heptagon/examples/MC_inlined/mc.ept

1037 lines
34 KiB
Plaintext

open Mctypes
open Mc_ext
open Mathext
fun abs(a : float) returns (o : float)
let
o = if 0.0 <=. a then a else -. a;
tel
(* -- Returns 1.0 if input is greater than 0.0,
-- -1.0 if input is less than 0.0
-- and 0.0 if input is equal to 0.0 *)
fun sign(a : float) returns (o : float)
let
o = if a >. 0.0 then 1.0 else if 0.0 = a then 0.0 else -. 1.0;
tel (* calculate arctan(y/x) *)
node myarctan(y, x : float) returns (atan : float)
var l6 : float; l4 : bool; l1 : float;
let
atan =
if l4
then if x <. 0.0 then pi +. l1 else l1
else pi /. 2.0 *. sign(y);
(* l6 = (activate div every l4 initial default 0.0)(y, x); *)
l6 = if l4 then y /. x else 0.0 -> pre l6;
l4 = abs(x) >. 0.1;
l1 = Mathext.atanr(l6);
tel
(* compute if a given track is equal to one of the mission tracks
belonging to the mission track array at the previous tick *)
fun missiontrackequalsprevious(previousone, actualone : tmissiontrack)
returns (equal : bool)
let
equal =
0 <> previousone.m_id & previousone.m_id = actualone.m_id or
abs(previousone.m_pos.x -. actualone.m_pos.x) <. 100.0 &
abs(previousone.m_pos.y -. actualone.m_pos.y) <. 100.0 &
not (abs(previousone.m_pos.x) <. 0.1 &
abs(previousone.m_pos.y) <. 0.1 &
abs(actualone.m_pos.x) <. 0.1 &
abs(actualone.m_pos.y) <. 0.1 )
tel
(* compute track visibility (appearance on radar screen)
according to track position and speed *)
fun calctrackvisible1(position : tposition;
speed : tspeed)
returns (trackvisible : bool)
let
trackvisible =
not (abs(position.x) <. 0.001 & abs(position.y) <. 0.001 &
abs(speed.sx) <. 0.001 &
abs(speed.sy) <. 0.001);
tel
fun missiontrackexist1(acc_tracknumber : int;
missiontrack,
previousmissiontrack : tmissiontrack)
returns (tracknumbertoset : int)
let
tracknumbertoset =
if missiontrackequalsprevious(missiontrack, previousmissiontrack) &
0 <> previousmissiontrack.m_tracknumber
then previousmissiontrack.m_tracknumber
else acc_tracknumber;
tel
(* compute if a given track is equal to one of the mission tracks
belonging to the mission track array at the previous tick *)
fun missiontrackequalsprevious_orig(previousone, actualone : tmissiontrack)
returns (equal : bool)
var l43 : bool;
let
l43 = previousone.m_tracknumber <> 0;
equal =
l43 &
(l43 & 0 <> previousone.m_id & previousone.m_id = actualone.m_id or
abs(previousone.m_pos.x -. actualone.m_pos.x) <. 100.0 &
abs(previousone.m_pos.y -. actualone.m_pos.y) <. 100.0 &
not (abs(previousone.m_pos.x) <. 0.1 &
abs(previousone.m_pos.y) <. 0.1 &
abs(actualone.m_pos.x) <. 0.1 &
abs(actualone.m_pos.y) <. 0.1));
tel
fun util_radtodeg(input1 : float) returns (output1 : float)
let
output1 = input1 /. (2.0 *. pi) *. 360.0;
tel
fun util_degtorad(input1 : float) returns (output1 : float)
let
output1 = 2.0 *. pi *. input1 /. 360.0;
tel
(* if speedabs is small (speed.x and speed.y are also small), trackangle is set to 0.
otherwise, trackangle is computed to be in the range [-180, 180]
degrees thanks to the acosr; sign is given, from the asinr. *)
fun calctrackangle(speed : tspeed; speedabs : tmetresseconde)
returns (trackangle : float)
var l51 : bool; l48, l47 : float;
let
trackangle =
util_radtodeg(if l51 then 0.0 else Mathext.acosr(l47) *. l48) *.
