This converts tls_connection_handshake(),
tls_connection_server_handshake(), tls_connection_encrypt(), and
tls_connection_decrypt() to use struct wpa_buf to allow higher layer
code to be cleaned up with consistent struct wpabuf use.
If Finished message from peer has been received before the server
Finished message, start Phase 2 with the same message to avoid extra
roundtrip when the peer does not have anything to send after the server
Finished message.
In addition, start ordering header file includes to be in more
consistent order: system header files, src/utils, src/*, same
directory as the *.c file.
Changed peer to derive the full key (both MS-MPPE-Recv-Key and
MS-MPPE-Send-Key for total of 32 octets) to match with server
implementation.
Swapped the order of MPPE keys in MSK derivation since server
MS-MPPE-Recv-Key | MS-MPPE-Send-Key matches with the order specified for
EAP-TLS MSK derivation. This means that PEAPv0 cryptobinding is now
using EAP-MSCHAPv2 MSK as-is for ISK while EAP-FAST will need to swap
the order of the MPPE keys to get ISK in a way that interoperates with
Cisco EAP-FAST implementation.
Instead of falling back to full TLS handshake on expired PAC, allow the
PAC to be used to allow a PAC update with some level of server
authentication (i.e., do not fall back to full TLS handshake since we
cannot be sure that the peer would be able to validate server certificate
now). However, reject the authentication since the PAC was not valid
anymore. Peer can connect again with the newly provisioned PAC after this.
Changed EAP-FAST configuration to use separate fields for A-ID and
A-ID-Info (eap_fast_a_id_info) to allow A-ID to be set to a fixed
16-octet len binary value for better interoperability with some peer
implementations; eap_fast_a_id is now configured as a hex string.
eap_fast_prov config parameter can now be used to enable/disable different
EAP-FAST provisioning modes:
0 = provisioning disabled
1 = only anonymous provisioning allowed
2 = only authenticated provisioning allowed
3 = both provisioning modes allowed
draft-cam-winget-eap-fast-provisioning-06.txt or RFC 4851 do not seem to
mandate any particular order for TLVs, but some interop issues were noticed
with an EAP-FAST peer implementation when Result TLV followed PAC TLV. The
example in draft-cam-winget-eap-fast-provisioning-06.txt shows the TLVs in
the other order, so change the order here, too, to make it less likely to
hit this type of interop issues.
Move the basic processing of received frames into eap_tls_common.c and use
callback functions to handle EAP type specific processing of the version
field and payload.
Fragmentation is now done as a separate step to clean up the design and to
allow the same code to be used in both Phase 1 and Phase 2. This adds
support for fragmenting EAP-PEAP/TTLS/FAST Phase 2 (tunneled) data.
Even though we try to disable TLS compression, it is possible that this
cannot be done with all TLS libraries. For example, OpenSSL 0.9.8 does not
seem to have a configuration item for disabling all compression (0.9.9 has
such an option). If compression is used, Phase 2 decryption may end up
producing more data than the input buffer due to compressed data. This
shows up especially with EAP-TNC that uses very compressible data format.
As a workaround, increase the decryption buffer length to (orig_len+500)*3.
This is a hack, but at least it handles most cases. TLS compression should
really be disabled for EAP use of TLS, but since this can show up with
common setups, it is better to handle this case.
Tunneled EAP sequence is now used to perform both the authentication (e.g.,
using EAP-GTC) and TNC validation (EAP-TNC) inside the EAP-FAST tunnel if
TNC has been enabled.
Number of TLVs were processed in groups and these cases were now separated
into more flexible processing of one TLV at the time. wpabuf_concat()
function was added to make it easier to concatenate TLVs. EAP Sequences are
now supported in both server and peer code, but the server side is not
enabled by default.
This allows Phase 2 Identity Request to be skipped if the identity is
already known from PAC-Opaque received in TLS handshake in order to save
one roundtrip from normal authentication.