/* * IEEE 802.11 Common routines * Copyright (c) 2002-2019, Jouni Malinen * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include "includes.h" #include "common.h" #include "defs.h" #include "wpa_common.h" #include "drivers/driver.h" #include "qca-vendor.h" #include "ieee802_11_defs.h" #include "ieee802_11_common.h" static int ieee802_11_parse_vendor_specific(const u8 *pos, size_t elen, struct ieee802_11_elems *elems, int show_errors) { unsigned int oui; /* first 3 bytes in vendor specific information element are the IEEE * OUI of the vendor. The following byte is used a vendor specific * sub-type. */ if (elen < 4) { if (show_errors) { wpa_printf(MSG_MSGDUMP, "short vendor specific " "information element ignored (len=%lu)", (unsigned long) elen); } return -1; } oui = WPA_GET_BE24(pos); switch (oui) { case OUI_MICROSOFT: /* Microsoft/Wi-Fi information elements are further typed and * subtyped */ switch (pos[3]) { case 1: /* Microsoft OUI (00:50:F2) with OUI Type 1: * real WPA information element */ elems->wpa_ie = pos; elems->wpa_ie_len = elen; break; case WMM_OUI_TYPE: /* WMM information element */ if (elen < 5) { wpa_printf(MSG_MSGDUMP, "short WMM " "information element ignored " "(len=%lu)", (unsigned long) elen); return -1; } switch (pos[4]) { case WMM_OUI_SUBTYPE_INFORMATION_ELEMENT: case WMM_OUI_SUBTYPE_PARAMETER_ELEMENT: /* * Share same pointer since only one of these * is used and they start with same data. * Length field can be used to distinguish the * IEs. */ elems->wmm = pos; elems->wmm_len = elen; break; case WMM_OUI_SUBTYPE_TSPEC_ELEMENT: elems->wmm_tspec = pos; elems->wmm_tspec_len = elen; break; default: wpa_printf(MSG_EXCESSIVE, "unknown WMM " "information element ignored " "(subtype=%d len=%lu)", pos[4], (unsigned long) elen); return -1; } break; case 4: /* Wi-Fi Protected Setup (WPS) IE */ elems->wps_ie = pos; elems->wps_ie_len = elen; break; default: wpa_printf(MSG_EXCESSIVE, "Unknown Microsoft " "information element ignored " "(type=%d len=%lu)", pos[3], (unsigned long) elen); return -1; } break; case OUI_WFA: switch (pos[3]) { case P2P_OUI_TYPE: /* Wi-Fi Alliance - P2P IE */ elems->p2p = pos; elems->p2p_len = elen; break; case WFD_OUI_TYPE: /* Wi-Fi Alliance - WFD IE */ elems->wfd = pos; elems->wfd_len = elen; break; case HS20_INDICATION_OUI_TYPE: /* Hotspot 2.0 */ elems->hs20 = pos; elems->hs20_len = elen; break; case HS20_OSEN_OUI_TYPE: /* Hotspot 2.0 OSEN */ elems->osen = pos; elems->osen_len = elen; break; case MBO_OUI_TYPE: /* MBO-OCE */ elems->mbo = pos; elems->mbo_len = elen; break; case HS20_ROAMING_CONS_SEL_OUI_TYPE: /* Hotspot 2.0 Roaming Consortium Selection */ elems->roaming_cons_sel = pos; elems->roaming_cons_sel_len = elen; break; case MULTI_AP_OUI_TYPE: elems->multi_ap = pos; elems->multi_ap_len = elen; break; case OWE_OUI_TYPE: /* OWE Transition Mode element */ break; case DPP_CC_OUI_TYPE: /* DPP Configurator Connectivity element */ break; case SAE_PK_OUI_TYPE: elems->sae_pk = pos + 4; elems->sae_pk_len = elen - 4; break; default: wpa_printf(MSG_MSGDUMP, "Unknown WFA " "information element ignored " "(type=%d len=%lu)", pos[3], (unsigned long) elen); return -1; } break; case OUI_BROADCOM: switch (pos[3]) { case VENDOR_HT_CAPAB_OUI_TYPE: elems->vendor_ht_cap = pos; elems->vendor_ht_cap_len = elen; break; case VENDOR_VHT_TYPE: if (elen > 4 && (pos[4] == VENDOR_VHT_SUBTYPE || pos[4] == VENDOR_VHT_SUBTYPE2)) { elems->vendor_vht = pos; elems->vendor_vht_len = elen; } else return -1; break; default: wpa_printf(MSG_EXCESSIVE, "Unknown Broadcom " "information element ignored " "(type=%d len=%lu)", pos[3], (unsigned long) elen); return -1; } break; case OUI_QCA: switch (pos[3]) { case QCA_VENDOR_ELEM_P2P_PREF_CHAN_LIST: elems->pref_freq_list = pos; elems->pref_freq_list_len = elen; break; default: wpa_printf(MSG_EXCESSIVE, "Unknown QCA information element ignored (type=%d len=%lu)", pos[3], (unsigned long) elen); return -1; } break; default: wpa_printf(MSG_EXCESSIVE, "unknown vendor specific " "information element ignored (vendor OUI " "%02x:%02x:%02x len=%lu)", pos[0], pos[1], pos[2], (unsigned long) elen); return -1; } return 0; } static int ieee802_11_parse_extension(const u8 *pos, size_t elen, struct ieee802_11_elems *elems, int show_errors) { u8 ext_id; if (elen < 1) { if (show_errors) { wpa_printf(MSG_MSGDUMP, "short information element (Ext)"); } return -1; } ext_id = *pos++; elen--; elems->frag_ies.last_eid_ext = 0; switch (ext_id) { case WLAN_EID_EXT_ASSOC_DELAY_INFO: if (elen != 1) break; elems->assoc_delay_info = pos; break; case WLAN_EID_EXT_FILS_REQ_PARAMS: if (elen < 3) break; elems->fils_req_params = pos; elems->fils_req_params_len = elen; break; case WLAN_EID_EXT_FILS_KEY_CONFIRM: elems->fils_key_confirm = pos; elems->fils_key_confirm_len = elen; break; case WLAN_EID_EXT_FILS_SESSION: if (elen != FILS_SESSION_LEN) break; elems->fils_session = pos; break; case WLAN_EID_EXT_FILS_HLP_CONTAINER: if (elen < 2 * ETH_ALEN) break; elems->fils_hlp = pos; elems->fils_hlp_len = elen; break; case WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN: if (elen < 1) break; elems->fils_ip_addr_assign = pos; elems->fils_ip_addr_assign_len = elen; break; case WLAN_EID_EXT_KEY_DELIVERY: if (elen < WPA_KEY_RSC_LEN) break; elems->key_delivery = pos; elems->key_delivery_len = elen; break; case WLAN_EID_EXT_WRAPPED_DATA: elems->wrapped_data = pos; elems->wrapped_data_len = elen; break; case WLAN_EID_EXT_FILS_PUBLIC_KEY: if (elen < 1) break; elems->fils_pk = pos; elems->fils_pk_len = elen; break; case WLAN_EID_EXT_FILS_NONCE: if (elen != FILS_NONCE_LEN) break; elems->fils_nonce = pos; break; case WLAN_EID_EXT_OWE_DH_PARAM: if (elen < 2) break; elems->owe_dh = pos; elems->owe_dh_len = elen; break; case WLAN_EID_EXT_PASSWORD_IDENTIFIER: elems->password_id = pos; elems->password_id_len = elen; break; case WLAN_EID_EXT_HE_CAPABILITIES: elems->he_capabilities = pos; elems->he_capabilities_len = elen; break; case WLAN_EID_EXT_HE_OPERATION: elems->he_operation = pos; elems->he_operation_len = elen; break; case WLAN_EID_EXT_OCV_OCI: elems->oci = pos; elems->oci_len = elen; break; case WLAN_EID_EXT_SHORT_SSID_LIST: elems->short_ssid_list = pos; elems->short_ssid_list_len = elen; break; case WLAN_EID_EXT_HE_6GHZ_BAND_CAP: if (elen < sizeof(struct ieee80211_he_6ghz_band_cap)) break; elems->he_6ghz_band_cap = pos; break; case WLAN_EID_EXT_PASN_PARAMS: elems->pasn_params = pos; elems->pasn_params_len = elen; break; default: if (show_errors) { wpa_printf(MSG_MSGDUMP, "IEEE 802.11 element parsing ignored unknown element extension (ext_id=%u elen=%u)", ext_id, (unsigned int) elen); } return -1; } if (elen == 254) elems->frag_ies.last_eid_ext = ext_id; return 0; } static void ieee802_11_parse_fragment(struct frag_ies_info *frag_ies, const u8 *pos, u8 elen) { if (frag_ies->n_frags >= MAX_NUM_FRAG_IES_SUPPORTED) { wpa_printf(MSG_MSGDUMP, "Too many element fragments - skip"); return; } /* * Note: while EID == 0 is a valid ID (SSID IE), it should not be * fragmented. */ if (!frag_ies->last_eid) { wpa_printf(MSG_MSGDUMP, "Fragment without a valid last element - skip"); return; } frag_ies->frags[frag_ies->n_frags].ie = pos; frag_ies->frags[frag_ies->n_frags].ie_len = elen; frag_ies->frags[frag_ies->n_frags].eid = frag_ies->last_eid; frag_ies->frags[frag_ies->n_frags].eid_ext = frag_ies->last_eid_ext; frag_ies->n_frags++; } /** * ieee802_11_parse_elems - Parse information elements in management frames * @start: Pointer to the start of IEs * @len: Length of IE buffer in octets * @elems: Data structure for parsed elements * @show_errors: Whether to show parsing errors in debug log * Returns: Parsing result */ ParseRes