(l48 *.
sign(Mathext.asinr(speed.sy /. (if l51 then 1.0 else speedabs))));
l51 = speedabs <. 0.01;
l48 = sign(l47);
l47 = speed.sx /. (if l51 then 1.0 else speedabs);
tel
(* compute track visibility (appearance on radar screen)
according to track position *)
fun calctrackvisible(position : tposition)
returns (trackvisible : bool)
let
trackvisible =
not (abs(position.x) <. 0.001 & abs(position.y) <. 0.001);
tel
fun missiontrackexist( missiontrack,
previousmissiontrack : tmissiontrack;
acc_tracknumber : int)
returns (tracknumbertoset : int)
let
tracknumbertoset =
if missiontrackequalsprevious(missiontrack, previousmissiontrack)
then previousmissiontrack.m_tracknumber
else acc_tracknumber;
tel
(* calculate: result = rate of closing / distance *)
node calculatevrdivd(vr, d : float) returns (result : float)
var l13 : float; l11 : bool;
let
result = if l11 then l13 else 0.0;
(* l13 = (activate div every l11 initial default 0.0)(vr, d); *)
l13 = if l11 then vr /. d else 0.0 -> pre l13;
l11 = d >. 0.1;
tel
(* sort two mission tracks according to:
1) their (rate of closing / distance) ratio
2) target type
3) detection or not by the radar *)
node trackalowerprioritythanb(a, b : tmissiontrack)
returns (prioritary : bool)
let
prioritary =
a.m_targettype = Ttargettype_friend or not a.m_detectedbyradar or
a.m_detectedbyradar &
calculatevrdivd(a.m_sr, a.m_d) <. calculatevrdivd(b.m_sr, b.m_d) &
b.m_detectedbyradar;
tel
(* compute if two tracks speeds are equal *)
fun comparespeeds(speed1, speed2 : tspeed)
returns (equal : bool)
let
equal =
abs(speed1.sx -. speed2.sx) <. 1.0 &
abs(speed1.sy -. speed2.sy) <. 1.0;
tel
(* compute a "prioritized" track number according to its
priority and target type *)
fun calculateprioritizedtracknb(missiontrack : tmissiontrack)
returns (prioritizedtracknb : int)
let
prioritizedtracknb =
if missiontrack.m_targettype <> Ttargettype_friend &
missiontrack.m_priority <> 0
then missiontrack.m_tracknumber
else 0;
tel
(* sort two real inputs *)
fun sortreals(a, b : float) returns (newa, newb : float)
var l2 : bool;
let
l2 = a <. b;
newb = if l2 then a else b;
newa = if l2 then b else a;
tel
(* compute if two tracks positions are equal *)
fun comparepositions(pos1, pos2 : tposition)
returns (equal : bool)
let
equal =
abs(pos1.x -. pos2.x) <. 0.1 & abs(pos1.y -. pos2.y) <. 0.1;
tel
(* compute if two tracks are equal (according to their position
and speed) *)
fun comparetracks(pos1, pos2 : tposition;
v1, v2 : tspeed)
returns (equal : bool)
let
equal = comparepositions(pos1, pos2) & comparespeeds(v1, v2);
tel
(* set the track number of a mission track *)
fun setmissiontracknumber(missiontrack : tmissiontrack; number : int)
returns (newmissiontrack : tmissiontrack)
let
newmissiontrack = { missiontrack with .m_tracknumber = number };
tel
(* compute if a mission track is null (or empty) according to
its position and speed *)
fun missiontrackisnull(missiontrack : tmissiontrack)
returns (isnull : bool)
let
isnull =
comparetracks(missiontrack.m_pos, kInitPosition,
missiontrack.m_speed, kInitSpeed);
tel
(* calculate the new track number for a mission track, according to:
1) the mission track data
2) the previous mission tracks array
3) the current (highest) track number *)
fun calculatemissiontracknumber(
previousmissiontracks : tmissiontracksarray;
missiontrack : tmissiontrack;
currenttracknumber : int)
returns (newmissiontrack : tmissiontrack;
newtracknumber : int)
var setnewtracknumber : bool; previoustracknumber : int;
let
setnewtracknumber =
previoustracknumber = 0 & not missiontrackisnull(missiontrack);
newtracknumber =
if setnewtracknumber then currenttracknumber + 1 else currenttracknumber;
previoustracknumber =
fold <<ksizemissiontracksarray>> missiontrackexist
<(missiontrack)>
(previousmissiontracks, 0);
newmissiontrack =
setmissiontracknumber(missiontrack, if setnewtracknumber
then newtracknumber
else previoustracknumber);
tel
(* compute a mission track target type according to its identifier *)
fun calculatetracktargettypefromid(id : int)
returns (targettype : ttargettype)
let
targettype =
if 0 = id
then Ttargettype_unknown
else if id <= 500
then Ttargettype_friend
else Ttargettype_foe;
tel
(* calculate the derivative of a value x(n) according to its
ante-previous value x(n-2) *)
node myderivative(inv, period : float) returns (o : float)
var l2 : float;
let
(* l2 = fby (inv; 2; 0.0); *)
l2 = 0.0 fby (0.0 fby inv);
o =
if abs(l2) <. 0.1 or abs(inv) <. 0.1
then 0.0
