump_buf(MSG_MSGDUMP, "EAP-EKE: Messages for Auth", msgs);
return eap_eke_prf(sess->prf, sess->ka, sess->auth_len,
(const u8 *) label, os_strlen(label),
wpabuf_head(msgs), wpabuf_len(msgs), auth);
}
int eap_eke_session_init(struct eap_eke_session *sess, u8 dhgroup, u8 encr,
u8 prf, u8 mac)
{
sess->dhgroup = dhgroup;
sess->encr = encr;
sess->prf = prf;
sess->mac = mac;
sess->prf_len = eap_eke_prf_len(prf);
sess->nonce_len = eap_eke_nonce_len(prf);
sess->auth_len = eap_eke_auth_len(prf);
sess->dhcomp_len = eap_eke_dhcomp_len(sess->dhgroup, sess->encr);
sess->pnonce_len = eap_eke_pnonce_len(sess->mac);
sess->pnonce_ps_len = eap_eke_pnonce_ps_len(sess->mac);
if (sess->prf_len < 0 || sess->nonce_len < 0 || sess->auth_len < 0 ||
sess->dhcomp_len < 0 || sess->pnonce_len < 0 ||
sess->pnonce_ps_len < 0)
return -1;
return 0;
}
void eap_eke_session_clean(struct eap_eke_session *sess)
{
os_memset(sess->shared_secret, 0, EAP_EKE_MAX_HASH_LEN);
os_memset(sess->ke, 0, EAP_EKE_MAX_KE_LEN);
os_memset(sess->ki, 0, EAP_EKE_MAX_KI_LEN);
os_memset(sess->ka, 0, EAP_EKE_MAX_KA_LEN);
}