170 lines
6.4 KiB
OCaml
170 lines
6.4 KiB
OCaml
(**************************************************************************)
|
|
(* *)
|
|
(* Heptagon *)
|
|
(* *)
|
|
(* Author : Marc Pouzet *)
|
|
(* Organization : Demons, LRI, University of Paris-Sud, Orsay *)
|
|
(* *)
|
|
(**************************************************************************)
|
|
|
|
(** This module defines static expressions, used in params and for constants.
|
|
const n: int = 3;
|
|
var x : int^n; var y : int^(n + 2);
|
|
x[n - 1], x[1 + 3],... *)
|
|
|
|
open Names
|
|
open Format
|
|
open Types
|
|
open Signature
|
|
open Modules
|
|
|
|
(* unsatisfiable constraint *)
|
|
exception Instanciation_failed
|
|
exception Partial_instanciation of static_exp
|
|
|
|
exception Not_static
|
|
|
|
let partial_apply_op op se_list =
|
|
match se_list with
|
|
| [{ se_desc = Sint n1 }; { se_desc = Sint n2 }] ->
|
|
(match op with
|
|
| { qual = Pervasives; name = "+" } ->
|
|
Sint (n1 + n2)
|
|
| { qual = Pervasives; name = "-" } ->
|
|
Sint (n1 - n2)
|
|
| { qual = Pervasives; name = "*" } ->
|
|
Sint (n1 * n2)
|
|
| { qual = Pervasives; name = "/" } ->
|
|
let n = if n2 = 0 then raise Instanciation_failed else n1 / n2 in
|
|
Sint n
|
|
| { qual = Pervasives; name = "=" } ->
|
|
Sbool (n1 = n2)
|
|
| _ -> assert false (*TODO: add missing operators*)
|
|
)
|
|
| [{ se_desc = Sint n }] ->
|
|
(match op with
|
|
| { qual = Pervasives; name = "~-" } -> Sint (-n)
|
|
| _ -> assert false (*TODO: add missing operators*)
|
|
)
|
|
| _ -> Sop(op, se_list)
|
|
|
|
let apply_op op se_list =
|
|
let se = partial_apply_op op se_list in
|
|
match se with
|
|
| Sop _ -> raise Not_found
|
|
| _ -> se
|
|
|
|
let eval_core eval apply_op env se = match se.se_desc with
|
|
| Sint _ | Sfloat _ | Sbool _ | Sconstructor _ | Sfield _ -> se
|
|
| Svar ln -> (
|
|
try (* first try to find in global const env *)
|
|
let cd = find_const ln in
|
|
eval env cd.c_value
|
|
with Not_found -> (* then try to find in local env *)
|
|
eval env (QualEnv.find ln env))
|
|
| Sop (op, se_list) ->
|
|
let se_list = List.map (eval env) se_list in
|
|
{ se with se_desc = apply_op op se_list }
|
|
| Sarray se_list ->
|
|
{ se with se_desc = Sarray (List.map (eval env) se_list) }
|
|
| Sarray_power (se, n) ->
|
|
{ se with se_desc = Sarray_power (eval env se, eval env n) }
|
|
| Stuple se_list ->
|
|
{ se with se_desc = Stuple (List.map (eval env) se_list) }
|
|
| Srecord f_se_list ->
|
|
{ se with se_desc = Srecord
|
|
(List.map (fun (f,se) -> f, eval env se) f_se_list) }
|
|
|
|
(** [simplify env e] returns e simplified with the
|
|
variables values taken from [env] or from the global env with [find_const].
|
|
Every operator that can be computed is.
|
|
It can return static_exp with uninstanciated variables.*)
|
|
let rec simplify env se =
|
|
try eval_core simplify partial_apply_op env se
|
|
with _ -> se
|
|
|
|
(** [eval env e] does the same as [simplify]
|
|
but if it returns, there are no variables nor op left.
