The following defines are not really needed in most places, so
remove them to clean up source code and build scripts:
EAP_TLS_FUNCS
EAP_TLS_OPENSSL
EAP_TLS_GNUTLS
CONFIG_TLS_INTERNAL
In addition, start ordering header file includes to be in more
consistent order: system header files, src/utils, src/*, same
directory as the *.c file.
This makes it clearer which files are including header from src/common.
Some of these cases should probably be cleaned up in the future not to
do that.
In addition, src/common/nl80211_copy.h and wireless_copy.h were moved
into src/drivers since they are only used by driver wrappers and do not
need to live in src/common.
This patch implements the new DBus API. Both, the new and the
previous API may work concurrently and may be turned on or off
separately in .config file.
Some features of the new API are:
- more wpa_supplicant's events are signaled with DBus signals,
- introspection data (requires libxml2 and may be disabled),
- CurrentBSS and CurrentNetwork properties,
- PropertyChanged signal for most of properties,
- Relatively easy to extend.
.config options for the new API are: CONFIG_CTRL_IFACE_DBUS_NEW=y and
CONFIG_CTRL_IFACE_DBUS_INTRO=y for introspection.
This commit misses couple of parts from the full implementation
(these are still under review):
- fetching all configuration parameters for learning WPS information
- scan result BSS add/remove notification (register_bss() and
unregister_bss() notification callbacks)
Clean up code so that UPnP implementation does not need to include all
the HTTP functionality. In addition, make it easier to share HTTP server
functionality with other components in the future.
Instead of implementing HTTP client functionality inside
wps_upnp_event.c, use a generic HTTP client module to do this. The HTTP
client code can now be shared more easily for other purposes, too.
This is the first step in adding support for using wpa_supplicant as a
WPS External Registrar to manage APs over UPnP. Only the device
discovery part is implemented in this commit.
This functionality fits better with src/tls (i.e., internal TLS
implementation), so move it there to make crypto_internal.c more
of a wrapper like other crypto_*.c files.
The hostapd/wpa_supplicant compilation failed with CONFIG_IEEE80211R=y
or CONFIG_IEEE80211W=y option if CONFIG_EAP_PSK and CONFIG_EAP_GPSK are
not used.
Reorganize the TLS/crypto library segments into a single set of blocks
for each library instead of multiple locations handling library-specific
operations. Group crypto functionality together and get wpa_supplicant
and hostapd Makefile closer to eachother in order to make it easier to
eventually move this into a shared makefile.
Crypto library wrappers can now override the internal DH (group 5)
implementation. As a starting point, this is done with OpenSSL. The
new mechanism is currently available only for WPS (i.e., IKEv2 still
depends on the internal DH implementation).
This brings in the first step in adding support for using NSS
(Mozilla Network Security Services) as the crypto and TLS library
with wpa_supplicant. This version is able to run through EAP-PEAP
and EAP-TTLS authentication, but does not yet implement any
certificate/private key configuration. In addition, this does not
implement proper key fetching functions either, so the end result
is not really of much use in real world yet.
This allows background scanning and roaming decisions to be contained in
a single place based on a defined set of notification events which will
hopefully make it easier to experiment with roaming improvements. In
addition, this allows multiple intra-ESS roaming policies to be used
(each network configuration block can configure its own bgscan module).
The beacon loss and signal strength notifications are implemented for
the bgscan API, but the actual events are not yet available from the
driver.
The included sample bgscan module ("simple") is an example of what can
be done with the new bgscan mechanism. It requests periodic background
scans when the device remains associated with an ESS and has couple of
notes on what a more advanced bgscan module could do to optimize
background scanning and roaming. The periodic scans will cause the scan
result handler to pick a better AP if one becomes available. This bgscan
module can be taken into use by adding bgscan="simple" (or
bgscan="simple:<bgscan interval in seconds>") into the network
configuration block.
This introduces a new mechanism for collecting notification calls into
a single place (notify.c). As a result of this, most of the
wpa_supplicant code does not need to know about dbus (etc. mechanisms
that could use the notifications). Some empty placeholder functions are
also added in preparation of new dbus code that needs more event
notifications.
wpa_supplicant can now be built with FIPS capable OpenSSL for FIPS mode
operation. Currently, this is only enabling the FIPS mode in OpenSSL
without providing any higher level enforcement in wpa_supplicant.
Consequently, invalid configuration will fail during the authentication
run. Proper configuration (e.g., WPA2-Enterprise with EAP-TLS) allows
the connection to be completed.
This is a (hopefully) temporary workaround to allow the same source code
tree to be used for building hostapd and wpa_supplicant without having
to manually force recompilation of some files. Currently, some of the
driver wrapper files need to be built separately for hostapd and
wpa_supplicant (#ifdef's in the files based on AP functionality).
This is somewhat racy as far as parallel make execution is concerned,
i.e., it may be necessary to run "make -j#" twice (plain "make" works
fine. Since this is supposed to be a temporary workaround, there is not
much point in trying to fix this with any more complex make processing.