ieee802_11_parse_elems(const u8 *start, size_t len, struct ieee802_11_elems *elems, int show_errors) { const struct element *elem; int unknown = 0; os_memset(elems, 0, sizeof(*elems)); if (!start) return ParseOK; for_each_element(elem, start, len) { u8 id = elem->id, elen = elem->datalen; const u8 *pos = elem->data; switch (id) { case WLAN_EID_SSID: if (elen > SSID_MAX_LEN) { wpa_printf(MSG_DEBUG, "Ignored too long SSID element (elen=%u)", elen); break; } if (elems->ssid) { wpa_printf(MSG_MSGDUMP, "Ignored duplicated SSID element"); break; } elems->ssid = pos; elems->ssid_len = elen; break; case WLAN_EID_SUPP_RATES: elems->supp_rates = pos; elems->supp_rates_len = elen; break; case WLAN_EID_DS_PARAMS: if (elen < 1) break; elems->ds_params = pos; break; case WLAN_EID_CF_PARAMS: case WLAN_EID_TIM: break; case WLAN_EID_CHALLENGE: elems->challenge = pos; elems->challenge_len = elen; break; case WLAN_EID_ERP_INFO: if (elen < 1) break; elems->erp_info = pos; break; case WLAN_EID_EXT_SUPP_RATES: elems->ext_supp_rates = pos; elems->ext_supp_rates_len = elen; break; case WLAN_EID_VENDOR_SPECIFIC: if (ieee802_11_parse_vendor_specific(pos, elen, elems, show_errors)) unknown++; break; case WLAN_EID_RSN: elems->rsn_ie = pos; elems->rsn_ie_len = elen; break; case WLAN_EID_RSNX: elems->rsnxe = pos; elems->rsnxe_len = elen; break; case WLAN_EID_PWR_CAPABILITY: if (elen < 2) break; elems->power_capab = pos; elems->power_capab_len = elen; break; case WLAN_EID_SUPPORTED_CHANNELS: elems->supp_channels = pos; elems->supp_channels_len = elen; break; case WLAN_EID_MOBILITY_DOMAIN: if (elen < sizeof(struct rsn_mdie)) break; elems->mdie = pos; elems->mdie_len = elen; break; case WLAN_EID_FAST_BSS_TRANSITION: if (elen < sizeof(struct rsn_ftie)) break; elems->ftie = pos; elems->ftie_len = elen; break; case WLAN_EID_TIMEOUT_INTERVAL: if (elen != 5) break; elems->timeout_int = pos; break; case WLAN_EID_HT_CAP: if (elen < sizeof(struct ieee80211_ht_capabilities)) break; elems->ht_capabilities = pos; break; case WLAN_EID_HT_OPERATION: if (elen < sizeof(struct ieee80211_ht_operation)) break; elems->ht_operation = pos; break; case WLAN_EID_MESH_CONFIG: elems->mesh_config = pos; elems->mesh_config_len = elen; break; case WLAN_EID_MESH_ID: elems->mesh_id = pos; elems->mesh_id_len = elen; break; case WLAN_EID_PEER_MGMT: elems->peer_mgmt = pos; elems->peer_mgmt_len = elen; break; case WLAN_EID_VHT_CAP: if (elen < sizeof(struct ieee80211_vht_capabilities)) break; elems->vht_capabilities = pos; break; case WLAN_EID_VHT_OPERATION: if (elen < sizeof(struct ieee80211_vht_operation)) break; elems->vht_operation = pos; break; case WLAN_EID_VHT_OPERATING_MODE_NOTIFICATION: if (elen != 1) break; elems->vht_opmode_notif = pos; break; case WLAN_EID_LINK_ID: if (elen < 18) break; elems->link_id = pos; break; case WLAN_EID_INTERWORKING: elems->interworking = pos; elems->interworking_len = elen; break; case WLAN_EID_QOS_MAP_SET: if (elen < 16) break; elems->qos_map_set = pos; elems->qos_map_set_len = elen; break; case WLAN_EID_EXT_CAPAB: elems->ext_capab = pos; elems->ext_capab_len = elen; break; case WLAN_EID_BSS_MAX_IDLE_PERIOD: if (elen < 3) break; elems->bss_max_idle_period = pos; break; case WLAN_EID_SSID_LIST: elems->ssid_list = pos; elems->ssid_list_len = elen; break; case WLAN_EID_AMPE: elems->ampe = pos; elems->ampe_len = elen; break; case WLAN_EID_MIC: elems->mic = pos; elems->mic_len = elen; /* after mic everything is encrypted, so stop. */ goto done; case WLAN_EID_MULTI_BAND: if (elems->mb_ies.nof_ies >= MAX_NOF_MB_IES_SUPPORTED) { wpa_printf(MSG_MSGDUMP, "IEEE 802.11 element parse ignored MB IE (id=%d elen=%d)", id, elen); break; } elems->mb_ies.ies[elems->mb_ies.nof_ies].ie = pos; elems->mb_ies.ies[elems->mb_ies.nof_ies].ie_len = elen; elems->mb_ies.nof_ies++; break; case WLAN_EID_SUPPORTED_OPERATING_CLASSES: elems->supp_op_classes = pos; elems->supp_op_classes_len = elen; break; case WLAN_EID_RRM_ENABLED_CAPABILITIES: elems->rrm_enabled = pos; elems->rrm_enabled_len = elen; break; case WLAN_EID_CAG_NUMBER: elems->cag_number = pos; elems->cag_number_len = elen; break; case WLAN_EID_AP_CSN: if (elen < 1) break; elems->ap_csn = pos; break; case WLAN_EID_FILS_INDICATION: if (elen < 2) break; elems->fils_indic = pos; elems->fils_indic_len = elen; break; case WLAN_EID_DILS: if (elen < 2) break; elems->dils = pos; elems->dils_len = elen; break; case WLAN_EID_S1G_CAPABILITIES: if (elen < 15) break; elems->s1g_capab = pos; break; case WLAN_EID_FRAGMENT: ieee802_11_parse_fragment(&elems->frag_ies, pos, elen); break; case WLAN_EID_EXTENSION: if (ieee802_11_parse_extension(pos, elen, elems, show_errors)) unknown++; break; default: unknown++; if (!show_errors) break; wpa_printf(MSG_MSGDUMP, "IEEE 802.11 element parse " "ignored unknown element (id=%d elen=%d)", id, elen); break; } if (id != WLAN_EID_FRAGMENT && elen == 255) elems->frag_ies.last_eid = id; if (id == WLAN_EID_EXTENSION && !elems->frag_ies.last_eid_ext) elems->frag_ies.last_eid = 0; } if (!for_each_element_completed(elem, start, len)) { if (show_errors) { wpa_printf(MSG_DEBUG, "IEEE 802.11 element parse failed @%d", (int) (start + len - (const u8 *) elem)); wpa_hexdump(MSG_MSGDUMP, "IEs", start, len); } return ParseFailed; } done: return unknown ? ParseUnknown : ParseOK; } int ieee802_11_ie_count(const u8 *ies, size_t ies_len) { const struct element *elem; int count = 0; if (ies == NULL) return 0; for_each_element(elem, ies, ies_len) count++; return count; } struct wpabuf * ieee802_11_vendor_ie_concat(const u8 *ies, size_t ies_len, u32 oui_type) { struct wpabuf *buf; const struct element *elem, *found = NULL; for_each_element_id(elem, WLAN_EID_VENDOR_SPECIFIC, ies, ies_len) { if (elem->datalen >= 4 && WPA_GET_BE32(elem->data) == oui_type) { found = elem; break; } } if (!found) return NULL; /* No specified vendor IE found */ buf = wpabuf_alloc(ies_len); if (buf == NULL) return NULL; /* * There may be multiple vendor IEs in the message, so need to * concatenate their data fields. */ for_each_element_id(elem, WLAN_EID_VENDOR_SPECIFIC, ies, ies_len) { if (elem->datalen >= 4 && WPA_GET_BE32(elem->data) == oui_type) wpabuf_put_data(buf, elem->data + 4, elem->datalen - 4); } return buf; } const u8 * get_hdr_bssid(const struct ieee80211_hdr *hdr, size_t len) { u16 fc, type, stype; /* * PS-Poll frames are 16 bytes. All other frames are * 24 bytes or longer. */ if (len < 16) return NULL; fc = le_to_host16(hdr->frame_control); type = WLAN_FC_GET_TYPE(fc); stype = WLAN_FC_GET_STYPE(fc); switch (type) { case WLAN_FC_TYPE_DATA: if (len < 24) return NULL; switch (fc & (WLAN_FC_FROMDS | WLAN_FC_TODS)) { case WLAN_FC_FROMDS | WLAN_FC_TODS: case WLAN_FC_TODS: return hdr->addr1; case WLAN_FC_FROMDS: return hdr->addr2; default: return NULL; } case WLAN_FC_TYPE_CTRL: if (stype != WLAN_FC_STYPE_PSPOLL) return NULL; return hdr->addr1; case WLAN_FC_TYPE_MGMT: return hdr->addr3; default: return NULL; } } int hostapd_config_wmm_ac(struct hostapd_wmm_ac_params wmm_ac_params[], const char *name, const char *val) { int num, v; const char *pos; struct hostapd_wmm_ac_params *ac; /* skip 'wme_ac_' or 'wmm_ac_' prefix */ pos = name + 7; if (os_strncmp(pos, "be_", 3) == 0) { num = 0; pos += 3; } else if (os_strncmp(pos, "bk_", 3) == 0) { num = 1; pos += 3; } else if (os_strncmp(pos, "vi_", 3) == 0) { num = 2; pos += 3; } else if (os_strncmp(pos, "vo_", 3) == 0) { num = 3; pos += 3; } else { wpa_printf(MSG_ERROR, "Unknown WMM name '%s'", pos); return -1; } ac = &wmm_ac_params[num]; if (os_strcmp(pos, "aifs") == 0) { v = atoi(val); if (v < 1 || v > 255) { wpa_printf(MSG_ERROR, "Invalid AIFS value %d", v); return -1; } ac->aifs = v; } else