|
|
@raise [Partial_instanciation] when it cannot fully evaluate *)
|
|
let rec eval env se =
|
|
try eval_core eval apply_op env se
|
|
with Not_found -> raise (Partial_instanciation se)
|
|
|
|
(** [int_of_static_exp env e] returns the value of the expression
|
|
[e] in the environment [env], mapping vars to integers. Raises
|
|
Instanciation_failed if it cannot be computed (if a var has no value).*)
|
|
let int_of_static_exp env se =
|
|
match (simplify env se).se_desc with
|
|
| Sint i -> i
|
|
| _ ->
|
|
(Format.eprintf "Internal compiler error, \
|
|
[eval_int] received the static_exp %a.@."
|
|
Global_printer.print_static_exp se;
|
|
assert false)
|
|
|
|
(** [is_true env constr] returns whether the constraint is satisfied
|
|
in the environment (or None if this can be decided)
|
|
and a simplified constraint. *)
|
|
let is_true env =
|
|
function
|
|
| Cequal (e1, e2) when e1 = e2 ->
|
|
Some true, Cequal (simplify env e1, simplify env e2)
|
|
| Cequal (e1, e2) ->
|
|
let e1 = simplify env e1 in
|
|
let e2 = simplify env e2 in
|
|
(match e1.se_desc, e2.se_desc with
|
|
| Sint n1, Sint n2 -> Some (n1 = n2), Cequal (e1, e2)
|
|
| (_, _) -> None, Cequal (e1, e2))
|
|
| Clequal (e1, e2) ->
|
|
let e1 = simplify env e1 in
|
|
let e2 = simplify env e2 in
|
|
(match e1.se_desc, e2.se_desc with
|
|
| Sint n1, Sint n2 -> Some (n1 <= n2), Clequal (e1, e2)
|
|
| _, _ -> None, Clequal (e1, e2))
|
|
| Cfalse -> None, Cfalse
|
|
|
|
exception Solve_failed of size_constraint
|
|
|
|
(** [solve env constr_list solves a list of constraints. It
|
|
removes equations that can be decided and simplify others.
|
|
If one equation cannot be satisfied, it raises Solve_failed. ]*)
|
|
let rec solve const_env =
|
|
function
|
|
| [] -> []
|
|
| c :: l ->
|
|
let l = solve const_env l in
|
|
let (res, c) = is_true const_env c in
|
|
(match res with
|
|
| None -> c :: l
|
|
| Some v -> if not v then raise (Solve_failed c) else l)
|
|
|
|
(** Substitutes variables in the size exp with their value
|
|
in the map (mapping vars to size exps). *)
|
|
let rec static_exp_subst m se =
|
|
match se.se_desc with
|
|
| Svar qn -> (try QualEnv.find qn m with | Not_found -> se)
|
|
| Sop (op, se_list) ->
|
|
{ se with se_desc = Sop (op, List.map (static_exp_subst m) se_list) }
|
|
| Sarray_power (se, n) ->
|
|
{ se with se_desc = Sarray_power (static_exp_subst m se,
|
|
static_exp_subst m n) }
|
|
| Sarray se_list ->
|
|
{ se with se_desc = Sarray (List.map (static_exp_subst m) se_list) }
|
|
| Stuple se_list ->
|
|
{ se with se_desc = Stuple (List.map (static_exp_subst m) se_list) }
|
|
| Srecord f_se_list ->
|
|
{ se with se_desc =
|
|
Srecord (List.map
|
|
(fun (f,se) -> f, static_exp_subst m se) f_se_list) }
|
|
| _ -> se
|
|
|
|
(** Substitutes variables in the constraint list with their value
|
|
in the map (mapping vars to size exps). *)
|
|
let instanciate_constr m constr =
|
|
let replace_one m = function
|
|
| Cequal (e1, e2) -> Cequal (static_exp_subst m e1, static_exp_subst m e2)
|
|
| Clequal (e1, e2) -> Clequal (static_exp_subst m e1, static_exp_subst m e2)
|
|
| Cfalse -> Cfalse in
|
|
List.map (replace_one m) constr
|
|
|
|
|