Remove trailing whitespace

Signed-off-by: Jouni Malinen <j@w1.fi>
master
Jouni Malinen 8 years ago
parent db98b58736
commit 95de34a10a

@ -1962,7 +1962,7 @@ static void ieee802_1x_rekey(void *eloop_ctx, void *timeout_ctx)
wpa_printf(MSG_DEBUG, "IEEE 802.1X: New default WEP key index %d",
eapol->default_wep_key_idx);
if (ieee802_1x_rekey_broadcast(hapd)) {
hostapd_logger(hapd, NULL, HOSTAPD_MODULE_IEEE8021X,
HOSTAPD_LEVEL_WARNING, "failed to generate a "

@ -48,7 +48,7 @@
static const u32 bytebit[8] =
{
0200, 0100, 040, 020, 010, 04, 02, 01
0200, 0100, 040, 020, 010, 04, 02, 01
};
static const u32 bigbyte[24] =
@ -58,22 +58,22 @@ static const u32 bigbyte[24] =
0x8000UL, 0x4000UL, 0x2000UL, 0x1000UL,
0x800UL, 0x400UL, 0x200UL, 0x100UL,
0x80UL, 0x40UL, 0x20UL, 0x10UL,
0x8UL, 0x4UL, 0x2UL, 0x1L
0x8UL, 0x4UL, 0x2UL, 0x1L
};
/* Use the key schedule specific in the standard (ANSI X3.92-1981) */
static const u8 pc1[56] = {
56, 48, 40, 32, 24, 16, 8, 0, 57, 49, 41, 33, 25, 17,
9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35,
56, 48, 40, 32, 24, 16, 8, 0, 57, 49, 41, 33, 25, 17,
9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35,
62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21,
13, 5, 60, 52, 44, 36, 28, 20, 12, 4, 27, 19, 11, 3
13, 5, 60, 52, 44, 36, 28, 20, 12, 4, 27, 19, 11, 3
};
static const u8 totrot[16] = {
1, 2, 4, 6,
8, 10, 12, 14,
15, 17, 19, 21,
8, 10, 12, 14,
15, 17, 19, 21,
23, 25, 27, 28
};

@ -53,7 +53,7 @@ By Steve Reid <sreid@sea-to-sky.net>
100% Public Domain
-----------------
Modified 7/98
Modified 7/98
By James H. Brown <jbrown@burgoyne.com>
Still 100% Public Domain
@ -75,7 +75,7 @@ Since the file IO in main() reads 16K at a time, any file 8K or larger would
be guaranteed to generate the wrong hash (e.g. Test Vector #3, a million
"a"s).
I also changed the declaration of variables i & j in SHA1Update to
I also changed the declaration of variables i & j in SHA1Update to
unsigned long from unsigned int for the same reason.
These changes should make no difference to any 32 bit implementations since
@ -102,7 +102,7 @@ Still 100% public domain
Modified 4/01
By Saul Kravitz <Saul.Kravitz@celera.com>
Still 100% PD
Modified to run on Compaq Alpha hardware.
Modified to run on Compaq Alpha hardware.
-----------------
Modified 4/01
@ -162,7 +162,7 @@ void SHAPrintContext(SHA1_CTX *context, char *msg)
{
printf("%s (%d,%d) %x %x %x %x %x\n",
msg,
context->count[0], context->count[1],
context->count[0], context->count[1],
context->state[0],
context->state[1],
context->state[2],

@ -69,7 +69,7 @@ static const unsigned long K[64] = {
( ((((unsigned long) (x) & 0xFFFFFFFFUL) >> (unsigned long) ((y) & 31)) | \
((unsigned long) (x) << (unsigned long) (32 - ((y) & 31)))) & 0xFFFFFFFFUL)
#define Ch(x,y,z) (z ^ (x & (y ^ z)))
#define Maj(x,y,z) (((x | y) & z) | (x & y))
#define Maj(x,y,z) (((x | y) & z) | (x & y))
#define S(x, n) RORc((x), (n))
#define R(x, n) (((x)&0xFFFFFFFFUL)>>(n))
#define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
@ -100,7 +100,7 @@ static int sha256_compress(struct sha256_state *md, unsigned char *buf)
for (i = 16; i < 64; i++) {
W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) +
W[i - 16];
}
}
/* Compress */
#define RND(a,b,c,d,e,f,g,h,i) \
@ -111,7 +111,7 @@ static int sha256_compress(struct sha256_state *md, unsigned char *buf)
for (i = 0; i < 64; ++i) {
RND(S[0], S[1], S[2], S[3], S[4], S[5], S[6], S[7], i);
t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4];
t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4];
S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t;
}