else 0.0 -> (inv -. l2) /. (2.0 *. period);
tel
(* calculate a track speed vector according to the position vector *)
node calculatetrackspeedfrompos(position : tposition)
returns (speed : tspeed)
let
speed =
{ sx = myderivative(position.x, t);
sy = myderivative(position.y, t) };
tel
(* generate the (up to 2) tracks detected by a sensor (radar
or iff) from the environment (made of 4 tracks) *)
fun selectdetectedtrack(index : int;
tracks : ttracksarray;
defaulttrack : ttrack)
returns (trackselected : ttrack)
let
trackselected = tracks.[index] default defaulttrack;
tel
(* set the priority of a mission track *)
fun setmissiontrackpriority(missiontrack : tmissiontrack;
priority : int)
returns (newmissiontrack : tmissiontrack)
let
newmissiontrack =
{ missiontrack with .m_priority =
if missiontrack.m_detectedbyradar then priority else 0 }
tel
(* invert two mission tracks if the first one is null (or empty) *)
fun sortblockmissiontrack(a, b : tmissiontrack)
returns (newa, newb : tmissiontrack)
var l7 : bool;
let
l7 = missiontrackisnull(a);
newb = if l7 then a else b;
newa = if l7 then b else a;
tel
(* sort two mission tracks according to:
1) their (rate of closing / distance) ratio
2) target type
3) detection or not by the radar *)
node sortblockpriorities(a, b : tmissiontrack)
returns (newa, newb : tmissiontrack)
var l25 : bool;
let
l25 = trackalowerprioritythanb(a, b);
newb = if l25 then a else b;
newa = if l25 then b else a;
tel
fun position_equal(p1, p2 : tposition) returns (res:bool)
let
res = (p1.x = p2.x) & (p1.y = p2.y)
tel
fun speed_equal(s1, s2 : tspeed) returns (res:bool)
let
res = (s1.sx = s2.sx) & (s1.sy = s2.sy)
tel
(* convert an iff track (position + identifier) into a mission
track (position + speed + distance + rate of closing +
detected by radar/iff + tracknumber + target type) *)
node convertifftracktomissiontrack(ifftrack : tifftrack)
returns (missiontrack : tmissiontrack)
let
missiontrack =
{ m_pos = ifftrack.i_pos;
m_speed = if position_equal(kInitPosition, ifftrack.i_pos)
then kInitSpeed
else calculatetrackspeedfrompos(ifftrack.i_pos);
m_id = ifftrack.i_id;
m_priority = 0;
m_d = 0.0;
m_sabs = 0.0;
m_sr = 0.0;
m_detectedbyradar = false;
m_detectedbyiff = not (position_equal(ifftrack.i_pos, kInitPosition) &
ifftrack.i_id = 0);
m_tracknumber = 0;
m_targettype = calculatetracktargettypefromid(ifftrack.i_id);
m_isvisible = calctrackvisible(ifftrack.i_pos);
m_angle = 0.0 };
tel
(* convert an radar track (position + speed + distance +
rate of closing) into a mission track (position + speed +
distance + rate of closing + detected by radar/iff +
tracknumber + target type) *)
fun convertrdrtracktomissiontrack(rdrtrack : trdrtrack)
returns (missiontrack : tmissiontrack)
let
missiontrack =
{ m_pos = rdrtrack.r_pos;
m_speed = rdrtrack.r_s;
m_id = 0;
m_priority = 0;
m_d = rdrtrack.r_d;
m_sabs = rdrtrack.r_sabs;
m_sr = rdrtrack.r_sr;
m_detectedbyradar = not (position_equal(rdrtrack.r_pos, kInitPosition) &
speed_equal(rdrtrack.r_s, kInitSpeed) &
rdrtrack.r_d = 0.0 &
rdrtrack.r_sabs = 0.0 &
rdrtrack.r_sr = 0.0);
m_detectedbyiff = false;
m_tracknumber = 0;
m_targettype = Ttargettype_unknown;
m_isvisible = calctrackvisible(rdrtrack.r_pos);
m_angle = calctrackangle(rdrtrack.r_s, rdrtrack.r_sabs) };
tel
(* calculate the magnitude of a vector (2d) *)
fun vectnorme(a, b : float) returns (c : float)
let
c = Mathext.sqrtr(a *. a +. b *. b);
tel
(* extract the x and y (position) values from a track (ttrack type) *)
fun extracttrackposxy(track : ttrack)
returns (x, y : tmetres)
let
y = track.t_pos.y;
x = track.t_pos.x;
tel
(* elaborate radar track data (position, speed, distance, rate of closing)
according to an environment track (position only) *)
node elaboraterdrtrack(track : ttrack)
returns (rdrtrack : trdrtrack)
var d, v, vr, vx, vy, x, y : float; l142 : tspeed;
let
(*activate ifblock1 if d = 0.0
then vr = 0.0;
else var xnorm, ynorm : real;
let
ynorm = y / d;
xnorm = x / d;
vr = - (vx * xnorm + vy * ynorm);
tel
returns vr;*)
switch d = 0.0
| true do vr = 0.0
| false
var xnorm, ynorm : float;
do
ynorm = y /. d;
xnorm = x /. d;
vr = -. (vx *. xnorm +. vy *. ynorm);
end;
(x, y) = extracttrackposxy(track);
rdrtrack =
{ r_pos = { x = x;
y = y };
r_s = { sx = vx;
sy = vy };
r_d = d;
r_sabs = v;
r_sr = vr };
v = vectnorme(vx, vy);
d = vectnorme(x, y);
vy = l142.sy;
vx = l142.sx;
l142 = calculatetrackspeedfrompos({ x = x; y = y });
tel
(* Detects a rising edge (false to true transition ).
