hostap/src/pae/ieee802_1x_key.c
Jouni Malinen 7251f0badc mka: Extend CAK/CKN-from-EAP-MSK API to pass in MSK length
This can be used to allow 256-bit key hierarchy to be derived from
EAP-based authentication. For now, the MSK length is hardcoded to 128
bits, so the previous behavior is maintained.

Signed-off-by: Jouni Malinen <j@w1.fi>
2018-12-26 16:44:58 +02:00

210 lines
4.8 KiB
C

/*
* IEEE 802.1X-2010 Key Hierarchy
* Copyright (c) 2013, Qualcomm Atheros, Inc.
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*
* SAK derivation specified in IEEE Std 802.1X-2010, Clause 6.2
*/
#include "utils/includes.h"
#include "utils/common.h"
#include "crypto/md5.h"
#include "crypto/sha1.h"
#include "crypto/aes_wrap.h"
#include "crypto/crypto.h"
#include "ieee802_1x_key.h"
static void joint_two_mac(const u8 *mac1, const u8 *mac2, u8 *out)
{
if (os_memcmp(mac1, mac2, ETH_ALEN) < 0) {
os_memcpy(out, mac1, ETH_ALEN);
os_memcpy(out + ETH_ALEN, mac2, ETH_ALEN);
} else {
os_memcpy(out, mac2, ETH_ALEN);
os_memcpy(out + ETH_ALEN, mac1, ETH_ALEN);
}
}
/* IEEE Std 802.1X-2010, 6.2.1 KDF */
static int aes_kdf(const u8 *kdk, size_t kdk_bits,
const char *label, const u8 *context,
int ctx_bits, int ret_bits, u8 *ret)
{
const int h = 128;
const int r = 8;
int i, n;
int lab_len, ctx_len, ret_len, buf_len;
u8 *buf;
if (kdk_bits != 128 && kdk_bits != 256)
return -1;
lab_len = os_strlen(label);
ctx_len = (ctx_bits + 7) / 8;
ret_len = ((ret_bits & 0xffff) + 7) / 8;
buf_len = lab_len + ctx_len + 4;
os_memset(ret, 0, ret_len);
n = (ret_bits + h - 1) / h;
if (n > ((0x1 << r) - 1))
return -1;
buf = os_zalloc(buf_len);
if (buf == NULL)
return -1;
os_memcpy(buf + 1, label, lab_len);
os_memcpy(buf + lab_len + 2, context, ctx_len);
WPA_PUT_BE16(&buf[buf_len - 2], ret_bits);
for (i = 0; i < n; i++) {
int res;
buf[0] = (u8) (i + 1);
if (kdk_bits == 128)
res = omac1_aes_128(kdk, buf, buf_len, ret);
else
res = omac1_aes_256(kdk, buf, buf_len, ret);
if (res) {
os_free(buf);
return -1;
}
ret = ret + h / 8;
}
os_free(buf);
return 0;
}
/**
* ieee802_1x_cak_aes_cmac
*
* IEEE Std 802.1X-2010, 6.2.2
* CAK = KDF(Key, Label, mac1 | mac2, CAKlength)
*/
int ieee802_1x_cak_aes_cmac(const u8 *msk, size_t msk_bytes, const u8 *mac1,
const u8 *mac2, u8 *cak, size_t cak_bytes)
{
u8 context[2 * ETH_ALEN];
joint_two_mac(mac1, mac2, context);
return aes_kdf(msk, 8 * msk_bytes, "IEEE8021 EAP CAK",
context, sizeof(context) * 8, 8 * cak_bytes, cak);
}
/**
* ieee802_1x_ckn_aes_cmac
*
* IEEE Std 802.1X-2010, 6.2.2
* CKN = KDF(Key, Label, ID | mac1 | mac2, CKNlength)
*/
int ieee802_1x_ckn_aes_cmac(const u8 *msk, size_t msk_bytes, const u8 *mac1,
const u8 *mac2, const u8 *sid,
size_t sid_bytes, u8 *ckn)
{
int res;
u8 *context;
size_t ctx_len = sid_bytes + ETH_ALEN * 2;
context = os_zalloc(ctx_len);
if (!context) {
wpa_printf(MSG_ERROR, "MKA-%s: out of memory", __func__);
return -1;
}
os_memcpy(context, sid, sid_bytes);
joint_two_mac(mac1, mac2, context + sid_bytes);
res = aes_kdf(msk, 8 * msk_bytes, "IEEE8021 EAP CKN",
context, ctx_len * 8, 128, ckn);
os_free(context);
return res;
}
/**
* ieee802_1x_kek_aes_cmac
*
* IEEE Std 802.1X-2010, 9.3.3
* KEK = KDF(Key, Label, Keyid, KEKLength)
*/
int ieee802_1x_kek_aes_cmac(const u8 *cak, size_t cak_bytes, const u8 *ckn,
size_t ckn_bytes, u8 *kek, size_t kek_bytes)
{
u8 context[16];
/* First 16 octets of CKN, with null octets appended to pad if needed */
os_memset(context, 0, sizeof(context));
os_memcpy(context, ckn, (ckn_bytes < 16) ? ckn_bytes : 16);
return aes_kdf(cak, 8 * cak_bytes, "IEEE8021 KEK",
context, sizeof(context) * 8,
8 * kek_bytes, kek);
}
/**
* ieee802_1x_ick_aes_cmac
*
* IEEE Std 802.1X-2010, 9.3.3
* ICK = KDF(Key, Label, Keyid, ICKLength)
*/
int ieee802_1x_ick_aes_cmac(const u8 *cak, size_t cak_bytes, const u8 *ckn,
size_t ckn_bytes, u8 *ick, size_t ick_bytes)
{
u8 context[16];
/* First 16 octets of CKN, with null octets appended to pad if needed */
os_memset(context, 0, sizeof(context));
os_memcpy(context, ckn, (ckn_bytes < 16) ? ckn_bytes : 16);
return aes_kdf(cak, 8 *cak_bytes, "IEEE8021 ICK",
context, sizeof(context) * 8,
8 * ick_bytes, ick);
}
/**
* ieee802_1x_icv_aes_cmac
*
* IEEE Std 802.1X-2010, 9.4.1
* ICV = AES-CMAC(ICK, M, 128)
*/
int ieee802_1x_icv_aes_cmac(const u8 *ick, size_t ick_bytes, const u8 *msg,
size_t msg_bytes, u8 *icv)
{
int res;
if (ick_bytes == 16)
res = omac1_aes_128(ick, msg, msg_bytes, icv);
else if (ick_bytes == 32)
res = omac1_aes_256(ick, msg, msg_bytes, icv);
else
return -1;
if (res) {
wpa_printf(MSG_ERROR,
"MKA: AES-CMAC failed for ICV calculation");
return -1;
}
return 0;
}
/**
* ieee802_1x_sak_aes_cmac
*
* IEEE Std 802.1X-2010, 9.8.1
* SAK = KDF(Key, Label, KS-nonce | MI-value list | KN, SAKLength)
*/
int ieee802_1x_sak_aes_cmac(const u8 *cak, size_t cak_bytes, const u8 *ctx,
size_t ctx_bytes, u8 *sak, size_t sak_bytes)
{
return aes_kdf(cak, cak_bytes * 8, "IEEE8021 SAK", ctx, ctx_bytes * 8,
sak_bytes * 8, sak);
}