@ -402,7 +402,7 @@ int tls_connection_set_params(void *tls_ctx, struct tls_connection *conn,
return -1;
}
/* TODO: gnutls_certificate_set_verify_flags(xcred, flags);
/* TODO: gnutls_certificate_set_verify_flags(xcred, flags);
* to force peer validation(?) */
if (params->ca_cert) {

@ -726,7 +726,7 @@ bsd_get_seqnum(const char *ifname, void *priv, const u8 *addr, int idx,
}
static int
static int
bsd_flush(void *priv)
{
u8 allsta[IEEE80211_ADDR_LEN];

@ -97,7 +97,7 @@ static int wpa_priv_cmd(struct wpa_driver_privsep_data *drv, int cmd,
return 0;
}
static int wpa_driver_privsep_scan(void *priv,
struct wpa_driver_scan_params *params)
{

@ -79,7 +79,7 @@ void eap_fast_derive_master_secret(const u8 *pac_key, const u8 *server_random,
/*
* RFC 4851, Section 5.1:
* master_secret = T-PRF(PAC-Key, "PAC to master secret label hash",
* master_secret = T-PRF(PAC-Key, "PAC to master secret label hash",
* server_random + client_random, 48)
*/
os_memcpy(seed, server_random, TLS_RANDOM_LEN);

@ -1082,7 +1082,7 @@ static struct wpabuf * eap_peap_process(struct eap_sm *sm, void *priv,
eap_peer_tls_derive_key(sm, &data->ssl, label,
EAP_TLS_KEY_LEN);
if (data->key_data) {
wpa_hexdump_key(MSG_DEBUG,
wpa_hexdump_key(MSG_DEBUG,
"EAP-PEAP: Derived key",
data->key_data,
EAP_TLS_KEY_LEN);

@ -1537,7 +1537,7 @@ static int eap_ttls_process_handshake(struct eap_sm *sm,
}
static void eap_ttls_check_auth_status(struct eap_sm *sm,
static void eap_ttls_check_auth_status(struct eap_sm *sm,
struct eap_ttls_data *data,
struct eap_method_ret *ret)
{

@ -561,7 +561,7 @@ static int eap_fast_phase1_done(struct eap_sm *sm, struct eap_fast_data *data)
return -1;
}
data->anon_provisioning = os_strstr(cipher, "ADH") != NULL;
if (data->anon_provisioning) {
wpa_printf(MSG_DEBUG, "EAP-FAST: Anonymous provisioning");
eap_fast_derive_key_provisioning(sm, data);
@ -789,7 +789,7 @@ static struct wpabuf * eap_fast_build_pac(struct eap_sm *sm,
/* A-ID (inside PAC-Info) */
eap_fast_put_tlv(buf, PAC_TYPE_A_ID, data->srv_id, data->srv_id_len);
/* Note: headers may be misaligned after A-ID */
if (sm->identity) {

@ -95,7 +95,7 @@ struct eapol_sm {
SUPP_BE_RECEIVE = 4,
SUPP_BE_RESPONSE = 5,
SUPP_BE_FAIL = 6,
SUPP_BE_TIMEOUT = 7,
SUPP_BE_TIMEOUT = 7,
SUPP_BE_SUCCESS = 8
} SUPP_BE_state; /* dot1xSuppBackendPaeState */
/* Variables */