The output is true during the transition clock cycle.
The output is initialized to false. *)
node risingEdge(re_Input : bool) returns (re_Output : bool)
let
re_Output = not (re_Input -> pre re_Input) & re_Input;
tel
(* safe state machine for the computing of radar or iff state
state ident: state.0 *)
node statecmd(onoffbuttonpressed : bool (*last = false*);
currentstate : tsensorstate)
returns (onoffcmd : bool)
let
automaton
state Off
do onoffcmd = false;
unless onoffbuttonpressed & currentstate = TState_OFF then On
state On
do onoffcmd = true;
unless onoffbuttonpressed & currentstate = TState_ON then Off
end
tel
(* compute the new radar state each time on/off button
is pressed *)
node mc_rdrstatecmd(rdronoffbutton : bool; currentrdrstate : tsensorstate)
returns (rdronoffcmd : bool)
let
rdronoffcmd =
statecmd(risingEdge(rdronoffbutton), currentrdrstate);
tel
(* compute the new iff state each time on/off button
is pressed *)
node mc_iffstatecmd(iffonoffbutton : bool; currentiffstate : tsensorstate)
returns (iffonoffcmd : bool)
let
iffonoffcmd =
statecmd(risingEdge(iffonoffbutton), currentiffstate);
tel
(* safe state machine for the computing of radar mode
state ident: state.6 *)
node rdrmodecmd(currentstate : tsensorstate;
modebuttonpressed : bool(* last = false*);
currentmode : trdrmode)
returns (modecmd : bool)
let
automaton
state Wide
do modecmd = false;
unless (modebuttonpressed &
(currentstate = TState_ON &
currentmode = TRdrMode_WIDE)) then Narrow
state Narrow
do modecmd = true;
unless (modebuttonpressed &
(currentstate = TState_ON &
currentmode = TRdrMode_NARROW)) then Wide
end
tel
(* compute the new radar mode each time on/off button
is pressed *)
node mc_rdrmodecmd(currentrdrstate : tsensorstate;
rdrmodebutton : bool;
currentrdrmode : trdrmode)
returns (rdrmodecmd : bool)
let
rdrmodecmd =
rdrmodecmd(currentrdrstate, risingEdge(rdrmodebutton),
currentrdrmode);
tel
(* compute the radar mode, according to the corresponding
input command from the mission computer *)
fun radar_mode(modecmd : bool) returns (mode : trdrmode)
let
mode = if modecmd then TRdrMode_NARROW else TRdrMode_WIDE;
tel
(* compute the radar state, according to:
- the corresponding input command from the mission computer
- the failure state of the radar *)
node radar_state(onoffcmd, failure : bool)
returns (initializing : bool; st : tsensorstate)
var x : bool;
let
initializing = st = TState_OFF & onoffcmd;
(* x = fby (onoffcmd; 5; false) *)
x = false fby false fby false fby false fby false fby onoffcmd;
st =
if failure
then TState_FAIL
else if (if onoffcmd then x else false)
then TState_ON
else TState_OFF;
tel
(* elaborate and generate the (up to 2) tracks detected
by the radar (position + speed + distance + rate of
closing) *)
node radar_tracks(st : tsensorstate;
tracks : ttracksarray;
rdrdetectedtracks : tdetectedrdrtracksarray)
returns (rdrtracks : trdrtracksarray)
var
l22 : ttrack^ksizerdrtracksarray;
l30 : trdrtrack^ksizerdrtracksarray;
let
rdrtracks = if st = TState_ON then l30 else kinitrdrtrackarray;
l30 = map<<ksizerdrtracksarray>> elaboraterdrtrack(l22);
l22 =
map<<ksizerdrtracksarray>> selectdetectedtrack(
rdrdetectedtracks, tracks^ksizerdrtracksarray,
kinittrack^ksizerdrtracksarray);
tel
(* scade representation for the radar, generating:
1) the radar state
2) the radar mode
3) the (up to 2) tracks detected by the radar *)
node radar(onoffcmd, modecmd, failure : bool;
rdrdetectedtracks : tdetectedrdrtracksarray;
tracks : ttracksarray)
returns (initializing : bool;
st : tsensorstate;
mode : trdrmode;
rdrtracks : trdrtracksarray)
let
rdrtracks = radar_tracks(st, tracks, rdrdetectedtracks);
mode = radar_mode(modecmd);
(initializing, st) = radar_state(onoffcmd, failure);
tel
(* compute the iff state, according to:
- the corresponding input command from the mission computer
- the failure state of the iff *)
