You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

676 lines
24 KiB
OCaml

(***********************************************************************)
(* *)
(* Heptagon *)
(* *)
(* Gwenael Delaval, LIG/INRIA, UJF *)
(* Leonard Gerard, Parkas, ENS *)
(* Adrien Guatto, Parkas, ENS *)
(* Cedric Pasteur, Parkas, ENS *)
(* *)
(* Copyright 2012 ENS, INRIA, UJF *)
(* *)
(* This file is part of the Heptagon compiler. *)
(* *)
(* Heptagon is free software: you can redistribute it and/or modify it *)
(* under the terms of the GNU General Public License as published by *)
(* the Free Software Foundation, either version 3 of the License, or *)
(* (at your option) any later version. *)
(* *)
(* Heptagon is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU General Public License *)
(* along with Heptagon. If not, see <http://www.gnu.org/licenses/> *)
(* *)
(***********************************************************************)
open Misc
open Names
open Idents
open Signature
open Minils
open Mls_utils
open Mls_printer
open Global_printer
open Types
open Clocks
open Pp_tools
open Mls_compare
let debug = false
let debug_do f () = if debug then f () else ()
(*
Data-flow minimization on MiniLS:
1. Put each equation into a big map. It maps variable names to triples (class_id * truncated
expression * class_id list). Initially, all local variables are mapped to the same class .
2. Compute the new class_id of each equation: two equations are in the same class if they are
equal and have the same child equations.
3. If anything has changed: go to 2
4. Reconstruct: one equation for one equivalence class.
*)
module OrderedInts =
struct
type t = int
let compare = Pervasives.compare
end
module IntSet = Set.Make(OrderedInts)
module IntMap = Map.Make(OrderedInts)
module TomEnv =
struct
module PatMap = Map.Make(struct
type t = pat
let compare = pat_compare
end)
type class_ref =
| Cr_plain of ident
| Cr_input of extvalue (* we record the full expression for convenience *)
type eq_repr =
{
mutable er_class : int;
er_clock_type : ct;
er_base_ck : ck;
er_pattern : pat;
er_head : exp;
er_children : class_ref list;
er_add_when : (exp -> exp) -> exp -> exp;
er_when_count : int;
}
type tom_env = eq_repr PatMap.t
let class_of_ident tenv id = try Some (PatMap.find (Evarpat id) tenv) with Not_found -> None
open Mls_printer
let print_class_ref fmt cr = match cr with
| Cr_plain id -> print_ident fmt id
| Cr_input w -> Format.fprintf fmt "%a (input)" print_extvalue w
let debug_tenv fmt tenv =
let debug pat repr =
Format.fprintf fmt "%a => @[class %d,@ pattern %a,@ head { %a },@ children [%a]@]@."
print_pat pat
repr.er_class
print_pat repr.er_pattern
print_exp repr.er_head
(print_list_r print_class_ref "" ";" "") repr.er_children
in
PatMap.iter debug tenv
end
open TomEnv
let gen_var = Idents.gen_var ~reset:false "tomato"
let dummy_var = gen_var "dummy"
let dummy_extvalue = mk_extvalue ~ty:Initial.tint (Wvar dummy_var)
let initial_class = 0
let concat_idents id1 id2 = gen_var (Idents.name id1 ^ "_" ^ Idents.name id2)
let symbol_for_int i =
if i > 25
then "a" ^ string_of_int i
else String.make 1 (Char.chr (Char.code 'a' + i))
(*******************************************************************)
(* Comparison modulo equivalence classes *)
(*******************************************************************)
module ClockCompareModulo =
struct
let (env : (int * int list) Env.t ref) = ref Env.empty
let find_ident id = try Some (Env.find id !env) with Not_found -> None
