IEEE 802.11w/D6.0 defines new AKMPs to indicate SHA256-based algorithms for
key derivation (and AES-CMAC for EAPOL-Key MIC). Add support for using new
AKMPs and clean up AKMP processing with helper functions in defs.h.
This adds most of the new frame format and identifier definitions from IEEE
802.11w/D6.0. In addition, the RSN IE capability field values for MFP is
replaced with the new two-bit version with MFPC (capable) and MFPR
(required) processing.
wpa_sm_set_config() can be called even if the network block does not
change. However, the previous version ended up calling
pmksa_cache_notify_reconfig() every time and this cleared the network
context from PMKSA cache entries. This prevented OKC from ever being used.
Do not call pmksa_cache_notify_reconfig() if the network context remains
unchanged to allow OKC to be used.
Function 'wpa_sm_set_config' used the argument 'config' as the network
context which is a pointer to a local variable of the function
'wpa_supplicant_rsn_supp_set_config'.
This is one reason why no proactive key was generated. This network
context never matched with the network context saved in the pmksa cache
entries.
The structure 'rsn_supp_config' has already a member 'network_ctx' which
is now filled in by this patch with 'ssid'.
Signed-off-by: Michael Bernhard <michael.bernhard@bfh.ch>
This avoids getting stuck in state where wpa_supplicant has canceled scans,
but the driver is actually in disassociated state. The previously used code
that controlled scan timeout from WPA module is not really needed anymore
(and has not been needed for past four years since authentication timeout
was separated from scan request timeout), so this can simply be removed to
resolved the race condition. As an extra bonus, this simplifies the
interface to WPA module.
[Bug 261]
This gets rid of potential warnings about buffer bounds errors. The earlier
code works fine, but it is not the cleanest way of using the struct wpa_ptk
definition for TK1/TK2.
The old version was using struct wpa_sm::bssid which is not necessarily
updated to point to the correct target address when doing over-the-air FT
since the address is used before the association has actually been
completed.
Transition. This fixes a potential issue where an incorrectly behaving AP
could send a group key update using the old (now invalid after reassociate)
PTK. This could also happen if there is a race condition between reporting
received EAPOL frames and association events.