@ -51,7 +51,7 @@ static int wpa_priv_cmd(struct l2_packet_data *l2, int cmd,
return 0;
}
int l2_packet_get_own_addr(struct l2_packet_data *l2, u8 *addr)
{
os_memcpy(addr, l2->own_addr, ETH_ALEN);
@ -258,7 +258,7 @@ void l2_packet_deinit(struct l2_packet_data *l2)
unlink(l2->own_socket_path);
os_free(l2->own_socket_path);
}
os_free(l2);
}

@ -210,7 +210,7 @@ static const struct radius_attr_type radius_attrs[] =
{ RADIUS_ATTR_ACCT_MULTI_SESSION_ID, "Acct-Multi-Session-Id",
RADIUS_ATTR_TEXT },
{ RADIUS_ATTR_ACCT_LINK_COUNT, "Acct-Link-Count", RADIUS_ATTR_INT32 },
{ RADIUS_ATTR_ACCT_INPUT_GIGAWORDS, "Acct-Input-Gigawords",
{ RADIUS_ATTR_ACCT_INPUT_GIGAWORDS, "Acct-Input-Gigawords",
RADIUS_ATTR_INT32 },
{ RADIUS_ATTR_ACCT_OUTPUT_GIGAWORDS, "Acct-Output-Gigawords",
RADIUS_ATTR_INT32 },

@ -1062,7 +1062,7 @@ static int radius_server_request(struct radius_server_data *data,
"message");
return -1;
}
eap = radius_msg_get_eap(msg);
if (eap == NULL && sess->macacl) {
reply = radius_server_macacl(data, client, sess, msg);

@ -25,7 +25,7 @@ struct wpa_sm_ctx {
void (*set_state)(void *ctx, enum wpa_states state);
enum wpa_states (*get_state)(void *ctx);
void (*deauthenticate)(void * ctx, int reason_code);
void (*deauthenticate)(void * ctx, int reason_code);
int (*set_key)(void *ctx, enum wpa_alg alg,
const u8 *addr, int key_idx, int set_tx,
const u8 *seq, size_t seq_len,