if (os_strcmp(pos, "cwmin") == 0) { v = atoi(val); if (v < 0 || v > 15) { wpa_printf(MSG_ERROR, "Invalid cwMin value %d", v); return -1; } ac->cwmin = v; } else if (os_strcmp(pos, "cwmax") == 0) { v = atoi(val); if (v < 0 || v > 15) { wpa_printf(MSG_ERROR, "Invalid cwMax value %d", v); return -1; } ac->cwmax = v; } else if (os_strcmp(pos, "txop_limit") == 0) { v = atoi(val); if (v < 0 || v > 0xffff) { wpa_printf(MSG_ERROR, "Invalid txop value %d", v); return -1; } ac->txop_limit = v; } else if (os_strcmp(pos, "acm") == 0) { v = atoi(val); if (v < 0 || v > 1) { wpa_printf(MSG_ERROR, "Invalid acm value %d", v); return -1; } ac->admission_control_mandatory = v; } else { wpa_printf(MSG_ERROR, "Unknown wmm_ac_ field '%s'", pos); return -1; } return 0; } /* convert floats with one decimal place to value*10 int, i.e., * "1.5" will return 15 */ static int hostapd_config_read_int10(const char *value) { int i, d; char *pos; i = atoi(value); pos = os_strchr(value, '.'); d = 0; if (pos) { pos++; if (*pos >= '0' && *pos <= '9') d = *pos - '0'; } return i * 10 + d; } static int valid_cw(int cw) { return (cw == 1 || cw == 3 || cw == 7 || cw == 15 || cw == 31 || cw == 63 || cw == 127 || cw == 255 || cw == 511 || cw == 1023 || cw == 2047 || cw == 4095 || cw == 8191 || cw == 16383 || cw == 32767); } int hostapd_config_tx_queue(struct hostapd_tx_queue_params tx_queue[], const char *name, const char *val) { int num; const char *pos; struct hostapd_tx_queue_params *queue; /* skip 'tx_queue_' prefix */ pos = name + 9; if (os_strncmp(pos, "data", 4) == 0 && pos[4] >= '0' && pos[4] <= '9' && pos[5] == '_') { num = pos[4] - '0'; pos += 6; } else if (os_strncmp(pos, "after_beacon_", 13) == 0 || os_strncmp(pos, "beacon_", 7) == 0) { wpa_printf(MSG_INFO, "DEPRECATED: '%s' not used", name); return 0; } else { wpa_printf(MSG_ERROR, "Unknown tx_queue name '%s'", pos); return -1; } if (num >= NUM_TX_QUEUES) { /* for backwards compatibility, do not trigger failure */ wpa_printf(MSG_INFO, "DEPRECATED: '%s' not used", name); return 0; } queue = &tx_queue[num]; if (os_strcmp(pos, "aifs") == 0) { queue->aifs = atoi(val); if (queue->aifs < 0 || queue->aifs > 255) { wpa_printf(MSG_ERROR, "Invalid AIFS value %d", queue->aifs); return -1; } } else if (os_strcmp(pos, "cwmin") == 0) { queue->cwmin = atoi(val); if (!valid_cw(queue->cwmin)) { wpa_printf(MSG_ERROR, "Invalid cwMin value %d", queue->cwmin); return -1; } } else if (os_strcmp(pos, "cwmax") == 0) { queue->cwmax = atoi(val); if (!valid_cw(queue->cwmax)) { wpa_printf(MSG_ERROR, "Invalid cwMax value %d", queue->cwmax); return -1; } } else if (os_strcmp(pos, "burst") == 0) { queue->burst = hostapd_config_read_int10(val); } else { wpa_printf(MSG_ERROR, "Unknown queue field '%s'", pos); return -1; } return 0; } enum hostapd_hw_mode ieee80211_freq_to_chan(int freq, u8 *channel) { u8 op_class; return ieee80211_freq_to_channel_ext(freq, 0, CHANWIDTH_USE_HT, &op_class, channel); } /** * ieee80211_freq_to_channel_ext - Convert frequency into channel info * for HT40, VHT, and HE. DFS channels are not covered. * @freq: Frequency (MHz) to convert * @sec_channel: 0 = non-HT40, 1 = sec. channel above, -1 = sec. channel below * @chanwidth: VHT/EDMG channel width (CHANWIDTH_*) * @op_class: Buffer for returning operating class * @channel: Buffer for returning channel number * Returns: hw_mode on success, NUM_HOSTAPD_MODES on failure */ enum hostapd_hw_mode ieee80211_freq_to_channel_ext(unsigned int freq, int sec_channel, int chanwidth, u8 *op_class, u8 *channel) { u8 vht_opclass; /* TODO: more operating classes */ if (sec_channel > 1 || sec_channel < -1) return NUM_HOSTAPD_MODES; if (freq >= 2412 && freq <= 2472) { if ((freq - 2407) % 5) return NUM_HOSTAPD_MODES; if (chanwidth) return NUM_HOSTAPD_MODES; /* 2.407 GHz, channels 1..13 */ if (sec_channel == 1) *op_class = 83; else if (sec_channel == -1) *op_class = 84; else *op_class = 81; *channel = (freq - 2407) / 5; return HOSTAPD_MODE_IEEE80211G; } if (freq == 2484) { if (sec_channel || chanwidth) return NUM_HOSTAPD_MODES; *op_class = 82; /* channel 14 */ *channel = 14; return HOSTAPD_MODE_IEEE80211B; } if (freq >= 4900 && freq < 5000) { if ((freq - 4000) % 5) return NUM_HOSTAPD_MODES; *channel = (freq - 4000) / 5; *op_class = 0; /* TODO */ return HOSTAPD_MODE_IEEE80211A; } switch (chanwidth) { case CHANWIDTH_80MHZ: vht_opclass = 128; break; case CHANWIDTH_160MHZ: vht_opclass = 129; break; case CHANWIDTH_80P80MHZ: vht_opclass = 130; break; default: vht_opclass = 0; break; } /* 5 GHz, channels 36..48 */ if (freq >= 5180 && freq <= 5240) { if ((freq - 5000) % 5) return NUM_HOSTAPD_MODES; if (vht_opclass) *op_class = vht_opclass; else if (sec_channel == 1) *op_class = 116; else if (sec_channel == -1) *op_class = 117; else *op_class = 115; *channel = (freq - 5000) / 5; return HOSTAPD_MODE_IEEE80211A; } /* 5 GHz, channels 52..64 */ if (freq >= 5260 && freq <= 5320) { if ((freq - 5000) % 5) return NUM_HOSTAPD_MODES; if (vht_opclass) *op_class = vht_opclass; else if (sec_channel == 1) *op_class = 119; else if (sec_channel == -1) *op_class = 120; else *op_class = 118; *channel = (freq - 5000) / 5; return HOSTAPD_MODE_IEEE80211A; } /* 5 GHz, channels 149..177 */ if (freq >= 5745 && freq <= 5885) { if ((freq - 5000) % 5) return NUM_HOSTAPD_MODES; if (vht_opclass) *op_class = vht_opclass; else if (sec_channel == 1) *op_class = 126; else if (sec_channel == -1) *op_class = 127; else if (freq <= 5805) *op_class = 124; else *op_class = 125; *channel = (freq - 5000) / 5; return HOSTAPD_MODE_IEEE80211A; } /* 5 GHz, channels 100..140 */ if (freq >= 5000 && freq <= 5700) { if ((freq - 5000) % 5) return NUM_HOSTAPD_MODES; if (vht_opclass) *op_class = vht_opclass; else if (sec_channel == 1) *op_class = 122; else if (sec_channel == -1) *op_class = 123; else *op_class = 121; *channel = (freq - 5000) / 5; return HOSTAPD_MODE_IEEE80211A; } if (freq >= 5000 && freq < 5900) { if ((freq - 5000) % 5) return NUM_HOSTAPD_MODES; *channel = (freq - 5000) / 5; *op_class = 0; /* TODO */ return HOSTAPD_MODE_IEEE80211A; } if (freq > 5950 && freq <= 7115) { if ((freq - 5950) % 5) return NUM_HOSTAPD_MODES; switch (chanwidth) { case CHANWIDTH_80MHZ: *op_class = 133; break; case CHANWIDTH_160MHZ: *op_class = 134; break; case CHANWIDTH_80P80MHZ: *op_class = 135; break; default: if (sec_channel) *op_class = 132; else *op_class = 131; break; } *channel = (freq - 5950) / 5; return HOSTAPD_MODE_IEEE80211A; } if (freq == 5935) { *op_class = 136; *channel = (freq - 5925) / 5; return HOSTAPD_MODE_IEEE80211A; } /* 56.16 GHz, channel 1..6 */ if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { if (sec_channel) return NUM_HOSTAPD_MODES; switch (chanwidth) { case CHANWIDTH_USE_HT: case CHANWIDTH_2160MHZ: *channel = (freq - 56160) / 2160; *op_class = 180; break; case CHANWIDTH_4320MHZ: /* EDMG channels 9 - 13 */ if (freq > 56160 + 2160 * 5) return NUM_HOSTAPD_MODES; *channel = (freq - 56160) / 2160 + 8; *op_class = 181; break; case CHANWIDTH_6480MHZ: /* EDMG channels 17 - 20 */ if (freq > 56160 + 2160 * 4) return NUM_HOSTAPD_MODES; *channel = (freq - 56160) / 2160 + 16; *op_class = 182; break; case CHANWIDTH_8640MHZ: /* EDMG channels 25 - 27 */ if (freq > 56160 + 2160 * 3) return NUM_HOSTAPD_MODES; *channel = (freq - 56160) / 2160 + 24; *op_class = 183; break; default: return NUM_HOSTAPD_MODES; } return HOSTAPD_MODE_IEEE80211AD; } return NUM_HOSTAPD_MODES; } int ieee80211_chaninfo_to_channel(unsigned int freq, enum chan_width chanwidth, int sec_channel, u8 *op_class, u8 *channel) { int cw = CHAN_WIDTH_UNKNOWN; switch (chanwidth) { case CHAN_WIDTH_UNKNOWN: case CHAN_WIDTH_20_NOHT: case CHAN_WIDTH_20: case CHAN_WIDTH_40: cw = CHANWIDTH_USE_HT; break; case CHAN_WIDTH_80: cw = CHANWIDTH_80MHZ; break; case CHAN_WIDTH_80P80: cw = CHANWIDTH_80P80MHZ; break; case CHAN_WIDTH_160: cw = CHANWIDTH_160MHZ; break; case CHAN_WIDTH_2160: cw = CHANWIDTH_2160MHZ; break; case CHAN_WIDTH_4320: cw = CHANWIDTH_4320MHZ; break; case CHAN_WIDTH_6480: cw = CHANWIDTH_6480MHZ; break; case CHAN_WIDTH_8640: cw = CHANWIDTH_8640MHZ; break; } if (ieee80211_freq_to_channel_ext(freq, sec_channel, cw, op_class, channel) == NUM_HOSTAPD_MODES) { wpa_printf(MSG_WARNING, "Cannot determine operating class and channel (freq=%u chanwidth=%d sec_channel=%d)", freq, chanwidth, sec_channel); return -1; } return 0; } static const char *const us_op_class_cc[] = { "US", "CA", NULL }; static const char *const eu_op_class_cc[] = { "AL", "AM", "AT", "AZ", "BA", "BE", "BG", "BY", "CH", "CY", "CZ", "DE", "DK", "EE", "EL", "ES", "FI", "FR", "GE", "HR", "HU", "IE", "IS", "IT", "LI", "LT", "LU", "LV", "MD", "ME", "MK", "MT", "NL", "NO", "PL", "PT", "RO", "RS", "RU", "SE", "SI", "SK", "TR", "UA", "UK", NULL }; static const char *const jp_op_class_cc[] = { "JP", NULL }; static const char *const cn_op_class_cc[] = { "CN", NULL }; static int country_match(const char *const cc[], const char *const country) { int i; if (country == NULL) return 0; for (i = 0; cc[i]; i++) { if (cc[i][0] == country[0] && cc[i][1] == country[1]) return 1; } return 0; } static int ieee80211_chan_to_freq_us(u8 op_class, u8 chan) { switch (op_class) { case 12: /* channels 1..11 */ case 32: /* channels 1..7; 40 MHz */ case 33: /* channels 5..11; 40 MHz */ if (chan < 1 || chan > 11) return -1; return 2407 + 5 * chan; case 1: /* channels 36,40,44,48 */ case 2: /* channels 52,56,60,64; dfs */ case 22: /* channels 36,44; 40 MHz */ case 23: /* channels 52,60; 40 MHz */ case 27: /* channels 40,48; 40 MHz */ case 28: /* channels 56,64; 40 MHz */ if (chan < 36 || chan > 64) return -1; return 5000 + 5 * chan; case 4: /* channels 100-144 */ case 24: /* channels 100-140; 40 MHz */ if (chan < 100 || chan > 144) return -1; return 5000 + 5 * chan; case 3: /* channels 149,153,157,161 */ case 25: /* channels 149,157; 40 MHz */ case 26: /* channels 149,157; 40 MHz */ case 30: /* channels 153,161; 40 MHz */ case 31: /* channels 153,161; 40 MHz */ if (chan < 149 || chan > 161) return -1; return 5000 + 5 * chan; case 5: /* channels 149,153,157,161,165 */ if (chan < 149 || chan > 165) return -1; return 5000 + 5 * chan; case 34: /* 60 GHz band, channels 1..8 */ if (chan < 1 || chan > 8) return -1; return 56160 + 2160 * chan; case 37: /* 60 GHz band, EDMG CB2, channels 9..15 */ if (chan < 9 || chan > 15) return -1; return 56160 + 2160 * (chan - 8); case 38: /* 60 GHz band, EDMG CB3, channels 17..22 */ if (chan < 17 || chan > 22) return -1; return 56160 + 2160 * (chan - 16); case 39: /* 60 GHz band, EDMG CB4, channels 25..29 */ if (chan < 25 || chan > 29) return -1; return 56160 + 2160 * (chan - 24); } return -1; } static int ieee80211_chan_to_freq_eu(u8 op_class, u8 chan) { switch (op_class) { case 4: /* channels 1..13 */ case 11: /* channels 1..9; 40 MHz */ case 12: /* channels 5..13; 40 MHz */ if (chan < 1 || chan > 13) return -1; return 2407 + 5 * chan; case 1: /* channels 36,40,44,48 */ case 2: /* channels 52,56,60,64; dfs */ case 5: /* channels 36,44; 40 MHz */ case 6: /* channels 52,60; 40 MHz */ case 8: /* channels 40,48; 40 MHz */ case 9: /* channels 56,64; 40 MHz */ if (chan < 36 || chan > 64) return -1; return 5000 + 5 * chan; case 3: /* channels 100-140 */ case 7: /* channels 100-132; 40 MHz */ case 10: /* channels 104-136; 40 MHz */ case 16: /* channels 100-140 */ if (chan < 100 || chan > 140) return -1; return 5000 + 5 * chan; case 17: /* channels 149,153,157,161,165,169 */ if (chan < 149 || chan > 169) return -1; return 5000 + 5 * chan; case 18: /* 60 GHz band, channels 1..6 */ if (chan < 1 || chan > 6) return -1; return 56160 + 2160 * chan; case 21: /* 60 GHz band, EDMG CB2, channels 9..11 */ if (chan < 9 || chan > 11) return -1; return 56160 + 2160 * (chan - 8); case 22: /* 60 GHz band, EDMG CB3, channels 17..18 */ if (chan < 17 || chan > 18) return -1; return 56160 + 2160 * (chan - 16); case 23: /* 60 GHz band, EDMG CB4, channels 25 */ if (chan != 25) return -1; return 56160 + 2160 * (chan - 24); } return -1; } static int ieee80211_chan_to_freq_jp(u8 op_class, u8 chan) { switch (op_class) { case 30: /* channels 1..13 */ case 56: /* channels 1..9; 40 MHz */ case 57: /* channels 5..13; 40 MHz */ if (chan < 1 || chan > 13) return -1; return 2407 + 5 * chan; case 31: /* channel 14 */ if (chan != 14) return -1; return 2414 + 5 * chan; case 1: /* channels 34,38,42,46(old) or 36,40,44,48 */ case 32: /* channels 52,56,60,64 */ case 33: /* channels 52,56,60,64 */ case 36: /* channels 36,44; 40 MHz */ case 37: /* channels 52,60; 40 MHz */ case 38: /* channels 52,60; 40 MHz */ case 41: /* channels 40,48; 40 MHz */ case 42: /* channels 56,64; 40 MHz */ case 43: /* channels 56,64; 40 MHz */ if (chan < 34 || chan > 64) return -1; return 5000 + 5 * chan; case 34: /* channels 100-140 */ case 35: /* channels 100-140 */ case 39: /* channels 100-132; 40 MHz */ case 40: /* channels 100-132; 40 MHz */ case 44: /* channels 104-136; 40 MHz */ case 45: /* channels 104-136; 40 MHz */ case 58: /* channels 100-140 */ if (chan < 100 || chan > 140) return -1; return 5000 + 5 * chan; case 59: /* 60 GHz band, channels 1..6 */ if (chan < 1 || chan > 6) return -1; return 56160 + 2160 * chan; case 62: /* 60 GHz band, EDMG CB2, channels 9..11 */ if (chan < 9 || chan > 11) return -1; return 56160 + 2160 * (chan - 8); case 63: /* 60 GHz band, EDMG CB3, channels 17..18 */ if (chan < 17 || chan > 18) return -1; return 56160 + 2160 * (chan - 16); case 64: /* 60 GHz band, EDMG CB4, channel 25 */ if (chan != 25) return -1; return 56160 + 2160 * (chan - 24); } return -1; } static int ieee80211_chan_to_freq_cn(u8 op_class, u8 chan) { switch (op_class) { case 7: /* channels 1..13 */ case 8: /* channels 1..9; 40 MHz */ case 9: /* channels 5..13; 40 MHz */ if (chan < 1 || chan > 13) return -1; return 2407 + 5 * chan; case 1: /* channels 36,40,44,48 */ case 2: /* channels 52,56,60,64; dfs */ case 4: /* channels 36,44; 40 MHz */ case 5: /* channels 52,60; 40 MHz */ if (chan < 36 || chan > 64) return -1; return 5000 + 5 * chan; case 3: /* channels 149,153,157,161,165 */ case 6: /* channels 149,157; 40 MHz */ if (chan < 149 || chan > 165) return -1; return 5000 + 5 * chan; } return -1; } static int ieee80211_chan_to_freq_global(u8 op_class, u8 chan) { /* Table E-4 in IEEE Std 802.11-2012 - Global operating classes */ switch (op_class) { case 81: /* channels 1..13 */ if (chan < 1 || chan > 13) return -1; return 2407 + 5 * chan; case 82: /* channel 14 */ if (chan != 14) return -1; return 2414 + 5 * chan; case 83: /* channels 1..9; 40 MHz */ case 84: /* channels 5..13; 40 MHz */ if (chan < 1 || chan > 13) return -1; return 2407 + 5 * chan; case 115: /* channels 36,40,44,48; indoor only */ case 116: /* channels 36,44; 40 MHz; indoor only */ case 117: /* channels 40,48; 40 MHz; indoor only */ case 118: /* channels 52,56,60,64; dfs */ case 119: /* channels 52,60; 40 MHz; dfs */ case 120: /* channels 56,64; 40 MHz; dfs */ if (chan < 36 || chan > 64) return -1; return 5000 + 5 * chan; case 121: /* channels 100-140 */ case 122: /* channels 100-142; 40 MHz */ case 123: /* channels 104-136; 40 MHz */ if (chan < 100 || chan > 140) return -1; return 5000 + 5 * chan; case 124: /* channels 149,153,157,161 */ if (chan < 149 || chan > 161) return -1; return 5000 + 5 * chan; case 125: /* channels 149,153,157,161,165,169,173,177 */ case 126: /* channels 149,157,165,173; 40 MHz */ case 127: /* channels 153,161,169,177; 40 MHz */ if (chan < 149 || chan > 177) return -1; return 5000 + 5 * chan; case 128: /* center freqs 42, 58, 106, 122, 138, 155, 171; 80 MHz */ case 130: /* center freqs 42, 58, 106, 122, 138, 155, 171; 80 MHz */ if (chan < 36 || chan > 177) return -1; return 5000 + 5 * chan; case 129: /* center freqs 50, 114, 163; 160 MHz */ if (chan < 36 || chan > 177) return -1; return 5000 + 5 * chan; case 131: /* UHB channels, 20 MHz: 1, 5, 9.. */ case 132: /* UHB channels, 40 MHz: 3, 11, 19.. */ case 133: /* UHB channels, 80 MHz: 7, 23, 39.. */ case 134: /* UHB channels, 160 MHz: 15, 47, 79.. */ case 135: /* UHB channels, 80+80 MHz: 7, 23, 39.. */ if (chan < 1 || chan > 233) return -1; return 5950 + chan * 5; case 136: /* UHB channels, 20 MHz: 2 */ if (chan == 2) return 5935; return -1; case 180: /* 60 GHz band, channels 1..8 */ if (chan < 1 || chan > 8) return -1; return 56160 + 2160 * chan; case 181: /* 60 GHz band, EDMG CB2, channels 9..15 */ if (chan < 9 || chan > 15) return -1; return 56160 + 2160 * (chan - 8); case 182: /* 60 GHz band, EDMG CB3, channels 17..22 */ if (chan < 17 || chan > 22) return -1; return 56160 + 2160 * (chan - 16); case 183: /* 60 GHz band, EDMG CB4, channel 25..29 */ if (chan < 25 || chan > 29) return -1; return 56160 + 2160 * (chan - 24); } return -1; } /** * ieee80211_chan_to_freq - Convert channel info to frequency * @country: Country code, if known; otherwise, global operating class is used * @op_class: Operating class * @chan: Channel number * Returns: Frequency in MHz or -1 if the specified channel is unknown */ int ieee80211_chan_to_freq(const char *country, u8 op_class, u8 chan) { int freq; if (country_match(us_op_class_cc, country)) { freq = ieee80211_chan_to_freq_us(op_class, chan); if (freq > 0) return freq; } if (country_match(eu_op_class_cc, country)) { freq = ieee80211_chan_to_freq_eu(op_class, chan); if (freq > 0) return freq; } if (country_match(jp_op_class_cc, country)) { freq = ieee80211_chan_to_freq_jp(op_class, chan); if (freq > 0) return freq; } if (country_match(cn_op_class_cc, country)) { freq = ieee80211_chan_to_freq_cn(op_class, chan); if (freq > 0) return freq; } return ieee80211_chan_to_freq_global(op_class, chan); } int ieee80211_is_dfs(int freq, const struct hostapd_hw_modes *modes, u16 num_modes) { int i, j; if (!modes || !num_modes) return (freq >= 5260 && freq <= 5320) || (freq >= 5500 && freq <= 5700); for (i = 0; i < num_modes; i++) { for (j = 0; j < modes[i].num_channels; j++) { if (modes[i].channels[j].freq == freq && (modes[i].channels[j].flag & HOSTAPD_CHAN_RADAR)) return 1; } } return 0; } static int is_11b(u8 rate) { return rate == 0x02 || rate == 0x04 || rate == 0x0b || rate == 0x16; } int supp_rates_11b_only(struct ieee802_11_elems *elems) { int num_11b = 0, num_others = 0; int i; if (elems->supp_rates == NULL && elems->ext_supp_rates == NULL) return 0; for (i = 0; elems->supp_rates && i < elems->supp_rates_len; i++) { if (is_11b(elems->supp_rates[i])) num_11b++; else num_others++; } for (i = 0; elems->ext_supp_rates && i < elems->ext_supp_rates_len; i++) { if (is_11b(elems->ext_supp_rates[i])) num_11b++; else num_others++; } return num_11b > 0 && num_others == 0; } const char * fc2str(u16 fc) { u16 stype = WLAN_FC_GET_STYPE(fc); #define C2S(x) case x: return #x; switch (WLAN_FC_GET_TYPE(fc)) { case WLAN_FC_TYPE_MGMT: switch (stype) { C2S(WLAN_FC_STYPE_ASSOC_REQ) C2S(WLAN_FC_STYPE_ASSOC_RESP) C2S(WLAN_FC_STYPE_REASSOC_REQ) C2S(WLAN_FC_STYPE_REASSOC_RESP) C2S(WLAN_FC_STYPE_PROBE_REQ) C2S(WLAN_FC_STYPE_PROBE_RESP) C2S(WLAN_FC_STYPE_BEACON) C2S(WLAN_FC_STYPE_ATIM) C2S(WLAN_FC_STYPE_DISASSOC) C2S(WLAN_FC_STYPE_AUTH) C2S(WLAN_FC_STYPE_DEAUTH) C2S(WLAN_FC_STYPE_ACTION) } break; case WLAN_FC_TYPE_CTRL: switch (stype) { C2S(WLAN_FC_STYPE_PSPOLL) C2S(WLAN_FC_STYPE_RTS) C2S(WLAN_FC_STYPE_CTS) C2S(WLAN_FC_STYPE_ACK) C2S(WLAN_FC_STYPE_CFEND) C2S(WLAN_FC_STYPE_CFENDACK) } break; case WLAN_FC_TYPE_DATA: switch (stype) { C2S(WLAN_FC_STYPE_DATA) C2S(WLAN_FC_STYPE_DATA_CFACK) C2S(WLAN_FC_STYPE_DATA_CFPOLL) C2S(WLAN_FC_STYPE_DATA_CFACKPOLL) C2S(WLAN_FC_STYPE_NULLFUNC) C2S(WLAN_FC_STYPE_CFACK) C2S(WLAN_FC_STYPE_CFPOLL) C2S(WLAN_FC_STYPE_CFACKPOLL) C2S(WLAN_FC_STYPE_QOS_DATA) C2S(WLAN_FC_STYPE_QOS_DATA_CFACK) C2S(WLAN_FC_STYPE_QOS_DATA_CFPOLL) C2S(WLAN_FC_STYPE_QOS_DATA_CFACKPOLL) C2S(WLAN_FC_STYPE_QOS_NULL) C2S(WLAN_FC_STYPE_QOS_CFPOLL) C2S(WLAN_FC_STYPE_QOS_CFACKPOLL) } break; } return "WLAN_FC_TYPE_UNKNOWN"; #undef C2S } const char * reason2str(u16 reason) { #define R2S(r) case WLAN_REASON_ ## r: return #r; switch (reason) { R2S(UNSPECIFIED) R2S(PREV_AUTH_NOT_VALID) R2S(DEAUTH_LEAVING) R2S(DISASSOC_DUE_TO_INACTIVITY) R2S(DISASSOC_AP_BUSY) R2S(CLASS2_FRAME_FROM_NONAUTH_STA) R2S(CLASS3_FRAME_FROM_NONASSOC_STA) R2S(DISASSOC_STA_HAS_LEFT) R2S(STA_REQ_ASSOC_WITHOUT_AUTH) R2S(PWR_CAPABILITY_NOT_VALID) R2S(SUPPORTED_CHANNEL_NOT_VALID) R2S(BSS_TRANSITION_DISASSOC) R2S(INVALID_IE) R2S(MICHAEL_MIC_FAILURE) R2S(4WAY_HANDSHAKE_TIMEOUT) R2S(GROUP_KEY_UPDATE_TIMEOUT) R2S(IE_IN_4WAY_DIFFERS) R2S(GROUP_CIPHER_NOT_VALID) R2S(PAIRWISE_CIPHER_NOT_VALID) R2S(AKMP_NOT_VALID) R2S(UNSUPPORTED_RSN_IE_VERSION) R2S(INVALID_RSN_IE_CAPAB) R2S(IEEE_802_1X_AUTH_FAILED) R2S(CIPHER_SUITE_REJECTED) R2S(TDLS_TEARDOWN_UNREACHABLE) R2S(TDLS_TEARDOWN_UNSPECIFIED) R2S(SSP_REQUESTED_DISASSOC) R2S(NO_SSP_ROAMING_AGREEMENT) R2S(BAD_CIPHER_OR_AKM) R2S(NOT_AUTHORIZED_THIS_LOCATION) R2S(SERVICE_CHANGE_PRECLUDES_TS) R2S(UNSPECIFIED_QOS_REASON) R2S(NOT_ENOUGH_BANDWIDTH) R2S(DISASSOC_LOW_ACK) R2S(EXCEEDED_TXOP) R2S(STA_LEAVING) R2S(END_TS_BA_DLS) R2S(UNKNOWN_TS_BA) R2S(TIMEOUT) R2S(PEERKEY_MISMATCH) R2S(AUTHORIZED_ACCESS_LIMIT_REACHED) R2S(EXTERNAL_SERVICE_REQUIREMENTS) R2S(INVALID_FT_ACTION_FRAME_COUNT) R2S(INVALID_PMKID) R2S(INVALID_MDE) R2S(INVALID_FTE) R2S(MESH_PEERING_CANCELLED) R2S(MESH_MAX_PEERS) R2S(MESH_CONFIG_POLICY_VIOLATION) R2S(MESH_CLOSE_RCVD) R2S(MESH_MAX_RETRIES) R2S(MESH_CONFIRM_TIMEOUT) R2S(MESH_INVALID_GTK) R2S(MESH_INCONSISTENT_PARAMS) R2S(MESH_INVALID_SECURITY_CAP) R2S(MESH_PATH_ERROR_NO_PROXY_INFO) R2S(MESH_PATH_ERROR_NO_FORWARDING_INFO) R2S(MESH_PATH_ERROR_DEST_UNREACHABLE) R2S(MAC_ADDRESS_ALREADY_EXISTS_IN_MBSS) R2S(MESH_CHANNEL_SWITCH_REGULATORY_REQ) R2S(MESH_CHANNEL_SWITCH_UNSPECIFIED) } return "UNKNOWN"; #undef R2S } const char * status2str(u16 status) { #define S2S(s) case WLAN_STATUS_ ## s: return #s; switch (status) { S2S(SUCCESS) S2S(UNSPECIFIED_FAILURE) S2S(TDLS_WAKEUP_ALTERNATE) S2S(TDLS_WAKEUP_REJECT) S2S(SECURITY_DISABLED) S2S(UNACCEPTABLE_LIFETIME) S2S(NOT_IN_SAME_BSS) S2S(CAPS_UNSUPPORTED) S2S(REASSOC_NO_ASSOC) S2S(ASSOC_DENIED_UNSPEC) S2S(NOT_SUPPORTED_AUTH_ALG) S2S(UNKNOWN_AUTH_TRANSACTION) S2S(CHALLENGE_FAIL) S2S(AUTH_TIMEOUT) S2S(AP_UNABLE_TO_HANDLE_NEW_STA) S2S(ASSOC_DENIED_RATES) S2S(ASSOC_DENIED_NOSHORT) S2S(SPEC_MGMT_REQUIRED) S2S(PWR_CAPABILITY_NOT_VALID) S2S(SUPPORTED_CHANNEL_NOT_VALID) S2S(ASSOC_DENIED_NO_SHORT_SLOT_TIME) S2S(ASSOC_DENIED_NO_HT) S2S(R0KH_UNREACHABLE) S2S(ASSOC_DENIED_NO_PCO) S2S(ASSOC_REJECTED_TEMPORARILY) S2S(ROBUST_MGMT_FRAME_POLICY_VIOLATION) S2S(UNSPECIFIED_QOS_FAILURE) S2S(DENIED_INSUFFICIENT_BANDWIDTH) S2S(DENIED_POOR_CHANNEL_CONDITIONS) S2S(DENIED_QOS_NOT_SUPPORTED) S2S(REQUEST_DECLINED) S2S(INVALID_PARAMETERS) S2S(REJECTED_WITH_SUGGESTED_CHANGES) S2S(INVALID_IE) S2S(GROUP_CIPHER_NOT_VALID) S2S(PAIRWISE_CIPHER_NOT_VALID) S2S(AKMP_NOT_VALID) S2S(UNSUPPORTED_RSN_IE_VERSION) S2S(INVALID_RSN_IE_CAPAB) S2S(CIPHER_REJECTED_PER_POLICY) S2S(TS_NOT_CREATED) S2S(DIRECT_LINK_NOT_ALLOWED) S2S(DEST_STA_NOT_PRESENT) S2S(DEST_STA_NOT_QOS_STA) S2S(ASSOC_DENIED_LISTEN_INT_TOO_LARGE) S2S(INVALID_FT_ACTION_FRAME_COUNT) S2S(INVALID_PMKID) S2S(