This allows the internal TLS implementation to be built for TLS v1.2
support. In addition to the build option, this changes the TLS PRF
based on the negotiated version number. Though, this commit does not
yet complete support for TLS v1.2.
Signed-hostap: Jouni Malinen <j@w1.fi>
This is the first step in allowing SA Query mechanism in hostapd to be
used with drivers that implement authentication and association MLME/SME
(i.e., do not use ieee802_11.c).
If CONFIG_NO_RANDOM_POOL is unset, src/crypto/random.o is linked
into hlr_auc_gw. However, in this configuration, random.o requires
symbols defined in src/utils/eloop.o. So add eloop.o to the object
file list for hlr_auc_gw.
These protocols seem to be abandoned: latest IETF drafts have expired
years ago and it does not seem likely that EAP-TTLSv1 would be
deployed. The implementation in hostapd/wpa_supplicant was not complete
and not fully tested. In addition, the TLS/IA functionality was only
available when GnuTLS was used. Since GnuTLS removed this functionality
in 3.0.0, there is no available TLS/IA implementation in the latest
version of any supported TLS library.
Remove the EAP-TTLSv1 and TLS/IA implementation to clean up unwanted
complexity from hostapd and wpa_supplicant. In addition, this removes
any potential use of the GnuTLS extra library.
By default, make hostapd and wpa_supplicant maintain an internal
entropy pool that is fed with following information:
hostapd:
- Probe Request frames (timing, RSSI)
- Association events (timing)
- SNonce from Supplicants
wpa_supplicant:
- Scan results (timing, signal/noise)
- Association events (timing)
The internal pool is used to augment the random numbers generated
with the OS mechanism (os_get_random()). While the internal
implementation is not expected to be very strong due to limited
amount of generic (non-platform specific) information to feed the
pool, this may strengthen key derivation on some devices that are
not configured to provide strong random numbers through
os_get_random() (e.g., /dev/urandom on Linux/BSD).
This new mechanism is not supposed to replace proper OS provided
random number generation mechanism. The OS mechanism needs to be
initialized properly (e.g., hw random number generator,
maintaining entropy pool over reboots, etc.) for any of the
security assumptions to hold.
If the os_get_random() is known to provide strong ramdom data (e.g., on
Linux/BSD, the board in question is known to have reliable source of
random data from /dev/urandom), the internal hostapd random pool can be
disabled. This will save some in binary size and CPU use. However, this
should only be considered for builds that are known to be used on
devices that meet the requirements described above. The internal pool
is disabled by adding CONFIG_NO_RANDOM_POOL=y to the .config file.
Instead of build time options (CONFIG_WPS_TESTING_EXTRA_CRED and
CONFIG_WPS_EXTENSIBILITY_TESTING), use a single build option
(CONFIG_WPS_TESTING) and runtime configuration of which testing
operations are enabled. This allows a single binary to be used
for various tests.
The runtime configuration can be done through control interface
with wpa_cli/hostapd_cli commands:
Enable extensibility tests:
set wps_version_number 0x57
Disable extensibility tests (WPS2 build):
set wps_version_number 0x20
Enable extra credential tests:
set wps_testing_dummy_cred 1
Disable extra credential tests:
set wps_testing_dummy_cred 0
If CONFIG_WPS_STRICT is set, validate WPS IE(s) in management frames and
reject the frames if any of the mandatory attributes is missing or if an
included attribute uses an invalid value. In addition, verify that all
mandatory attributes are included and have valid values in the WSC
messages.
If hostapd is running, a make install fails with
cp: cannot create regular file `/usr/local/bin/hostapd': Text file busy
Use cp -f to avoid this error and force-override the file.
Signed-off-by: Michael Buesch <mb@bu3sch.de>
Most of this file was already moved into wpa_supplicant/scan.c and
we can remove the file completely by having couple of small helper
functions copied to the remaining users outside core wpa_supplicant
code.
Doxygen and some build tools may get a bit confused about same file
name being used in different directories. Clean this up a bit by
renaming some of the duplicated file names in src/ap.
This code can be shared by both hostapd and wpa_supplicant and this
is an initial step in getting the generic code moved to be under the
src directories. Couple of generic files still remain under the
hostapd directory due to direct dependencies to files there. Once the
dependencies have been removed, they will also be moved to the src/ap
directory to allow wpa_supplicant to be built without requiring anything
from the hostapd directory.
config.c includes now only the generic helper functions that are needed
both for hostapd and the AP mode operations in wpa_supplicant.
hostapd/config_file.c is only needed for hostapd.
It would be bettet to avoid including driver_i.h, i.e., direct driver
operation calls from hostapd components. This is an initial step in
that direction for WPS IE updates.
WPA_TRACE=y builds will now verify that memory allocation in done
consistently using os_{zalloc,malloc,realloc,strdup,free} (i.e., no
mixing of os_* functions and unwrapper functions). In addition, some
common memory allocation issues (double-free, memory leaks, etc.) are
detected automatically.