@ -116,7 +116,7 @@ typedef int mp_err;
#define MP_PREC 32 /* default digits of precision */
#else
#define MP_PREC 8 /* default digits of precision */
#endif
#endif
#endif
/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
@ -274,8 +274,8 @@ static int s_mp_add (mp_int * a, mp_int * b, mp_int * c)
*tmpc++ &= MP_MASK;
}
/* now copy higher words if any, that is in A+B
* if A or B has more digits add those in
/* now copy higher words if any, that is in A+B
* if A or B has more digits add those in
*/
if (min != max) {
for (; i < max; i++) {
@ -499,29 +499,29 @@ static int mp_mul (mp_int * a, mp_int * b, mp_int * c)
#ifdef BN_MP_TOOM_MUL_C
if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
res = mp_toom_mul(a, b, c);
} else
} else
#endif
#ifdef BN_MP_KARATSUBA_MUL_C
/* use Karatsuba? */
if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
res = mp_karatsuba_mul (a, b, c);
} else
} else
#endif
{
/* can we use the fast multiplier?
*
* The fast multiplier can be used if the output will
* have less than MP_WARRAY digits and the number of
* The fast multiplier can be used if the output will
* have less than MP_WARRAY digits and the number of
* digits won't affect carry propagation
*/
#ifdef BN_FAST_S_MP_MUL_DIGS_C
int digs = a->used + b->used + 1;
if ((digs < MP_WARRAY) &&
MIN(a->used, b->used) <=
MIN(a->used, b->used) <=
(1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
res = fast_s_mp_mul_digs (a, b, c, digs);
} else
} else
#endif
#ifdef BN_S_MP_MUL_DIGS_C
res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
@ -629,7 +629,7 @@ static int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
err = mp_exptmod(&tmpG, &tmpX, P, Y);
mp_clear_multi(&tmpG, &tmpX, NULL);
return err;
#else
#else
#error mp_exptmod would always fail
/* no invmod */
return MP_VAL;
@ -658,7 +658,7 @@ static int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
dr = mp_reduce_is_2k(P) << 1;
}
#endif
/* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_MP_EXPTMOD_FAST_C
if (mp_isodd (P) == 1 || dr != 0) {
@ -693,7 +693,7 @@ static int mp_cmp (mp_int * a, mp_int * b)
return MP_GT;
}
}
/* compare digits */
if (a->sign == MP_NEG) {
/* if negative compare opposite direction */
@ -779,7 +779,7 @@ static int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
}
/* init temps */
if ((res = mp_init_multi(&x, &y, &u, &v,
if ((res = mp_init_multi(&x, &y, &u, &v,
&A, &B, &C, &D, NULL)) != MP_OKAY) {
return res;
}
@ -906,14 +906,14 @@ top:
goto LBL_ERR;
}
}
/* too big */
while (mp_cmp_mag(&C, b) != MP_LT) {
if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* C is now the inverse */
mp_exch (&C, c);
res = MP_OKAY;
@ -933,7 +933,7 @@ static int mp_cmp_mag (mp_int * a, mp_int * b)
if (a->used > b->used) {
return MP_GT;
}
if (a->used < b->used) {
return MP_LT;
}
@ -1199,8 +1199,8 @@ static void mp_rshd (mp_int * a, int b)
/* top [offset into digits] */
top = a->dp + b;
/* this is implemented as a sliding window where
* the window is b-digits long and digits from
/* this is implemented as a sliding window where
* the window is b-digits long and digits from
* the top of the window are copied to the bottom
*
* e.g.
@ -1218,13 +1218,13 @@ static void mp_rshd (mp_int * a, int b)
*bottom++ = 0;
}
}
/* remove excess digits */
a->used -= b;
}
/* swap the elements of two integers, for cases where you can't simply swap the
/* swap the elements of two integers, for cases where you can't simply swap the
* mp_int pointers around
*/
static void mp_exch (mp_int * a, mp_int * b)
@ -1237,7 +1237,7 @@ static void mp_exch (mp_int * a, mp_int * b)
}
/* trim unused digits
/* trim unused digits
*
* This is used to ensure that leading zero digits are
* trimed and the leading "used" digit will be non-zero
@ -1298,7 +1298,7 @@ static int mp_grow (mp_int * a, int size)
#ifdef BN_MP_ABS_C
/* b = |a|
/* b = |a|
*
* Simple function copies the input and fixes the sign to positive
*/
@ -1434,7 +1434,7 @@ static int mp_mul_2d (mp_int * a, int b, mp_int * c)
/* set the carry to the carry bits of the current word */
r = rr;
}
/* set final carry */
if (r != 0) {
c->dp[(c->used)++] = r;
@ -1446,7 +1446,7 @@ static int mp_mul_2d (mp_int * a, int b, mp_int * c)
#ifdef BN_MP_INIT_MULTI_C
static int mp_init_multi(mp_int *mp, ...)
static int mp_init_multi(mp_int *mp, ...)
{
mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
int n = 0; /* Number of ok inits */
@ -1460,11 +1460,11 @@ static int mp_init_multi(mp_int *mp, ...)
succeeded in init-ing, then return error.