Instead of having all driver stuff collected across wpa_supplicant
and hostapd, create a common snippet that they both include and
that handles the build configuration.
Change existing CONFIG_LIBNL20 compatibility code in
driver_nl80211.c to be used by both wpa_supplicant
and hostapd, but take care of nl_handle too now.
Propagate CONFIG_LIBNL20 out of .config file and onto
CFLAGS in the Makefile.
Use libnl-gen now too.
Signed-off-by: Jon Loeliger <jdl@bigfootnetworks.com>
---
wpa_supplicant can now initialize hostapd data structures when mode=2 is
used to set up an AP. The hostapd configuration is not yet set based on
wpa_supplicant network configuration block. In addition, the glue code
for hostapd driver_ops needs number of functions that will be needed for
AP functionality.
This version is adding the configuration option (mode=2) for this and
driver capability reporting to figure out whether AP mode can be used.
However, this does not actually implement any real functionality yet.
This can be used, e.g., with mac80211-based Linux drivers with
nl80211. This allows over-the-air FT protocol to be used (IEEE
802.11r).
Since the nl80211 interface needed for this is very recent (added
today into wireless-testing.git), driver_nl80211.c has backwards
compatibility code that uses WEXT for association if the kernel does
not support the new commands. This compatibility code can be
disabled by defining NO_WEXT_COMPAT. That code will also be removed
at some point to clean up driver_nl80211.c.
The new file wps_nfc.c and ndef.c implements NFC device independent
operation, wps_nfc_pn531.c implements NFC device dependent operation.
This patch is only for the following use case:
- Enrollee = wpa_supplicant
- Registrar = hostapd internal Registrar
Following NFC methods can be used:
- Enrollee PIN with NFC
- Registrar PIN with NFC
- unencrypted credential with NFC
Encrypted credentials are not supported.
Enrollee side operation:
Registrar side operation:
Example configuration.
CONFIG_WPS=y
CONFIG_WPS_NFC=y
CONFIG_WPS_NFC_PN531=y
I used NFC device "NXP PN531". The NFC device access method is
confidential, so I used outer library. Please download below files from
https://www.saice-wpsnfc.bz/index.php
[WPS NFC Library]
WpsNfcLibrary/WpsNfc.h
WpsNfcLibrary/WpsNfcType.h
WpsNfcLibrary/WpsNfcVersion.h
WpsNfcLibrary/linux/libnfc_mapping_pn53x.dll
WpsNfcLibrary/linux/wpsnfc.dll
[NFC Reader/Writer Kernel Driver]
NFCKernelDriver-1.0.3/linux/kobj/sonyrw.ko
<WiFi test>
The hostapd/wpa_supplicant with this patch passed below tests on
"Wi-Fi WPS Test Plan Version 1.6".
4.2.5 Add device using NFC Method with password token
(I used SONY STA instead of NXP STA.)
4.2.6 Add device using NFC Method with configuration token
5.1.9 Add to AP using NFC Method with password token
through internal registrar
(I used SONY AP instead of NXP AP.)
5.1.10 Add to AP using NFC Method with configuration token
through internal registrar
Not all embedded devices have USB interface and it is useful to be able
to remove unneeded functionality from the binary. In addition, the
current implementation has some UNIX specific calls in it which may make
it not compile cleanly on all target systems.
Build EAP-WSC dynamically does not make much sense and with the
dependencies to WPS code from number of places resolving this is not
trivial. It is simpler to just remove this option.
If you don't choose OpenSSL as TLS implementation and choose to enable
CONFIG_EAP_TNC you have to link against libdl. The OpenSSL libraries
implicitly link against them, so this might be a reason why it wasn't
noticed yet. I assume the same applies to hostapd.
This commit adds a new build option, CONFIG_IBSS_RSN=y, that can be used
to enable RSN support for IBSS. This links in RSN Authenticator code
from hostapd and adds code for managing per-peer information for IBSS. A
new wpa_cli command or driver event can be used to request RSN
authentication with an IBSS peer. New RSN Authenticator and Supplicant
will be allocated for each peer.
The basic state machine setup code is included in this commit, but the
state machines are not properly started yet. In addition, some of the
callback functions are not yet complete.
This updated all doxygen runs to use the same style that was used for
wpa_supplicant full documents. The full vs. fast configurations are now
otherwise identical apart from fast not generating dot files or
latex/pdf version of the documentation.
This is just making an as-is copy of EAP-AKA server and peer
implementation into a new file and by using the different EAP method
type that is allocated for EAP-AKA' (50). None of the other differences
between EAP-AKA and EAP-AKA' are not yet included.
It is likely that once EAP-AKA' implementation is done and is found to
work correctly, large part of the EAP-AKA and EAP-AKA' code will be
shared. However, it is not reasonable to destabilize EAP-AKA
implementation at this point before it is clearer what the final
differences will be.