WPA_TRACE=y can now be used to enable internal backtrace support that
will provide more details about implementation errors, e.g., when some
resources are not released correctly. In addition, this will print out
a backtrace automatically if SIGSEGV is received.
Instead of using the latest selected registrar change, collect selected
registrar information separately from all registrars and use the union
of this information when building the WPS IE for Beacon and Probe
Response frames.
Note: SetSelectedRegistrar UPnP action does not include a unique
identifier, so the ER matching routine is based only on the IP address
of the ER. In theory, there could be multiple ERs using the same IP
address (but different port or URL), so there may be some corner cases
that would not always match the correct ER entry at the AP. Anyway, this
is not really expected to occur in normal use cases and even if it did
happen, the selected registrar information is not any worse than it was
before when only the last change from any registrar for being
advertized.
This is a separate program and is used mainly with hostapd, so it is
better to move this into the hostapd subdirectory now that Milenage
code has already been moved into src/crypto. Milenage was the only
generic component in hlr_auc_gw.
In addition, start ordering header file includes to be in more
consistent order: system header files, src/utils, src/*, same
directory as the *.c file.
This removes the hardcoded definition from Makefile and cleans up
source code by moving the mail HOSTAPD_DUMP_STATE blocks into separate
files to avoid conditional compilation within files.
This makes it clearer which files are including header from src/common.
Some of these cases should probably be cleaned up in the future not to
do that.
In addition, src/common/nl80211_copy.h and wireless_copy.h were moved
into src/drivers since they are only used by driver wrappers and do not
need to live in src/common.
Clean up code so that UPnP implementation does not need to include all
the HTTP functionality. In addition, make it easier to share HTTP server
functionality with other components in the future.
Instead of implementing HTTP client functionality inside
wps_upnp_event.c, use a generic HTTP client module to do this. The HTTP
client code can now be shared more easily for other purposes, too.
This functionality fits better with src/tls (i.e., internal TLS
implementation), so move it there to make crypto_internal.c more
of a wrapper like other crypto_*.c files.
The hostapd/wpa_supplicant compilation failed with CONFIG_IEEE80211R=y
or CONFIG_IEEE80211W=y option if CONFIG_EAP_PSK and CONFIG_EAP_GPSK are
not used.
Reorganize the TLS/crypto library segments into a single set of blocks
for each library instead of multiple locations handling library-specific
operations. Group crypto functionality together and get wpa_supplicant
and hostapd Makefile closer to eachother in order to make it easier to
eventually move this into a shared makefile.
Crypto library wrappers can now override the internal DH (group 5)
implementation. As a starting point, this is done with OpenSSL. The
new mechanism is currently available only for WPS (i.e., IKEv2 still
depends on the internal DH implementation).
This is a (hopefully) temporary workaround to allow the same source code
tree to be used for building hostapd and wpa_supplicant without having
to manually force recompilation of some files. Currently, some of the
driver wrapper files need to be built separately for hostapd and
wpa_supplicant (#ifdef's in the files based on AP functionality).
This is somewhat racy as far as parallel make execution is concerned,
i.e., it may be necessary to run "make -j#" twice (plain "make" works
fine. Since this is supposed to be a temporary workaround, there is not
much point in trying to fix this with any more complex make processing.
Instead of having all driver stuff collected across wpa_supplicant
and hostapd, create a common snippet that they both include and
that handles the build configuration.
This commit merges the driver_ops structures and implementations from
hostapd/driver*.[ch] into src/drivers. This is only an initial step and
there is room for number of cleanups to share code between the hostapd
and wpa_supplicant parts of the wrappers to avoid unnecessary source
code duplication.
The new file wps_nfc.c and ndef.c implements NFC device independent
operation, wps_nfc_pn531.c implements NFC device dependent operation.
This patch is only for the following use case:
- Enrollee = wpa_supplicant
- Registrar = hostapd internal Registrar
Following NFC methods can be used:
- Enrollee PIN with NFC
- Registrar PIN with NFC
- unencrypted credential with NFC
Encrypted credentials are not supported.
Enrollee side operation:
Registrar side operation:
Example configuration.
CONFIG_WPS=y
CONFIG_WPS_NFC=y
CONFIG_WPS_NFC_PN531=y
I used NFC device "NXP PN531". The NFC device access method is
confidential, so I used outer library. Please download below files from
https://www.saice-wpsnfc.bz/index.php
[WPS NFC Library]
WpsNfcLibrary/WpsNfc.h
WpsNfcLibrary/WpsNfcType.h
WpsNfcLibrary/WpsNfcVersion.h
WpsNfcLibrary/linux/libnfc_mapping_pn53x.dll
WpsNfcLibrary/linux/wpsnfc.dll
[NFC Reader/Writer Kernel Driver]
NFCKernelDriver-1.0.3/linux/kobj/sonyrw.ko
<WiFi test>
The hostapd/wpa_supplicant with this patch passed below tests on
"Wi-Fi WPS Test Plan Version 1.6".