*/
va_list clean_args;
/* end the current list */
va_end(args);
/* now start cleaning up */
/* now start cleaning up */
cur_arg = mp;
va_start(clean_args, mp);
while (n--) {
@ -1484,7 +1484,7 @@ static int mp_init_multi(mp_int *mp, ...)
#ifdef BN_MP_CLEAR_MULTI_C
static void mp_clear_multi(mp_int *mp, ...)
static void mp_clear_multi(mp_int *mp, ...)
{
mp_int* next_mp = mp;
va_list args;
@ -1558,7 +1558,7 @@ static int mp_count_bits (mp_int * a)
/* get number of digits and add that */
r = (a->used - 1) * DIGIT_BIT;
/* take the last digit and count the bits in it */
q = a->dp[a->used - 1];
while (q > ((mp_digit) 0)) {
@ -1628,7 +1628,7 @@ static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
}
return res;
}
/* init our temps */
if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) {
return res;
@ -1638,7 +1638,7 @@ static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
mp_set(&tq, 1);
n = mp_count_bits(a) - mp_count_bits(b);
if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
((res = mp_abs(b, &tb)) != MP_OKAY) ||
((res = mp_abs(b, &tb)) != MP_OKAY) ||
((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
goto LBL_ERR;
@ -1675,17 +1675,17 @@ LBL_ERR:
#else
/* integer signed division.
/* integer signed division.
* c*b + d == a [e.g. a/b, c=quotient, d=remainder]
* HAC pp.598 Algorithm 14.20
*
* Note that the description in HAC is horribly
* incomplete. For example, it doesn't consider
* the case where digits are removed from 'x' in
* the inner loop. It also doesn't consider the
* Note that the description in HAC is horribly
* incomplete. For example, it doesn't consider
* the case where digits are removed from 'x' in
* the inner loop. It also doesn't consider the
* case that y has fewer than three digits, etc..
*
* The overall algorithm is as described as
* The overall algorithm is as described as
* 14.20 from HAC but fixed to treat these cases.
*/
static int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
@ -1775,7 +1775,7 @@ static int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
continue;
}
/* step 3.1 if xi == yt then set q{i-t-1} to b-1,
/* step 3.1 if xi == yt then set q{i-t-1} to b-1,
* otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
if (x.dp[i] == y.dp[t]) {
q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
@ -1789,10 +1789,10 @@ static int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
}
/* while (q{i-t-1} * (yt * b + y{t-1})) >
xi * b**2 + xi-1 * b + xi-2
do q{i-t-1} -= 1;
/* while (q{i-t-1} * (yt * b + y{t-1})) >
xi * b**2 + xi-1 * b + xi-2
do q{i-t-1} -= 1;
*/
q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
do {
@ -1843,10 +1843,10 @@ static int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
}
}
/* now q is the quotient and x is the remainder
* [which we have to normalize]
/* now q is the quotient and x is the remainder
* [which we have to normalize]
*/
/* get sign before writing to c */
x.sign = x.used == 0 ? MP_ZPOS : a->sign;
@ -1914,7 +1914,7 @@ static int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int red
/* init M array */
/* init first cell */
if ((err = mp_init(&M[1])) != MP_OKAY) {
return err;
return err;
}
/* now init the second half of the array */
@ -1932,7 +1932,7 @@ static int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int red
if ((err = mp_init (&mu)) != MP_OKAY) {
goto LBL_M;
}
if (redmode == 0) {
if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
goto LBL_MU;
@ -1943,22 +1943,22 @@ static int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int red
goto LBL_MU;
}
redux = mp_reduce_2k_l;
}
}
/* create M table
*
* The M table contains powers of the base,
* The M table contains powers of the base,
* e.g. M[x] = G**x mod P
*
* The first half of the table is not
* The first half of the table is not
* computed though accept for M[0] and M[1]
*/
if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
goto LBL_MU;
}
/* compute the value at M[1<<(winsize-1)] by squaring
* M[1] (winsize-1) times
/* compute the value at M[1<<(winsize-1)] by squaring
* M[1] (winsize-1) times
*/
if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
goto LBL_MU;
@ -1966,7 +1966,7 @@ static int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int red
for (x = 0; x < (winsize - 1); x++) {
/* square it */
if ((err = mp_sqr (&M[1 << (winsize - 1)],
if ((err = mp_sqr (&M[1 << (winsize - 1)],
&M[1 << (winsize - 1)])) != MP_OKAY) {
goto LBL_MU;
}
@ -2117,18 +2117,18 @@ static int mp_sqr (mp_int * a, mp_int * b)