node iff_state(onoffcmd, failure : bool)
returns (initializing : bool; st : tsensorstate)
var x : bool;
let
initializing = st = TState_OFF & onoffcmd;
(* x = fby (onoffcmd; 5; false) *)
x = false fby false fby false fby false fby false fby onoffcmd;
st =
if failure
then TState_FAIL
else if (if onoffcmd then x else false)
then TState_ON
else TState_OFF;
tel
fun ifftrack_of_track(track : ttrack)
returns (ifftrack : tifftrack)
let
ifftrack = { i_pos = track.t_pos; i_id = track.t_id };
tel
(* elaborate and generate the (up to 2) tracks detected
by the iff (position + identifier) *)
fun iff_tracks(st : tsensorstate;
tracks : ttracksarray;
iffdetectedtracks : tdetectedifftracksarray)
returns (ifftracks : tifftracksarray)
var l34 : ttrack^ksizeifftracksarray;
l40 : tifftracksarray;
let
l34 =
map<<ksizeifftracksarray>> selectdetectedtrack(
iffdetectedtracks, tracks^ksizeifftracksarray,
kinittrack^ksizeifftracksarray);
l40 = map<<ksizeifftracksarray>> ifftrack_of_track(l34);
ifftracks = if st = TState_ON then l40 else kinitifftrackarray;
tel
(* scade representation for the iff, generating:
1) the iff state
2) the (up to 2) tracks detected by the iff *)
node iff(tracks : ttracksarray;
failure : bool;
iffdetectedtracks : tdetectedifftracksarray;
onoffcmd : bool)
returns (st : tsensorstate;
ifftracks : tifftracksarray;
initializing : bool)
let
ifftracks = iff_tracks(st, tracks, iffdetectedtracks);
(initializing, st) = iff_state(onoffcmd, failure);
tel
node advrandr(min, max : float) returns (output1 : float)
let
output1 = (max -. min) *. rand() +. min;
tel
node advrandi(min, max, step : int) returns (output1 : int)
var l8 : int;
let
l8 = if 0 <> step then step else 1;
output1 = (int_of_float (float_of_int (max - min) *. rand())
+ min) / (l8 * l8);
tel
(* for one given track, generate:
1) its new position according to:
- its previous position, the input speed and slope
if set/reset button not pressed
- the input initial position if set/reset button pressed
2) its identifier according to the input identifier *)
node createtracks_createonetrack_init_rand()
returns (sloperadinit, speedinit, xmeterinit, ymeterinit : float;
idinit : int)
let
speedinit = advrandr(250.0, 1000.0) *. t;
ymeterinit = nm *. advrandr(-. 10.0, 10.0);
xmeterinit = advrandr(-. 10.0, 10.0) *. nm;
sloperadinit = 2.0 *. pi *. advrandr(0.0, 360.0) /. 360.0;
idinit = advrandi(0, 1000, 10);
tel
(* for one given track, generate:
1) its new position according to:
- its previous position, the input speed and slope
if set/reset button not pressed
- the input initial position if set/reset button pressed
2) its identifier according to the input identifier *)
node createtracks_createonetrack_rand(res : bool)
returns (track : ttrack)
var id : int; sloperad, speedt, x0, y0, l9, l18 : float;
let
(* (sloperad, speedt, x0, y0, id) =
(activate createtracks_createonetrack_init_rand every reset initial default (
0., 0., 0., 0., 0))(); *)
(sloperad, speedt, x0, y0, id) =
if res then createtracks_createonetrack_init_rand()
else (0.0, 0.0, 0.0, 0.0, 0) fby (sloperad, speedt, x0, y0, id);
l18 = y0 -> Mathext.sinr(sloperad) *. speedt +. (y0 -> pre l18);
l9 = x0 -> (x0 -> pre l9) +. speedt *. Mathext.cosr(sloperad);
track = { t_pos = { x = l9; y = l18 }; t_id = id };
tel
(* generate up to 4 tracks (position + identifier) according
to the graphical track inputs panel. *)
node createtracks_rand(res : bool)
returns (tracks : ttracksarray)
let
tracks = map<<ksizetracksarray>> createtracks_createonetrack_rand(res^ksizetracksarray);
tel
node createalltracks(res : bool)
returns (tracks : ttracksarray)
let
(* tracks = (restart createtracks_rand every res)(res); *)
reset
tracks = createtracks_rand(res);
every res
tel
(* merge a mission track detected by the radar with a
mission track detected by the iff if they have the same
position and speed.