4.2.5 Add device using NFC Method with password token
(I used SONY STA instead of NXP STA.)
4.2.6 Add device using NFC Method with configuration token
5.1.9 Add to AP using NFC Method with password token
through internal registrar
(I used SONY AP instead of NXP AP.)
5.1.10 Add to AP using NFC Method with configuration token
through internal registrar
Not all embedded devices have USB interface and it is useful to be able
to remove unneeded functionality from the binary. In addition, the
current implementation has some UNIX specific calls in it which may make
it not compile cleanly on all target systems.
This uses similar, but not identical, interface to madwifi. It is easier
to keep this separate to avoid conflicts with potential changes in the
driver interfaces.
If you don't choose OpenSSL as TLS implementation and choose to enable
CONFIG_EAP_TNC you have to link against libdl. The OpenSSL libraries
implicitly link against them, so this might be a reason why it wasn't
noticed yet. I assume the same applies to hostapd.
This adds mostly feature complete external Registrar support with the
main missing part being proper support for multiple external Registrars
working at the same time and processing of concurrent registrations when
using an external Registrar.
This code is based on Sony/Saice implementation
(https://www.saice-wpsnfc.bz/) and the changes made by Ted Merrill
(Atheros) to make it more suitable for hostapd design and embedded
systems. Some of the UPnP code is based on Intel's libupnp. Copyrights
and licensing are explained in src/wps/wps_upnp.c in more detail.
This updated all doxygen runs to use the same style that was used for
wpa_supplicant full documents. The full vs. fast configurations are now
otherwise identical apart from fast not generating dot files or
latex/pdf version of the documentation.
Unfortunately, at least the current libnl git snapshot changes the API
in backwards incompatible way and in a way that makes it difficult to
to allow building against the latest libnl code.
This is just making an as-is copy of EAP-AKA server and peer
implementation into a new file and by using the different EAP method
type that is allocated for EAP-AKA' (50). None of the other differences
between EAP-AKA and EAP-AKA' are not yet included.
It is likely that once EAP-AKA' implementation is done and is found to
work correctly, large part of the EAP-AKA and EAP-AKA' code will be
shared. However, it is not reasonable to destabilize EAP-AKA
implementation at this point before it is clearer what the final
differences will be.
This adds WPS support for both hostapd and wpa_supplicant. Both programs
can be configured to act as WPS Enrollee and Registrar. Both PBC and PIN
methods are supported.
Currently, hostapd has more complete configuration option for WPS
parameters and wpa_supplicant configuration style will likely change in
the future. External Registrars are not yet supported in hostapd or
wpa_supplicant. While wpa_supplicant has initial support for acting as
an Registrar to configure an AP, this is still using number of hardcoded
parameters which will need to be made configurable for proper operation.
This code was not finished and did not work with the current mac80211
design. In order to avoid confusing users, it is better to remove this
completely for now and look at new implementation to work with mac80211.
This commit brings in cleaned up version of IEEE 802.11n implementation
from Intel (1). The Intel tarball includes number of other changes, too,
and only the changes specific to IEEE 802.11n are brought in here. In
addition, this does not include all the changes (e.g., some of the
configuration parameters are still missing and driver wrapper changes for
mac80211 were not included).
(1)
http://www.kernel.org/pub/linux/kernel/people/chuyee/wireless/iwl4965_ap/hostap_0_6_0_intel_0.0.13.1.tgz
EAP-PEAP was the only method that used the external eap_tlv.c server
implementation. This worked fine just for the simple protected result
notification, but extending the TLV support for cryptobinding etc. is not
trivial with such separation. With the TLV processing integrated into
eap_peap.c, all the needed information is now available for using
additional TLVs.
Sam Leffler <sam@errno.com>:
Attached are changes from Chris Zimmerman (cc'd) to allow drivers to handle
radius ACL's. The patch is against 0.5.10 but I suspect will also apply to
your latest code. These mods enable radius acl support in freebsd w/ my
vap code.
You may want to do the changes to ieee802_11_auth.c differently as they
currently require all participating drivers to work the same. You might be
able to check the return value from hostapd_set_radius_acl_auth and use
that to decide whether the alternate code should be run so you can have 1
driver using this stuff while the other does not.
(jm: Added without more dynamic check for now; in addition, none of the
current in-tree driver wrappers actually implement these handlers, so this
is in preparation for future changes)
This adds EAP-TNC method and TNCS (IF-IMV and IF-TNCCS) functionality.
There is no integration with EAP-TTLS and EAP-FAST at this point, so this
version is not yet suitable for real use (i.e., EAP-TNC can only be tested
outside a tunnel which is not an allowed configuration for deployment).
However, the basic TNCS functionality is more or less complete and this
version seems to interoperate with wpa_supplicant.