if (a->used >= TOOM_SQR_CUTOFF) {
res = mp_toom_sqr(a, b);
/* Karatsuba? */
} else
} else
#endif
#ifdef BN_MP_KARATSUBA_SQR_C
if (a->used >= KARATSUBA_SQR_CUTOFF) {
res = mp_karatsuba_sqr (a, b);
} else
} else
#endif
{
#ifdef BN_FAST_S_MP_SQR_C
/* can we use the fast comba multiplier? */
if ((a->used * 2 + 1) < MP_WARRAY &&
a->used <
if ((a->used * 2 + 1) < MP_WARRAY &&
a->used <
(1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
res = fast_s_mp_sqr (a, b);
} else
@ -2145,7 +2145,7 @@ if (a->used >= KARATSUBA_SQR_CUTOFF) {
}
/* reduces a modulo n where n is of the form 2**p - d
/* reduces a modulo n where n is of the form 2**p - d
This differs from reduce_2k since "d" can be larger
than a single digit.
*/
@ -2153,33 +2153,33 @@ static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
{
mp_int q;
int p, res;
if ((res = mp_init(&q)) != MP_OKAY) {
return res;
}
p = mp_count_bits(n);
p = mp_count_bits(n);
top:
/* q = a/2**p, a = a mod 2**p */
if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
goto ERR;
}
/* q = q * d */
if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
goto ERR;
}
/* a = a + q */
if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
goto ERR;
}
if (mp_cmp_mag(a, n) != MP_LT) {
s_mp_sub(a, n, a);
goto top;
}
ERR:
mp_clear(&q);
return res;
@ -2191,26 +2191,26 @@ static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
{
int res;
mp_int tmp;
if ((res = mp_init(&tmp)) != MP_OKAY) {
return res;
}
if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
goto ERR;
}
if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
goto ERR;
}
ERR:
mp_clear(&tmp);
return res;
}
/* computes a = 2**b
/* computes a = 2**b
*
* Simple algorithm which zeroes the int, grows it then just sets one bit
* as required.
@ -2243,7 +2243,7 @@ static int mp_2expt (mp_int * a, int b)
static int mp_reduce_setup (mp_int * a, mp_int * b)
{
int res;
if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
return res;
}
@ -2251,7 +2251,7 @@ static int mp_reduce_setup (mp_int * a, mp_int * b)
}
/* reduces x mod m, assumes 0 < x < m**2, mu is
/* reduces x mod m, assumes 0 < x < m**2, mu is
* precomputed via mp_reduce_setup.
* From HAC pp.604 Algorithm 14.42
*/
@ -2266,7 +2266,7 @@ static int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
}
/* q1 = x / b**(k-1) */
mp_rshd (&q, um - 1);
mp_rshd (&q, um - 1);
/* according to HAC this optimization is ok */
if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
@ -2282,8 +2282,8 @@ static int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
goto CLEANUP;
}
#else
{
#else
{
#error mp_reduce would always fail
res = MP_VAL;
goto CLEANUP;
@ -2292,7 +2292,7 @@ static int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
}
/* q3 = q2 / b**(k+1) */
mp_rshd (&q, um + 1);
mp_rshd (&q, um + 1);
/* x = x mod b**(k+1), quick (no division) */
if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
@ -2326,7 +2326,7 @@ static int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
goto CLEANUP;
}
}
CLEANUP:
mp_clear (&q);
@ -2335,7 +2335,7 @@ CLEANUP:
/* multiplies |a| * |b| and only computes up to digs digits of result
* HAC pp. 595, Algorithm 14.12 Modified so you can control how
* HAC pp. 595, Algorithm 14.12 Modified so you can control how
* many digits of output are created.
*/
static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
@ -2349,7 +2349,7 @@ static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
#ifdef BN_FAST_S_MP_MUL_DIGS_C
/* can we use the fast multiplier? */
if (((digs) < MP_WARRAY) &&
MIN (a->used, b->used) <
MIN (a->used, b->used) <
(1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
return fast_s_mp_mul_digs (a, b, c, digs);
}
@ -2372,10 +2372,10 @@ static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* setup some aliases */
/* copy of the digit from a used within the nested loop */
tmpx = a->dp[ix];
/* an alias for the destination shifted ix places */
tmpt = t.dp + ix;
/* an alias for the digits of b */
tmpy = b->dp;
@ -2409,15 +2409,15 @@ static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
#ifdef BN_FAST_S_MP_MUL_DIGS_C
/* Fast (comba) multiplier
*
* This is the fast column-array [comba] multiplier. It is
* designed to compute the columns of the product first
* then handle the carries afterwards. This has the effect
* This is the fast column-array [comba] multiplier. It is
* designed to compute the columns of the product first
* then handle the carries afterwards. This has the effect
* of making the nested loops that compute the columns very