INVALID_MDIE) S2S(INVALID_FTIE) S2S(REQUESTED_TCLAS_NOT_SUPPORTED) S2S(INSUFFICIENT_TCLAS_PROCESSING_RESOURCES) S2S(TRY_ANOTHER_BSS) S2S(GAS_ADV_PROTO_NOT_SUPPORTED) S2S(NO_OUTSTANDING_GAS_REQ) S2S(GAS_RESP_NOT_RECEIVED) S2S(STA_TIMED_OUT_WAITING_FOR_GAS_RESP) S2S(GAS_RESP_LARGER_THAN_LIMIT) S2S(REQ_REFUSED_HOME) S2S(ADV_SRV_UNREACHABLE) S2S(REQ_REFUSED_SSPN) S2S(REQ_REFUSED_UNAUTH_ACCESS) S2S(INVALID_RSNIE) S2S(U_APSD_COEX_NOT_SUPPORTED) S2S(U_APSD_COEX_MODE_NOT_SUPPORTED) S2S(BAD_INTERVAL_WITH_U_APSD_COEX) S2S(ANTI_CLOGGING_TOKEN_REQ) S2S(FINITE_CYCLIC_GROUP_NOT_SUPPORTED) S2S(CANNOT_FIND_ALT_TBTT) S2S(TRANSMISSION_FAILURE) S2S(REQ_TCLAS_NOT_SUPPORTED) S2S(TCLAS_RESOURCES_EXCHAUSTED) S2S(REJECTED_WITH_SUGGESTED_BSS_TRANSITION) S2S(REJECT_WITH_SCHEDULE) S2S(REJECT_NO_WAKEUP_SPECIFIED) S2S(SUCCESS_POWER_SAVE_MODE) S2S(PENDING_ADMITTING_FST_SESSION) S2S(PERFORMING_FST_NOW) S2S(PENDING_GAP_IN_BA_WINDOW) S2S(REJECT_U_PID_SETTING) S2S(REFUSED_EXTERNAL_REASON) S2S(REFUSED_AP_OUT_OF_MEMORY) S2S(REJECTED_EMERGENCY_SERVICE_NOT_SUPPORTED) S2S(QUERY_RESP_OUTSTANDING) S2S(REJECT_DSE_BAND) S2S(TCLAS_PROCESSING_TERMINATED) S2S(TS_SCHEDULE_CONFLICT) S2S(DENIED_WITH_SUGGESTED_BAND_AND_CHANNEL) S2S(MCCAOP_RESERVATION_CONFLICT) S2S(MAF_LIMIT_EXCEEDED) S2S(MCCA_TRACK_LIMIT_EXCEEDED) S2S(DENIED_DUE_TO_SPECTRUM_MANAGEMENT) S2S(ASSOC_DENIED_NO_VHT) S2S(ENABLEMENT_DENIED) S2S(RESTRICTION_FROM_AUTHORIZED_GDB) S2S(AUTHORIZATION_DEENABLED) S2S(FILS_AUTHENTICATION_FAILURE) S2S(UNKNOWN_AUTHENTICATION_SERVER) S2S(UNKNOWN_PASSWORD_IDENTIFIER) S2S(DENIED_HE_NOT_SUPPORTED) S2S(SAE_HASH_TO_ELEMENT) S2S(SAE_PK) } return "UNKNOWN"; #undef S2S } int mb_ies_info_by_ies(struct mb_ies_info *info, const u8 *ies_buf, size_t ies_len) { const struct element *elem; os_memset(info, 0, sizeof(*info)); if (!ies_buf) return 0; for_each_element_id(elem, WLAN_EID_MULTI_BAND, ies_buf, ies_len) { if (info->nof_ies >= MAX_NOF_MB_IES_SUPPORTED) return 0; wpa_printf(MSG_DEBUG, "MB IE of %u bytes found", elem->datalen + 2); info->ies[info->nof_ies].ie = elem->data; info->ies[info->nof_ies].ie_len = elem->datalen; info->nof_ies++; } if (!for_each_element_completed(elem, ies_buf, ies_len)) { wpa_hexdump(MSG_DEBUG, "Truncated IEs", ies_buf, ies_len); return -1; } return 0; } struct wpabuf * mb_ies_by_info(struct mb_ies_info *info) { struct wpabuf *mb_ies = NULL; WPA_ASSERT(info != NULL); if (info->nof_ies) { u8 i; size_t mb_ies_size = 0; for (i = 0; i < info->nof_ies; i++) mb_ies_size += 2 + info->ies[i].ie_len; mb_ies = wpabuf_alloc(mb_ies_size); if (mb_ies) { for (i = 0; i < info->nof_ies; i++) { wpabuf_put_u8(mb_ies, WLAN_EID_MULTI_BAND); wpabuf_put_u8(mb_ies, info->ies[i].ie_len); wpabuf_put_data(mb_ies, info->ies[i].ie, info->ies[i].ie_len); } } } return mb_ies; } const struct oper_class_map global_op_class[] = { { HOSTAPD_MODE_IEEE80211G, 81, 1, 13, 1, BW20, P2P_SUPP }, { HOSTAPD_MODE_IEEE80211G, 82, 14, 14, 1, BW20, NO_P2P_SUPP }, /* Do not enable HT40 on 2.4 GHz for P2P use for now */ { HOSTAPD_MODE_IEEE80211G, 83, 1, 9, 1, BW40PLUS, NO_P2P_SUPP }, { HOSTAPD_MODE_IEEE80211G, 84, 5, 13, 1, BW40MINUS, NO_P2P_SUPP }, { HOSTAPD_MODE_IEEE80211A, 115, 36, 48, 4, BW20, P2P_SUPP }, { HOSTAPD_MODE_IEEE80211A, 116, 36, 44, 8, BW40PLUS, P2P_SUPP }, { HOSTAPD_MODE_IEEE80211A, 117, 40, 48, 8, BW40MINUS, P2P_SUPP }, { HOSTAPD_MODE_IEEE80211A, 118, 52, 64, 4, BW20, NO_P2P_SUPP }, { HOSTAPD_MODE_IEEE80211A, 119, 52, 60, 8, BW40PLUS, NO_P2P_SUPP }, { HOSTAPD_MODE_IEEE80211A, 120, 56, 64, 8, BW40MINUS, NO_P2P_SUPP }, { HOSTAPD_MODE_IEEE80211A, 121, 100, 140, 4, BW20, NO_P2P_SUPP }, { HOSTAPD_MODE_IEEE80211A, 122, 100, 132, 8, BW40PLUS, NO_P2P_SUPP }, { HOSTAPD_MODE_IEEE80211A, 123, 104, 136, 8, BW40MINUS, NO_P2P_SUPP }, { HOSTAPD_MODE_IEEE80211A, 124, 149, 161, 4, BW20, P2P_SUPP }, { HOSTAPD_MODE_IEEE80211A, 125, 149, 177, 4, BW20, P2P_SUPP }, { HOSTAPD_MODE_IEEE80211A, 126, 149, 173, 8, BW40PLUS, P2P_SUPP }, { HOSTAPD_MODE_IEEE80211A, 127, 153, 177, 8, BW40MINUS, P2P_SUPP }, /* * IEEE P802.11ax/D8.0 Table E-4 actually talks about channel center * frequency index 42, 58, 106, 122, 138, 155, 171 with channel spacing * of 80 MHz, but currently use the following definition for simplicity * (these center frequencies are not actual channels, which makes * wpas_p2p_verify_channel() fail). wpas_p2p_verify_80mhz() should take * care of removing invalid channels. */ { HOSTAPD_MODE_IEEE80211A, 128, 36, 177, 4, BW80, P2P_SUPP }, { HOSTAPD_MODE_IEEE80211A, 129, 36, 177, 4, BW160, P2P_SUPP }, { HOSTAPD_MODE_IEEE80211A, 131, 1, 233, 4, BW20, P2P_SUPP }, { HOSTAPD_MODE_IEEE80211A, 132, 1, 233, 8, BW40, NO_P2P_SUPP }, { HOSTAPD_MODE_IEEE80211A, 133, 1, 233, 16, BW80, NO_P2P_SUPP }, { HOSTAPD_MODE_IEEE80211A, 134, 1, 233, 32, BW160, NO_P2P_SUPP }, { HOSTAPD_MODE_IEEE80211A, 135, 1, 233, 16, BW80P80, NO_P2P_SUPP }, { HOSTAPD_MODE_IEEE80211A, 136, 2, 2, 4, BW20, NO_P2P_SUPP }, /* * IEEE Std 802.11ad-2012 and P802.ay/D5.0 60 GHz operating classes. * Class 180 has the legacy channels 1-6. Classes 181-183 include * channels which implement channel bonding features. */ { HOSTAPD_MODE_IEEE80211AD, 180, 1, 6, 1, BW2160, P2P_SUPP }, { HOSTAPD_MODE_IEEE80211AD, 181, 9, 13, 1, BW4320, P2P_SUPP }, { HOSTAPD_MODE_IEEE80211AD, 182, 17, 20, 1, BW6480, P2P_SUPP }, { HOSTAPD_MODE_IEEE80211AD, 183, 25, 27, 1, BW8640, P2P_SUPP }, /* Keep the operating class 130 as the last entry as a workaround for * the OneHundredAndThirty Delimiter value used in the Supported * Operating Classes element to indicate the end of the Operating * Classes field. */ { HOSTAPD_MODE_IEEE80211A, 130, 36, 177, 4, BW80P80, P2P_SUPP }, { -1, 0, 0, 0, 0, BW20, NO_P2P_SUPP } }; static enum phy_type ieee80211_phy_type_by_freq(int freq) { enum hostapd_hw_mode hw_mode; u8 channel; hw_mode = ieee80211_freq_to_chan(freq, &channel); switch (hw_mode) { case HOSTAPD_MODE_IEEE80211A: return PHY_TYPE_OFDM; case HOSTAPD_MODE_IEEE80211B: return PHY_TYPE_HRDSSS; case HOSTAPD_MODE_IEEE80211G: return PHY_TYPE_ERP; case HOSTAPD_MODE_IEEE80211AD: return PHY_TYPE_DMG; default: return PHY_TYPE_UNSPECIFIED; }; } /* ieee80211_get_phy_type - Derive the phy type by freq and bandwidth */ enum phy_type ieee80211_get_phy_type(int freq, int ht, int vht) { if (vht) return PHY_TYPE_VHT; if (ht) return PHY_TYPE_HT; return ieee80211_phy_type_by_freq(freq); } size_t global_op_class_size = ARRAY_SIZE(global_op_class); /** * get_ie - Fetch a specified information element from IEs buffer * @ies: Information elements buffer * @len: Information elements buffer length * @eid: Information element identifier (WLAN_EID_*) * Returns: Pointer to the information element (id field) or %NULL if not found * * This function returns the first matching information element in the IEs * buffer or %NULL in case the element is not found. */ const u8 * get_ie(const u8 *ies, size_t len, u8 eid) { const struct element *elem; if (!ies) return NULL; for_each_element_id(elem, eid, ies, len) return &elem->id; return NULL; } /** * get_ie_ext - Fetch a specified extended information element from IEs buffer * @ies: Information elements buffer * @len: Information elements buffer length * @ext: Information element extension identifier (WLAN_EID_EXT_*) * Returns: Pointer to the information element (id field) or %NULL if not found * * This function returns the first matching information element in the IEs * buffer or %NULL in case the element is not found. */ const u8 * get_ie_ext(const u8 *ies, size_t len, u8 ext) { const struct element *elem; if (!ies) return NULL; for_each_element_extid(elem, ext, ies, len) return &elem->id; return NULL; } const u8 * get_vendor_ie(const u8 *ies, size_t len, u32 vendor_type) { const