in that case, newrdrmissiontrack is the merged track, and newiffmissiontrack is reset to "empty".
otherwise, outputs = inputs *)
fun fusionrdrifftracks(iffmissiontrack, rdrmissiontrack
: tmissiontrack)
returns (newiffmissiontrack, newrdrmissiontrack
: tmissiontrack)
var l90 : bool;
let
newrdrmissiontrack =
if l90
then { m_pos = rdrmissiontrack.m_pos;
m_speed = rdrmissiontrack.m_speed;
m_id = iffmissiontrack.m_id;
m_priority = rdrmissiontrack.m_priority;
m_d = rdrmissiontrack.m_d;
m_sabs = rdrmissiontrack.m_sabs;
m_sr = rdrmissiontrack.m_sr;
m_detectedbyradar = rdrmissiontrack.m_detectedbyradar;
m_detectedbyiff = iffmissiontrack.m_detectedbyiff;
m_tracknumber = 0;
m_targettype = iffmissiontrack.m_targettype;
m_isvisible = rdrmissiontrack.m_isvisible;
m_angle = rdrmissiontrack.m_angle }
else rdrmissiontrack;
l90 =
comparetracks(rdrmissiontrack.m_pos, iffmissiontrack.m_pos,
rdrmissiontrack.m_speed, iffmissiontrack.m_speed);
newiffmissiontrack =
if l90
then kinitmissiontrack
else iffmissiontrack;
tel
(* merge tracks data received from both radar and iff sensors *)
fun mc_tracks_fusion_onerdrwithifftracks(rdrtrack : tmissiontrack;
ifftracks : tmissiontrack^ksizeifftracksarray)
returns (fusionnedrdrtrack : tmissiontrack;
fusionnedifftracks : tmissiontrack^ksizeifftracksarray)
let
(fusionnedifftracks, fusionnedrdrtrack) =
mapfold<<ksizeifftracksarray>> fusionrdrifftracks(ifftracks, rdrtrack);
tel
(* merge tracks data received from both radar and iff sensors *)
node mc_tracks_fusion(rdrtracks : trdrtracksarray;
ifftracks : tifftracksarray)
returns (missiontracks : tmissiontracksarray)
var
mergedrdrtracks : tmissiontrack^ksizerdrtracksarray;
mergedifftracks : tmissiontrack^ksizeifftracksarray;
l140 : tmissiontrack^ksizerdrtracksarray;
l139 : tmissiontrack^ksizeifftracksarray;
let
missiontracks = mergedrdrtracks @ mergedifftracks;
(mergedrdrtracks, mergedifftracks) =
mapfold<<ksizerdrtracksarray>> mc_tracks_fusion_onerdrwithifftracks(l140, l139);
l140 = map<<ksizerdrtracksarray>> convertrdrtracktomissiontrack(rdrtracks);
l139 = map<<ksizeifftracksarray>> convertifftracktomissiontrack(ifftracks);
tel
fun prio_tracknumbernotinarray(missiontracktracknumber,
prioritytrack : int; acc : bool)
returns (notinarray : bool)
let
notinarray = acc & missiontracktracknumber <> prioritytrack;
tel
(* replace the lowest priority track in priorityarray by missiontrack *)
node prio_selecthighestprioritynotinpriorityarray(
missiontrack : tmissiontrack;
prioritiesarray : tpriorityList;
accprioritymissiontrack : tmissiontrack)
returns (prioritymissiontrack : tmissiontrack)
var
missiontracknotinpriorittiesarray,
missiontrackhashigherprioritythanacc : bool;
let
missiontrackhashigherprioritythanacc =
not trackalowerprioritythanb(missiontrack,
accprioritymissiontrack);
missiontracknotinpriorittiesarray =
fold<<4>> prio_tracknumbernotinarray(missiontrack.m_tracknumber^4,
prioritiesarray, true);
prioritymissiontrack =
if missiontracknotinpriorittiesarray & missiontrackhashigherprioritythanacc
then missiontrack
else accprioritymissiontrack;
tel
(* for each missiontrack
if priority higher than all in priorityarray and not in priorityarray
then, copy in priorityarray at index *)
node prio_selectprioritarymissiontracks(missiontracks : tmissiontracksarray;
prioritiesarray : tpriorityList;
indexpriority : int)
returns (newprioritiesarray : tpriorityList)
var missiontrackwithhighestpriority : tmissiontrack;
let
newprioritiesarray =
[ prioritiesarray with [indexpriority] =