* simple and schedulable on super-scalar processors.
*
* This has been modified to produce a variable number of
* digits of output so if say only a half-product is required
* you don't have to compute the upper half (a feature
* This has been modified to produce a variable number of
* digits of output so if say only a half-product is required
* you don't have to compute the upper half (a feature
* required for fast Barrett reduction).
*
* Based on Algorithm 14.12 on pp.595 of HAC.
@ -2441,7 +2441,7 @@ static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* clear the carry */
_W = 0;
for (ix = 0; ix < pa; ix++) {
for (ix = 0; ix < pa; ix++) {
int tx, ty;
int iy;
mp_digit *tmpx, *tmpy;
@ -2454,7 +2454,7 @@ static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
tmpx = a->dp + tx;
tmpy = b->dp + ty;
/* this is the number of times the loop will iterrate, essentially
/* this is the number of times the loop will iterrate, essentially
while (tx++ < a->used && ty-- >= 0) { ... }
*/
iy = MIN(a->used-tx, ty+1);
@ -2501,8 +2501,8 @@ static int mp_init_size (mp_int * a, int size)
int x;
/* pad size so there are always extra digits */
size += (MP_PREC * 2) - (size % MP_PREC);
size += (MP_PREC * 2) - (size % MP_PREC);
/* alloc mem */
a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
if (a->dp == NULL) {
@ -2556,7 +2556,7 @@ static int s_mp_sqr (mp_int * a, mp_int * b)
/* alias for where to store the results */
tmpt = t.dp + (2*ix + 1);
for (iy = ix + 1; iy < pa; iy++) {
/* first calculate the product */
r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
@ -2863,24 +2863,24 @@ static int mp_mul_2(mp_int * a, mp_int * b)
/* alias for source */
tmpa = a->dp;
/* alias for dest */
tmpb = b->dp;
/* carry */
r = 0;
for (x = 0; x < a->used; x++) {
/* get what will be the *next* carry bit from the
* MSB of the current digit
/* get what will be the *next* carry bit from the
* MSB of the current digit
*/
rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
/* now shift up this digit, add in the carry [from the previous] */
*tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
/* copy the carry that would be from the source
* digit into the next iteration
/* copy the carry that would be from the source
* digit into the next iteration
*/
r = rr;
}
@ -2892,8 +2892,8 @@ static int mp_mul_2(mp_int * a, mp_int * b)
++(b->used);
}
/* now zero any excess digits on the destination
* that we didn't write to
/* now zero any excess digits on the destination
* that we didn't write to
*/
tmpb = b->dp + b->used;
for (x = b->used; x < oldused; x++) {
@ -3011,7 +3011,7 @@ static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int
/* determine and setup reduction code */
if (redmode == 0) {
#ifdef BN_MP_MONTGOMERY_SETUP_C
#ifdef BN_MP_MONTGOMERY_SETUP_C
/* now setup montgomery */
if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
goto LBL_M;
@ -3026,7 +3026,7 @@ static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int
if (((P->used * 2 + 1) < MP_WARRAY) &&
P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
redux = fast_mp_montgomery_reduce;
} else
} else
#endif
{
#ifdef BN_MP_MONTGOMERY_REDUCE_C
@ -3077,7 +3077,7 @@ static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int
if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
goto LBL_RES;
}
#else
#else
err = MP_VAL;
goto LBL_RES;
#endif
@ -3245,10 +3245,10 @@ LBL_M:
#ifdef BN_FAST_S_MP_SQR_C
/* the jist of squaring...
* you do like mult except the offset of the tmpx [one that
* starts closer to zero] can't equal the offset of tmpy.
* you do like mult except the offset of the tmpx [one that
* starts closer to zero] can't equal the offset of tmpy.
* So basically you set up iy like before then you min it with
* (ty-tx) so that it never happens. You double all those
* (ty-tx) so that it never happens. You double all those
* you add in the inner loop
After that loop you do the squares and add them in.
@ -3270,7 +3270,7 @@ static int fast_s_mp_sqr (mp_int * a, mp_int * b)
/* number of output digits to produce */
W1 = 0;
for (ix = 0; ix < pa; ix++) {
for (ix = 0; ix < pa; ix++) {
int tx, ty, iy;
mp_word _W;
mp_digit *tmpy;
@ -3291,7 +3291,7 @@ static int fast_s_mp_sqr (mp_int * a, mp_int * b)
*/
iy = MIN(a->used-tx, ty+1);
/* now for squaring tx can never equal ty
/* now for squaring tx can never equal ty
* we halve the distance since they approach at a rate of 2x
* and we have to round because odd cases need to be executed
*/