struct element *elem; for_each_element_id(elem, WLAN_EID_VENDOR_SPECIFIC, ies, len) { if (elem->datalen >= 4 && vendor_type == WPA_GET_BE32(elem->data)) return &elem->id; } return NULL; } size_t mbo_add_ie(u8 *buf, size_t len, const u8 *attr, size_t attr_len) { /* * MBO IE requires 6 bytes without the attributes: EID (1), length (1), * OUI (3), OUI type (1). */ if (len < 6 + attr_len) { wpa_printf(MSG_DEBUG, "MBO: Not enough room in buffer for MBO IE: buf len = %zu, attr_len = %zu", len, attr_len); return 0; } *buf++ = WLAN_EID_VENDOR_SPECIFIC; *buf++ = attr_len + 4; WPA_PUT_BE24(buf, OUI_WFA); buf += 3; *buf++ = MBO_OUI_TYPE; os_memcpy(buf, attr, attr_len); return 6 + attr_len; } size_t add_multi_ap_ie(u8 *buf, size_t len, u8 value) { u8 *pos = buf; if (len < 9) return 0; *pos++ = WLAN_EID_VENDOR_SPECIFIC; *pos++ = 7; /* len */ WPA_PUT_BE24(pos, OUI_WFA); pos += 3; *pos++ = MULTI_AP_OUI_TYPE; *pos++ = MULTI_AP_SUB_ELEM_TYPE; *pos++ = 1; /* len */ *pos++ = value; return pos - buf; } static const struct country_op_class us_op_class[] = { { 1, 115 }, { 2, 118 }, { 3, 124 }, { 4, 121 }, { 5, 125 }, { 12, 81 }, { 22, 116 }, { 23, 119 }, { 24, 122 }, { 25, 126 }, { 26, 126 }, { 27, 117 }, { 28, 120 }, { 29, 123 }, { 30, 127 }, { 31, 127 }, { 32, 83 }, { 33, 84 }, { 34, 180 }, }; static const struct country_op_class eu_op_class[] = { { 1, 115 }, { 2, 118 }, { 3, 121 }, { 4, 81 }, { 5, 116 }, { 6, 119 }, { 7, 122 }, { 8, 117 }, { 9, 120 }, { 10, 123 }, { 11, 83 }, { 12, 84 }, { 17, 125 }, { 18, 180 }, }; static const struct country_op_class jp_op_class[] = { { 1, 115 }, { 30, 81 }, { 31, 82 }, { 32, 118 }, { 33, 118 }, { 34, 121 }, { 35, 121 }, { 36, 116 }, { 37, 119 }, { 38, 119 }, { 39, 122 }, { 40, 122 }, { 41, 117 }, { 42, 120 }, { 43, 120 }, { 44, 123 }, { 45, 123 }, { 56, 83 }, { 57, 84 }, { 58, 121 }, { 59, 180 }, }; static const struct country_op_class cn_op_class[] = { { 1, 115 }, { 2, 118 }, { 3, 125 }, { 4, 116 }, { 5, 119 }, { 6, 126 }, { 7, 81 }, { 8, 83 }, { 9, 84 }, }; static u8 global_op_class_from_country_array(u8 op_class, size_t array_size, const struct country_op_class *country_array) { size_t i; for (i = 0; i < array_size; i++) { if (country_array[i].country_op_class == op_class) return country_array[i].global_op_class; } return 0; } u8 country_to_global_op_class(const char *country, u8 op_class) { const struct country_op_class *country_array; size_t size; u8 g_op_class; if (country_match(us_op_class_cc, country)) { country_array = us_op_class; size = ARRAY_SIZE(us_op_class); } else if (country_match(eu_op_class_cc, country)) { country_array = eu_op_class; size = ARRAY_SIZE(eu_op_class); } else if (country_match(jp_op_class_cc, country)) { country_array = jp_op_class; size = ARRAY_SIZE(jp_op_class); } else if (country_match(cn_op_class_cc, country)) { country_array = cn_op_class; size = ARRAY_SIZE(cn_op_class); } else { /* * Countries that do not match any of the above countries use * global operating classes */ return op_class; } g_op_class = global_op_class_from_country_array(op_class, size, country_array); /* * If the given operating class did not match any of the country's * operating classes, assume that global operating class is used. */ return g_op_class ? g_op_class : op_class; } const struct oper_class_map * get_oper_class(const char *country, u8 op_class) { const struct oper_class_map *op; if (country) op_class = country_to_global_op_class(country, op_class); op = &global_op_class[0]; while (op->op_class && op->op_class != op_class) op++; if (!op->op_class) return NULL; return op; } int oper_class_bw_to_int(const struct oper_class_map *map) { switch (map->bw) { case BW20: return 20; case BW40: case BW40PLUS: case BW40MINUS: return 40; case BW80: return 80; case BW80P80: case BW160: return 160; case BW2160: return 2160; default: return 0; } } int center_idx_to_bw_6ghz(u8 idx) { /* Channel: 2 */ if (idx == 2) return 0; /* 20 MHz */ /* channels: 1, 5, 9, 13... */ if ((idx & 0x3) == 0x1) return 0; /* 20 MHz */ /* channels 3, 11, 19... */ if ((idx & 0x7) == 0x3) return 1; /* 40 MHz */ /* channels 7, 23, 39.. */ if ((idx & 0xf) == 0x7) return 2; /* 80 MHz */ /* channels 15, 47, 79...*/ if ((idx & 0x1f) == 0xf) return 3; /* 160 MHz */ return -1; } bool is_6ghz_freq(int freq) { if (freq < 5935 || freq > 7115) return false; if (freq == 5935) return true; if (center_idx_to_bw_6ghz((freq - 5950) / 5) < 0) return false; return true; } bool is_6ghz_op_class(u8 op_class) { return op_class >= 131 && op_class <= 136; } bool is_6ghz_psc_frequency(int freq) { int i; if (!is_6ghz_freq(freq) || freq == 5935) return false; if ((((freq - 5950) / 5) & 0x3) != 0x1) return false; i = (freq - 5950 + 55) % 80; if (i == 0) i = (freq - 5950 + 55) / 80; if (i >= 1 && i <= 15) return true; return false; } /** * get_6ghz_sec_channel - Get the relative position of the secondary channel * to the primary channel in 6 GHz * @channel: Primary channel to be checked for (in global op class 131) * Returns: 1 = secondary channel above, -1 = secondary channel below */ int get_6ghz_sec_channel(int channel) { /* * In the 6 GHz band, primary channels are numbered as 1, 5, 9, 13.., so * the 40 MHz channels are formed with the channel pairs as (1,5), * (9,13), (17,21).. * The secondary channel for a given primary channel is below the * primary channel for the channels 5, 13, 21.. and it is above the * primary channel for the channels 1, 9, 17.. */ if (((channel - 1) / 4) % 2) return -1; return 1; } int ieee802_11_parse_candidate_list(const char *pos, u8 *nei_rep, size_t nei_rep_len) { u8 *nei_pos = nei_rep; const char *end; /* * BSS Transition Candidate List Entries - Neighbor Report elements * neighbor=,,, * ,[,] */ while (pos) { u8 *nei_start; long int val; char *endptr, *tmp; pos = os_strstr(pos, " neighbor="); if (!pos) break; if (nei_pos + 15 > nei_rep + nei_rep_len) { wpa_printf(MSG_DEBUG, "Not enough room for additional neighbor"); return -1; } pos += 10; nei_start = nei_pos; *nei_pos++ = WLAN_EID_NEIGHBOR_REPORT; nei_pos++; /* length to be filled in */ if (hwaddr_aton(pos, nei_pos)) { wpa_printf(MSG_DEBUG, "Invalid BSSID"); return -1; } nei_pos += ETH_ALEN; pos += 17; if (*pos != ',') { wpa_printf(MSG_DEBUG, "Missing BSSID Information"); return -1; } pos++; val = strtol(pos, &endptr, 0); WPA_PUT_LE32(nei_pos, val); nei_pos += 4; if (*endptr != ',') { wpa_printf(MSG_DEBUG, "Missing Operating Class"); return -1; } pos = endptr + 1; *nei_pos++ = atoi(pos); /* Operating Class */ pos = os_strchr(pos, ','); if (pos == NULL) { wpa_printf(MSG_DEBUG, "Missing Channel Number"); return -1; } pos++; *nei_pos++ = atoi(pos); /* Channel Number */ pos = os_strchr(pos, ','); if (pos == NULL) { wpa_printf(MSG_DEBUG, "Missing PHY Type"); return -1; } pos++; *nei_pos++ = atoi(pos); /* PHY Type */ end = os_strchr(pos, ' '); tmp = os_strchr(pos, ','); if (tmp && (!end || tmp < end)) { /* Optional Subelements (hexdump) */ size_t len; pos = tmp + 1; end = os_strchr(pos, ' '); if (end) len = end - pos; else len = os_strlen(pos); if (nei_pos + len / 2 > nei_rep + nei_rep_len) { wpa_printf(MSG_DEBUG, "Not enough room for neighbor subelements"); return -1; } if (len & 0x01 || hexstr2bin(pos, nei_pos, len / 2) < 0) { wpa_printf(MSG_DEBUG, "Invalid neighbor subelement info"); return -1; } nei_pos += len / 2; pos = end; } nei_start[1] = nei_pos - nei_start - 2; } return nei_pos - nei_rep; } int ieee802_11_ext_capab(const u8 *ie, unsigned int capab) { if (!ie || ie[1] <= capab / 8) return 0; return !!