missiontrackwithhighestpriority.m_tracknumber ];
missiontrackwithhighestpriority =
fold<<ksizemissiontracksarray>> prio_selecthighestprioritynotinpriorityarray(
missiontracks,
prioritiesarray^ksizemissiontracksarray, kinitmissiontrack);
tel
fun prio_setpriorityinmissiontrack(prioritytracknumber : int;
priorityindex : int;
missiontrack : tmissiontrack)
returns (missiontrackwithprio : tmissiontrack)
let
missiontrackwithprio =
if prioritytracknumber = missiontrack.m_tracknumber
then setmissiontrackpriority(missiontrack, priorityindex + 1)
else missiontrack;
tel
fun prio_setpriorityinmissiontrackarray(priorityarray : tpriorityList;
missiontrack : tmissiontrack)
returns (missiontrackwithprio : tmissiontrack)
let
missiontrackwithprio =
foldi<<4>> prio_setpriorityinmissiontrack(priorityarray, missiontrack);
tel
(* set the priority in missiontracks:
1) set the highest prority
2) set the second priority=highest different from the previous
3) set the 3rd priority=highest different from the previous
3) set the 4th priority=highest different from the previous
=> the 4 priority track should be in an array (initialized to "empty")
operator selectprioritymissiontracks inputs
- missiontracks
- prioritytrack set (to perform the "different from the previous")
*test for each missiontrack: the higest, and not already in prioritytracks.
*then, set the ith element of prioritytracks with the one found
for each missiontrack, if prioritary higher than the lowest 4 prioritary
old: compute each detected track priority, and sort tracks
according to their priority *)
node mc_tracks_prio(missiontracks : tmissiontracksarray)
returns (missiontrackswithprio : tmissiontracksarray)
var prioritytracknumbers : tpriorityList;
let
missiontrackswithprio =
map<<ksizemissiontracksarray>> prio_setpriorityinmissiontrackarray
<(prioritytracknumbers)> (missiontracks);
prioritytracknumbers =
prio_selectprioritarymissiontracks(missiontracks,
prio_selectprioritarymissiontracks(missiontracks,
prio_selectprioritarymissiontracks(missiontracks,
prio_selectprioritarymissiontracks(missiontracks, 0^4, 0), 1), 2),
3);
tel
(* associate a track number to each detected track *)
node mc_tracks_tracknumber(withouttracknb : tmissiontracksarray)
returns (withtracknumber : tmissiontracksarray)
var l81 : int;
let
(withtracknumber, l81) =
mapfold<<ksizemissiontracksarray>> calculatemissiontracknumber
<(kinitmissiontrackarray -> pre withtracknumber)>
(withouttracknb, 0 -> pre l81);
tel
(* 1) merge tracks data received from both radar and iff sensors
2) associate a track number to each detected track
3) compute each detected track priority, and sort tracks
according to their priority *)
node mc_tracks(rdrtracks : trdrtracksarray;
ifftracks : tifftracksarray)
returns (missiontracks : tmissiontracksarray)
let
missiontracks =
mc_tracks_prio(mc_tracks_tracknumber(mc_tracks_fusion(rdrtracks,
ifftracks)));
tel
(* scade representation for the mission computer, computing:
- the new radar state
- the new radar mode
- the new iff state
- the (up to 4) tracks detected by the fighter *)
node mc(currentrdrstate : tsensorstate;
currentrdrmode : trdrmode;
rdrtracks : trdrtracksarray;
rdronoffbutton, rdrmodebutton, iffonoffbutton : bool;
currentiffstate : tsensorstate;
ifftracks : tifftracksarray)
returns (rdronoffcmd, rdrmodecmd : bool;
missiontracks : tmissiontracksarray;
iffonoffcmd : bool)
let
missiontracks = mc_tracks(rdrtracks, ifftracks);
iffonoffcmd = mc_iffstatecmd(iffonoffbutton, currentiffstate);
rdrmodecmd = mc_rdrmodecmd(currentrdrstate, rdrmodebutton, currentrdrmode);