@ -80,7 +80,7 @@ crypto_rsa_import_public_key(const u8 *buf, size_t len)
* PKCS #1, 7.1:
* RSAPublicKey ::= SEQUENCE {
* modulus INTEGER, -- n
* publicExponent INTEGER -- e
* publicExponent INTEGER -- e
* }
*/

@ -264,7 +264,7 @@ failed:
* @in_data: Pointer to plaintext data to be encrypted
* @in_len: Input buffer length
* @out_data: Pointer to output buffer (encrypted TLS data)
* @out_len: Maximum out_data length
* @out_len: Maximum out_data length
* Returns: Number of bytes written to out_data, -1 on failure
*
* This function is used after TLS handshake has been completed successfully to

@ -21,7 +21,7 @@
* RFC 2246 Section 9: Mandatory to implement TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
* Add support for commonly used cipher suites; don't bother with exportable
* suites.
*/
*/
static const struct tls_cipher_suite tls_cipher_suites[] = {
{ TLS_NULL_WITH_NULL_NULL, TLS_KEY_X_NULL, TLS_CIPHER_NULL,

@ -216,7 +216,7 @@ failed:
* @in_data: Pointer to plaintext data to be encrypted
* @in_len: Input buffer length
* @out_data: Pointer to output buffer (encrypted TLS data)
* @out_len: Maximum out_data length
* @out_len: Maximum out_data length
* Returns: Number of bytes written to out_data, -1 on failure
*
* This function is used after TLS handshake has been completed successfully to

@ -2039,7 +2039,7 @@ int x509_certificate_chain_validate(struct x509_certificate *trusted,
for (cert = chain, idx = 0; cert; cert = cert->next, idx++) {
cert->issuer_trusted = 0;
x509_name_string(&cert->subject, buf, sizeof(buf));
x509_name_string(&cert->subject, buf, sizeof(buf));
wpa_printf(MSG_DEBUG, "X509: %lu: %s", idx, buf);
if (chain_trusted)
@ -2063,11 +2063,11 @@ int x509_certificate_chain_validate(struct x509_certificate *trusted,
wpa_printf(MSG_DEBUG, "X509: Certificate "
"chain issuer name mismatch");
x509_name_string(&cert->issuer, buf,
sizeof(buf));
sizeof(buf));
wpa_printf(MSG_DEBUG, "X509: cert issuer: %s",
buf);
x509_name_string(&cert->next->subject, buf,
sizeof(buf));
sizeof(buf));
wpa_printf(MSG_DEBUG, "X509: next cert "
"subject: %s", buf);
*reason = X509_VALIDATE_CERTIFICATE_UNKNOWN;

@ -243,7 +243,7 @@ static int wlantest_inject_prot(struct wlantest *wt, struct wlantest_bss *bss,
inc_byte_array(pn, 6);
os_memset(dummy, 0x11, sizeof(dummy));
if (tk)
if (tk)
crypt = ccmp_encrypt(incorrect_key ? dummy : tk,
frame, len, hdrlen, qos, pn, 0,
&crypt_len);

Loading…
Cancel
Save