/* * P2P - generic helper functions * Copyright (c) 2009, Atheros Communications * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include "includes.h" #include "common.h" #include "common/ieee802_11_common.h" #include "p2p_i.h" /** * p2p_random - Generate random string for SSID and passphrase * @buf: Buffer for returning the result * @len: Number of octets to write to the buffer * Returns: 0 on success, -1 on failure * * This function generates a random string using the following character set: * 'A'-'Z', 'a'-'z', '0'-'9'. */ int p2p_random(char *buf, size_t len) { u8 val; size_t i; u8 letters = 'Z' - 'A' + 1; u8 numbers = 10; if (os_get_random((unsigned char *) buf, len)) return -1; /* Character set: 'A'-'Z', 'a'-'z', '0'-'9' */ for (i = 0; i < len; i++) { val = buf[i]; val %= 2 * letters + numbers; if (val < letters) buf[i] = 'A' + val; else if (val < 2 * letters) buf[i] = 'a' + (val - letters); else buf[i] = '0' + (val - 2 * letters); } return 0; } /** * p2p_channel_to_freq - Convert channel info to frequency * @op_class: Operating class * @channel: Channel number * Returns: Frequency in MHz or -1 if the specified channel is unknown */ int p2p_channel_to_freq(int op_class, int channel) { return ieee80211_chan_to_freq(NULL, op_class, channel); } /** * p2p_freq_to_channel - Convert frequency into channel info * @op_class: Buffer for returning operating class * @channel: Buffer for returning channel number * Returns: 0 on success, -1 if the specified frequency is unknown */ int p2p_freq_to_channel(unsigned int freq, u8 *op_class, u8 *channel) { /* TODO: more operating classes */ if (freq >= 2412 && freq <= 2472) { if ((freq - 2407) % 5) return -1; *op_class = 81; /* 2.407 GHz, channels 1..13 */ *channel = (freq - 2407) / 5; return 0; } if (freq == 2484) { *op_class = 82; /* channel 14 */ *channel = 14; return 0; } if (freq >= 5180 && freq <= 5240) { if ((freq - 5000) % 5) return -1; *op_class = 115; /* 5 GHz, channels 36..48 */ *channel = (freq - 5000) / 5; return 0; } if (freq >= 5745 && freq <= 5805) { if ((freq - 5000) % 5) return -1; *op_class = 124; /* 5 GHz, channels 149..161 */ *channel = (freq - 5000) / 5; return 0; } if (freq >= 5745 && freq <= 5845) { if ((freq - 5000) % 5) return -1; *op_class = 125; /* 5 GHz, channels 149..169 */ *channel = (freq - 5000) / 5; return 0; } if (freq >= 58320 && freq <= 64800) { if ((freq - 58320) % 2160) return -1; *op_class = 180; /* 60 GHz, channels 1..4 */ *channel = (freq - 56160) / 2160; return 0; } return -1; } static void p2p_reg_class_intersect(const struct p2p_reg_class *a, const struct p2p_reg_class *b, struct p2p_reg_class *res) { size_t i, j; res->reg_class = a->reg_class; for (i = 0; i < a->channels; i++) { for (j = 0; j < b->channels; j++) { if (a->channel[i] != b->channel[j]) continue; res->channel[res->channels] = a->channel[i]; res->channels++; if (res->channels == P2P_MAX_REG_CLASS_CHANNELS) return; } } } /** * p2p_channels_intersect - Intersection of supported channel lists * @a: First set of supported channels * @b: Second set of supported channels * @res: Data structure for returning the intersection of support channels * * This function can be used to find a common set of supported channels. Both * input channels sets are assumed to use the same country code. If different * country codes are used, the regulatory class numbers may not be matched * correctly and results are undefined. */ void p2p_channels_intersect(const struct p2p_channels *a, const struct p2p_channels *b, struct p2p_channels *res) { size_t i, j; os_memset(res, 0, sizeof(*res)); for (i = 0; i < a->reg_classes; i++) { const struct p2p_reg_class *a_reg = &a->reg_class[i]; for (j = 0; j < b->reg_classes; j++) { const struct p2p_reg_class *b_reg = &b->reg_class[j]; if (a_reg->reg_class != b_reg->reg_class) continue; p2p_reg_class_intersect( a_reg, b_reg, &res->reg_class[res->reg_classes]); if (res->reg_class[res->reg_classes].channels) { res->reg_classes++; if (res->reg_classes == P2P_MAX_REG_CLASSES) return; } } } } static void p2p_op_class_union(struct p2p_reg_class *cl, const struct p2p_reg_class *b_cl) { size_t i, j; for (i = 0; i < b_cl->channels; i++) { for (j = 0; j < cl->channels; j++) { if (b_cl->channel[i] == cl->channel[j]) break; } if (j == cl->channels) { if (cl->channels == P2P_MAX_REG_CLASS_CHANNELS) return; cl->channel[cl->channels++] = b_cl->channel[i]; } } } /** * p2p_channels_union_inplace - Inplace union of channel lists * @res: Input data and place for returning union of the channel sets * @b: Second set of channels */ void p2p_channels_union_inplace(struct p2p_channels *res, const struct p2p_channels *b) { size_t i, j; for (i = 0; i < res->reg_classes; i++) { struct p2p_reg_class *cl = &res->reg_class[i]; for (j = 0; j < b->reg_classes; j++) { const struct p2p_reg_class *b_cl = &b->reg_class[j]; if (cl->reg_class != b_cl->reg_class) continue; p2p_op_class_union(cl, b_cl); } } for (j = 0; j < b->reg_classes; j++) { const struct p2p_reg_class *b_cl = &b->reg_class[j]; for (i = 0; i < res->reg_classes; i++) { struct p2p_reg_class *cl = &res->reg_class[i]; if (cl->reg_class == b_cl->reg_class) break; } if (i == res->reg_classes) { if (res->reg_classes == P2P_MAX_REG_CLASSES) return; os_memcpy(&res->reg_class[res->reg_classes++], b_cl, sizeof(struct p2p_reg_class)); } } } /** * p2p_channels_union - Union of channel lists * @a: First set of channels * @b: Second set of channels * @res: Data structure for returning the union of channels */ void p2p_channels_union(const struct p2p_channels *a, const struct p2p_channels *b, struct p2p_channels *res) { os_memcpy(res, a, sizeof(*res)); p2p_channels_union_inplace(res, b); } void p2p_channels_remove_freqs(struct p2p_channels *chan, const struct wpa_freq_range_list *list) { size_t o, c; if (list == NULL) return; o = 0; while (o < chan->reg_classes) { struct p2p_reg_class *op = &chan->reg_class[o]; c = 0; while (c < op->channels) { int freq = p2p_channel_to_freq(op->reg_class, op->channel[c]); if (freq > 0 && freq_range_list_includes(list, freq)) { op->channels--; os_memmove(&op->channel[c], &op->channel[c + 1], op->channels - c); } else c++; } if (op->channels == 0) { chan->reg_classes--; os_memmove(&chan->reg_class[o], &chan->reg_class[o + 1], (chan->reg_classes - o) * sizeof(struct p2p_reg_class)); } else o++; } } /** * p2p_channels_includes - Check whether a channel is included in the list * @channels: List of supported channels * @reg_class: Regulatory class of the channel to search * @channel: Channel number of the channel to search * Returns: 1 if channel was found or 0 if not */ int p2p_channels_includes(const struct p2p_channels *channels, u8 reg_class, u8 channel) { size_t i, j; for (i = 0; i < channels->reg_classes; i++) { const struct p2p_reg_class *reg = &channels->reg_class[i]; if (reg->reg_class != reg_class) continue; for (j = 0; j < reg->channels; j++) { if (reg->channel[j] == channel) return 1; } } return 0; } int p2p_channels_includes_freq(const struct p2p_channels *channels, unsigned int freq) { size_t i, j; for (i = 0; i < channels->reg_classes; i++) { const struct p2p_reg_class *reg = &channels->reg_class[i]; for (j = 0; j < reg->channels; j++) { if (p2p_channel_to_freq(reg->reg_class, reg->channel[j]) == (int) freq) return 1; } } return 0; } int p2p_supported_freq(struct p2p_data *p2p, unsigned int freq) { u8 op_reg_class, op_channel; if (p2p_freq_to_channel(freq, &op_reg_class, &op_channel) < 0) return 0; return