rdronoffcmd = mc_rdrstatecmd(rdronoffbutton, currentrdrstate);
tel
(* This node implements the "implies" logical operator (not(A) or B). *)
fun implies(a, b : bool) returns (c : bool)
let
c = (not a) or b;
tel
fun dv_detectedbyiff(missiontrack : tmissiontrack; accin : bool)
returns (accout : bool)
let
accout = accin & not (missiontrack.m_tracknumber <> 0);
tel
fun dv_sametracknumber(missiontrack1,
missiontrack2 : tmissiontrack;
accin : bool)
returns (accout : bool)
let
accout =
accin or
missiontrack1.m_tracknumber = missiontrack2.m_tracknumber &
missiontrack2.m_tracknumber <> 0;
tel
fun dv_tracknumberexist(missiontrack : tmissiontrack;
missiontracks : tmissiontracksarray;
accin : bool)
returns (accout : bool)
var l36 : bool;
let
l36 =
fold<<ksizemissiontracksarray>> dv_sametracknumber(
missiontrack^ksizemissiontracksarray, missiontracks, false);
accout = accin or l36;
tel
node dv_proof1(currentrdrstate : tsensorstate;
rdronoffbutton, rdronoffcmd : bool)
returns (proof1 : bool)
let
proof1 =
implies(risingEdge(rdronoffbutton) &
currentrdrstate = TState_FAIL, rdronoffcmd =
(false -> pre rdronoffcmd));
tel
fun dv_proof2(ifftracks : tifftracksarray;
missiontracks : tmissiontracksarray)
returns (proof2 : bool)
var l33 : bool;
let
l33 =
fold<<ksizemissiontracksarray>> dv_detectedbyiff(missiontracks, true);
proof2 = implies(ifftracks = kinitifftrackarray, l33);
tel
(* verifiy that all non null tracknumbers are different *)
fun dv_proof3(missiontracks : tmissiontracksarray)
returns (proof3 : bool)
var l33 : bool;
let
l33 =
fold<<ksizemissiontracksarray>> dv_tracknumberexist(
missiontracks, missiontracks^ksizemissiontracksarray, false);
proof3 = not l33;
tel
node dv_observer(currentrdrstate : tsensorstate;
currentrdrmode : trdrmode;
rdrtracks : trdrtracksarray;
rdronoffbutton, rdrmodebutton, iffonoffbutton : bool;
currentiffstate : tsensorstate;
ifftracks : tifftracksarray)
returns (proof1, proof2, proof3 : bool)
var l3 : tmissiontracksarray; l1,l4,l5 : bool;
let
proof3 = dv_proof3(l3);
proof2 = dv_proof2(ifftracks, l3);
proof1 = dv_proof1(currentrdrstate, rdronoffbutton, l1);
(l1, l4, l3, l5) =
mc(currentrdrstate, currentrdrmode, rdrtracks, rdronoffbutton,
rdrmodebutton, iffonoffbutton, currentiffstate, ifftracks);
tel
(* Top node of the Mission Computer SCADE model.
The Fighter (MC + Radar + Iff), its environment
(CreateTracks) and links to the graphical interface (GUI)
are constituting this model. *)
node fighterdebug(res, rdronoffclicked, iffonoffclicked : bool)
returns (missiontracks : tmissiontracksarray)
var
l4 : trdrtracksarray;
l3 : trdrmode;
l6 : tifftracksarray;
l5 : tsensorstate;
l12, l11, l10 : bool;
l172 : tsensorstate;
l179 : ttracksarray;
l200, l201:bool; (*TODO*)
let
l179 = createalltracks(res);
(l10, l11, missiontracks, l12) =
mc(l172, l3, l4, rdronoffclicked, false, iffonoffclicked, l5, l6);
(l5, l6, l200) = iff(l179, false, [1, 2, 3], false -> pre l12);
(l201, l172, l3, l4) =
radar(false -> pre l10, false -> pre l11, false, [0, 1, 2, 3, 4],
l179);
tel
(* top node of the mission computer scade model.
the fighter (mc + radar + iff), its environment
(createtracks) and links to the graphical interface (gui)
are constituting this model. *)
node dv_fighterdebug(res, rdronoffclicked, iffonoffclicked : bool)
returns (proof3 : bool)
let
proof3 =
dv_proof3(fighterdebug(res, rdronoffclicked, iffonoffclicked));
tel
fun dv_debug(missiontracks : tmissiontracksarray)
returns (proof3 : bool)
let
proof3 = dv_proof3(missiontracks);
tel