(ie[2 + capab / 8] & BIT(capab % 8)); } bool ieee802_11_rsnx_capab_len(const u8 *rsnxe, size_t rsnxe_len, unsigned int capab) { const u8 *end; size_t flen, i; u32 capabs = 0; if (!rsnxe || rsnxe_len == 0) return false; end = rsnxe + rsnxe_len; flen = (rsnxe[0] & 0x0f) + 1; if (rsnxe + flen > end) return false; if (flen > 4) flen = 4; for (i = 0; i < flen; i++) capabs |= rsnxe[i] << (8 * i); return capabs & BIT(capab); } bool ieee802_11_rsnx_capab(const u8 *rsnxe, unsigned int capab) { return ieee802_11_rsnx_capab_len(rsnxe ? rsnxe + 2 : NULL, rsnxe ? rsnxe[1] : 0, capab); } void hostapd_encode_edmg_chan(int edmg_enable, u8 edmg_channel, int primary_channel, struct ieee80211_edmg_config *edmg) { if (!edmg_enable) { edmg->channels = 0; edmg->bw_config = 0; return; } /* Only EDMG CB1 and EDMG CB2 contiguous channels supported for now */ switch (edmg_channel) { case EDMG_CHANNEL_9: edmg->channels = EDMG_CHANNEL_9_SUBCHANNELS; edmg->bw_config = EDMG_BW_CONFIG_5; return; case EDMG_CHANNEL_10: edmg->channels = EDMG_CHANNEL_10_SUBCHANNELS; edmg->bw_config = EDMG_BW_CONFIG_5; return; case EDMG_CHANNEL_11: edmg->channels = EDMG_CHANNEL_11_SUBCHANNELS; edmg->bw_config = EDMG_BW_CONFIG_5; return; case EDMG_CHANNEL_12: edmg->channels = EDMG_CHANNEL_12_SUBCHANNELS; edmg->bw_config = EDMG_BW_CONFIG_5; return; case EDMG_CHANNEL_13: edmg->channels = EDMG_CHANNEL_13_SUBCHANNELS; edmg->bw_config = EDMG_BW_CONFIG_5; return; default: if (primary_channel > 0 && primary_channel < 7) { edmg->channels = BIT(primary_channel - 1); edmg->bw_config = EDMG_BW_CONFIG_4; } else { edmg->channels = 0; edmg->bw_config = 0; } break; } } /* Check if the requested EDMG configuration is a subset of the allowed * EDMG configuration. */ int ieee802_edmg_is_allowed(struct ieee80211_edmg_config allowed, struct ieee80211_edmg_config requested) { /* * The validation check if the requested EDMG configuration * is a subset of the allowed EDMG configuration: * 1. Check that the requested channels are part (set) of the allowed * channels. * 2. P802.11ay defines the values of bw_config between 4 and 15. * (bw config % 4) will give us 4 groups inside bw_config definition, * inside each group we can check the subset just by comparing the * bw_config value. * Between this 4 groups, there is no subset relation - as a result of * the P802.11ay definition. * bw_config defined by IEEE P802.11ay/D4.0, 9.4.2.251, Table 13. */ if (((requested.channels & allowed.channels) != requested.channels) || ((requested.bw_config % 4) > (allowed.bw_config % 4)) || requested.bw_config > allowed.bw_config) return 0; return 1; } int op_class_to_bandwidth(u8 op_class) { switch (op_class) { case 81: case 82: return 20; case 83: /* channels 1..9; 40 MHz */ case 84: /* channels 5..13; 40 MHz */ return 40; case 115: /* channels 36,40,44,48; indoor only */ return 20; case 116: /* channels 36,44; 40 MHz; indoor only */ case 117: /* channels 40,48; 40 MHz; indoor only */ return 40; case 118: /* channels 52,56,60,64; dfs */ return 20; case 119: /* channels 52,60; 40 MHz; dfs */ case 120: /* channels 56,64; 40 MHz; dfs */ return 40; case 121: /* channels 100-140 */ return 20; case 122: /* channels 100-142; 40 MHz */ case 123: /* channels 104-136; 40 MHz */ return 40; case 124: /* channels 149,153,157,161 */ case 125: /* channels 149,153,157,161,165,169,173,177 */ return 20; case 126: /* channels 149,157,161,165,169,173; 40 MHz */ case 127: /* channels 153..177; 40 MHz */ return 40; case 128: /* center freqs 42, 58, 106, 122, 138, 155, 171; 80 MHz */ return 80; case 129: /* center freqs 50, 114, 163; 160 MHz */ return 160; case 130: /* center freqs 42, 58, 106, 122, 138, 155, 171; 80+80 MHz */ return 80; case 131: /* UHB channels, 20 MHz: 1, 5, 9.. */ return 20; case 132: /* UHB channels, 40 MHz: 3, 11, 19.. */ return 40; case 133: /* UHB channels, 80 MHz: 7, 23, 39.. */ return 80; case 134: /* UHB channels, 160 MHz: 15, 47, 79.. */ case 135: /* UHB channels, 80+80 MHz: 7, 23, 39.. */ return 160; case 136: /* UHB channels, 20 MHz: 2 */ return 20; case 180: /* 60 GHz band, channels 1..8 */ return 2160; case 181: /* 60 GHz band, EDMG CB2, channels 9..15 */ return 4320; case 182: /* 60 GHz band, EDMG CB3, channels 17..22 */ return 6480; case 183: /* 60 GHz band, EDMG CB4, channel 25..29 */ return 8640; } return 20; } int op_class_to_ch_width(u8 op_class) { switch (op_class) { case 81: case 82: return CHANWIDTH_USE_HT; case 83: /* channels 1..9; 40 MHz */ case 84: /* channels 5..13; 40 MHz */ return CHANWIDTH_USE_HT; case 115: /* channels 36,40,44,48; indoor only */ return CHANWIDTH_USE_HT; case 116: /* channels 36,44; 40 MHz; indoor only */ case 117: /* channels 40,48; 40 MHz; indoor only */ return CHANWIDTH_USE_HT; case 118: /* channels 52,56,60,64; dfs */ return CHANWIDTH_USE_HT; case 119: /* channels 52,60; 40 MHz; dfs */ case 120: /* channels 56,64; 40 MHz; dfs */ return CHANWIDTH_USE_HT; case 121: /* channels 100-140 */ return CHANWIDTH_USE_HT; case 122: /* channels 100-142; 40 MHz */ case 123: /* channels 104-136; 40 MHz */ return CHANWIDTH_USE_HT; case 124: /* channels 149,153,157,161 */ case 125: /* channels 149,153,157,161,165,169,171 */ return CHANWIDTH_USE_HT; case 126: /* channels 149,157,165, 173; 40 MHz */ case 127: /* channels 153,161,169,177; 40 MHz */ return CHANWIDTH_USE_HT; case 128: /* center freqs 42, 58, 106, 122, 138, 155, 171; 80 MHz */ return CHANWIDTH_80MHZ; case 129: /* center freqs 50, 114, 163; 160 MHz */ return CHANWIDTH_160MHZ; case 130: /* center freqs 42, 58, 106, 122, 138, 155, 171; 80+80 MHz */ return CHANWIDTH_80P80MHZ; case 131: /* UHB channels, 20 MHz: 1, 5, 9.. */ return CHANWIDTH_USE_HT; case 132: /* UHB channels, 40 MHz: 3, 11, 19.. */ return CHANWIDTH_USE_HT; case 133: /* UHB channels, 80 MHz: 7, 23, 39.. */ return CHANWIDTH_80MHZ; case 134: /* UHB channels, 160 MHz: 15, 47, 79.. */ return CHANWIDTH_160MHZ; case 135: /* UHB channels, 80+80 MHz: 7, 23, 39.. */ return CHANWIDTH_80P80MHZ; case 136: /* UHB channels, 20 MHz: 2 */ return CHANWIDTH_USE_HT; case 180: /* 60 GHz band, channels 1..8 */ return CHANWIDTH_2160MHZ; case 181: /* 60 GHz band, EDMG CB2, channels 9..15 */ return CHANWIDTH_4320MHZ; case 182: /* 60 GHz band, EDMG CB3, channels 17..22 */ return CHANWIDTH_6480MHZ; case 183: /* 60 GHz band, EDMG CB4, channel 25..29 */ return CHANWIDTH_8640MHZ; } return CHANWIDTH_USE_HT; } struct wpabuf * ieee802_11_defrag_data(struct ieee802_11_elems *elems, u8 eid, u8 eid_ext, const u8 *data, u8 len) { struct frag_ies_info *frag_ies = &elems->frag_ies; struct wpabuf *buf; unsigned int i; if (!elems || !data || !len) return NULL; buf = wpabuf_alloc_copy(data, len); if (!buf) return NULL; for (i = 0; i < frag_ies->n_frags; i++) { int ret; if (frag_ies->frags[i].eid != eid || frag_ies->frags[i].eid_ext != eid_ext) continue; ret = wpabuf_resize(&buf, frag_ies->frags[i].ie_len); if (ret < 0) { wpabuf_free(buf); return NULL; } /* Copy only the fragment data (without the EID and length) */ wpabuf_put_data(buf, frag_ies->frags[i].ie, frag_ies->frags[i].ie_len); } return buf; } struct wpabuf * ieee802_11_defrag(struct ieee802_11_elems *elems, u8 eid, u8 eid_ext) { const u8 *data; u8 len; /* * TODO: Defragmentation mechanism can be supported for all IEs. For now * handle only those that are used (or use ieee802_11_defrag_data()). */ switch (eid) { case WLAN_EID_EXTENSION: switch (eid_ext) { case WLAN_EID_EXT_FILS_HLP_CONTAINER: data = elems->fils_hlp; len = elems->fils_hlp_len; break; case WLAN_EID_EXT_WRAPPED_DATA: data = elems->wrapped_data; len = elems->wrapped_data_len; break; default: wpa_printf(MSG_DEBUG, "Defragmentation not supported. eid_ext=%u", eid_ext); return NULL; } break; default: wpa_printf(MSG_DEBUG, "Defragmentation not supported. eid=%u", eid); return NULL; } return ieee802_11_defrag_data(elems, eid, eid_ext, data, len); }