p2p_channels_includes(&p2p->cfg->channels, op_reg_class, op_channel); } int p2p_supported_freq_go(struct p2p_data *p2p, unsigned int freq) { u8 op_reg_class, op_channel; if (p2p_freq_to_channel(freq, &op_reg_class, &op_channel) < 0) return 0; return p2p_channels_includes(&p2p->cfg->channels, op_reg_class, op_channel) && !freq_range_list_includes(&p2p->no_go_freq, freq); } int p2p_supported_freq_cli(struct p2p_data *p2p, unsigned int freq) { u8 op_reg_class, op_channel; if (p2p_freq_to_channel(freq, &op_reg_class, &op_channel) < 0) return 0; return p2p_channels_includes(&p2p->cfg->channels, op_reg_class, op_channel) || p2p_channels_includes(&p2p->cfg->cli_channels, op_reg_class, op_channel); } unsigned int p2p_get_pref_freq(struct p2p_data *p2p, const struct p2p_channels *channels) { unsigned int i; int freq = 0; const struct p2p_channels *tmpc = channels ? channels : &p2p->cfg->channels; if (tmpc == NULL) return 0; for (i = 0; p2p->cfg->pref_chan && i < p2p->cfg->num_pref_chan; i++) { freq = p2p_channel_to_freq(p2p->cfg->pref_chan[i].op_class, p2p->cfg->pref_chan[i].chan); if (p2p_channels_includes_freq(tmpc, freq)) return freq; } return 0; } void p2p_channels_dump(struct p2p_data *p2p, const char *title, const struct p2p_channels *chan) { char buf[500], *pos, *end; size_t i, j; int ret; pos = buf; end = pos + sizeof(buf); for (i = 0; i < chan->reg_classes; i++) { const struct p2p_reg_class *c; c = &chan->reg_class[i]; ret = os_snprintf(pos, end - pos, " %u:", c->reg_class); if (os_snprintf_error(end - pos, ret)) break; pos += ret; for (j = 0; j < c->channels; j++) { ret = os_snprintf(pos, end - pos, "%s%u", j == 0 ? "" : ",", c->channel[j]); if (os_snprintf_error(end - pos, ret)) break; pos += ret; } } *pos = '\0'; p2p_dbg(p2p, "%s:%s", title, buf); } static u8 p2p_channel_pick_random(const u8 *channels, unsigned int num_channels) { unsigned int r; if (os_get_random((u8 *) &r, sizeof(r)) < 0) r = 0; r %= num_channels; return channels[r]; } int p2p_channel_select(struct p2p_channels *chans, const int *classes, u8 *op_class, u8 *op_channel) { unsigned int i, j; for (j = 0; classes == NULL || classes[j]; j++) { for (i = 0; i < chans->reg_classes; i++) { struct p2p_reg_class *c = &chans->reg_class[i]; if (c->channels == 0) continue; if (classes == NULL || c->reg_class == classes[j]) { /* * Pick one of the available channels in the * operating class at random. */ *op_class = c->reg_class; *op_channel = p2p_channel_pick_random( c->channel, c->channels); return 0; } } if (classes == NULL) break; } return -1; } int p2p_channel_random_social(struct p2p_channels *chans, u8 *op_class, u8 *op_channel) { u8 chan[4]; unsigned int num_channels = 0; /* Try to find available social channels from 2.4 GHz */ if (p2p_channels_includes(chans, 81, 1)) chan[num_channels++] = 1; if (p2p_channels_includes(chans, 81, 6)) chan[num_channels++] = 6; if (p2p_channels_includes(chans, 81, 11)) chan[num_channels++] = 11; /* Try to find available social channels from 60 GHz */ if (p2p_channels_includes(chans, 180, 2)) chan[num_channels++] = 2; if (num_channels == 0) return -1; *op_channel = p2p_channel_pick_random(chan, num_channels); if (*op_channel == 2) *op_class = 180; else *op_class = 81; return 0; } int p2p_channels_to_freqs(const struct p2p_channels *channels, int *freq_list, unsigned int max_len) { unsigned int i, idx; if (!channels || max_len == 0) return 0; for (i = 0, idx = 0; i < channels->reg_classes; i++) { const struct p2p_reg_class *c = &channels->reg_class[i]; unsigned int j; if (idx + 1 == max_len) break; for (j = 0; j < c->channels; j++) { int freq; if (idx + 1 == max_len) break; freq = p2p_channel_to_freq(c->reg_class, c->channel[j]); if (freq < 0) continue; freq_list[idx++] = freq; } } freq_list[idx] = 0; return idx; }