let ident_compare_modulo id1 id2 =
match find_ident id1, find_ident id2 with
| None, None -> ident_compare id1 id2 (* two inputs *)
| Some (c1, p1), Some (c2, p2) -> (* two internal variables *)
let cr = compare c1 c2 in
if cr <> 0 then cr else list_compare Pervasives.compare p1 p2
| Some _, None -> -1
| None, Some _ -> 1
let rec clock_compare ck1 ck2 = match ck1, ck2 with
| Cvar { contents = Clink ck1; }, _ -> clock_compare ck1 ck2
| _, Cvar { contents = Clink ck2; } -> clock_compare ck1 ck2
| Cbase, Cbase -> 0
| Cvar lr1, Cvar lr2 -> link_compare_modulo !lr1 !lr2
| Con (ck1, cn1, vi1), Con (ck2, cn2, vi2) ->
let cr1 = compare cn1 cn2 in
if cr1 <> 0 then cr1 else
let cr2 = ident_compare_modulo vi1 vi2 in
if cr2 <> 0 then cr2 else clock_compare ck1 ck2
| Cbase , _ -> 1
| Cvar _, Cbase -> -1
| Cvar _, _ -> 1
| Con _, _ -> -1
and link_compare_modulo li1 li2 = match li1, li2 with
| Cindex _, Cindex _ -> 0
| Clink ck1, Clink ck2 -> clock_compare ck1 ck2
| Cindex _, _ -> 1
| Clink _, _ -> -1
and clock_type_compare ct1 ct2 = match ct1, ct2 with
| Ck ck1, Ck ck2 -> clock_compare ck1 ck2
| Cprod ct_list1, Cprod ct_list2 -> list_compare clock_type_compare ct_list1 ct_list2
| Ck _, Cprod _ -> 1
| Cprod _, Ck _ -> -1
end
module CompareModulo = Mls_compare.Make(ClockCompareModulo)
(*******************************************************************)
(* Construct an initial minimization environment *)
(*******************************************************************)
let class_ref_of_var is_input w x = if is_input x then Cr_input w else Cr_plain x
let pattern_for_map =
let r = ref 0 in
(fun patt -> match patt with
| Etuplepat [] ->
incr r;
Etuplepat (repeat_list (Etuplepat []) !r)
| _ -> patt)
let map_for_pattern patt = match patt with
| Etuplepat p_l when List.for_all ((=) (Etuplepat [])) p_l -> Etuplepat []
| _ -> patt
;;
let rec add_equation is_input (tenv : tom_env) eq =
let add_clause (cn, w) class_id_list =
let class_id_list, w = extvalue is_input w class_id_list in
class_id_list, (cn, w) in
let id _ x = x in
let ed, add_when, when_count, class_id_list =
let rec decompose e =
match e.e_desc with
| Eextvalue w ->
let class_id_list, w = extvalue is_input w [] in
Eextvalue w, (id : (exp -> exp) -> exp -> exp), 0, class_id_list
| Eapp (app, w_list, rst) ->
let class_id_list, w_list = mapfold_right (extvalue is_input) w_list [] in
let class_id_list = match rst with
| None -> class_id_list
| Some rst ->
class_ref_of_var is_input
(mk_extvalue ~ty:Initial.tbool ~linearity:Linearity.Ltop (Wvar rst)) rst
:: class_id_list
in
Eapp (app, w_list, optional (fun _ -> dummy_var) rst), id, 0, class_id_list
| Efby (seo, w) ->
let class_id_list, w = extvalue is_input w [] in
Efby (seo, w), id, 0, class_id_list
| Ewhen (e', cn, x) ->
let ed, add_when, when_count, class_id_list = decompose e' in
ed, (fun f e' -> f { e with e_desc = Ewhen (add_when f e', cn, x) }), when_count + 1,
class_ref_of_var is_input
(mk_extvalue ~clock:(Clocks.first_ck e'.e_ct) ~ty:Initial.tbool
~linearity:Linearity.Ltop (Wvar x)) x
:: class_id_list
| Emerge (x, clause_list) ->
let class_id_list, clause_list = mapfold_right add_clause clause_list [] in
let x_id =
class_ref_of_var is_input
(mk_extvalue ~clock:(Clocks.first_ck e.e_ct) ~ty:Initial.tbool
~linearity:Linearity.Ltop (Wvar x)) x
in
Emerge (dummy_var, clause_list), id, 0, x_id :: class_id_list
| Eiterator (it, app, sel, partial_w_list, w_list, rst) ->
let class_id_list, partial_w_list = mapfold_right (extvalue is_input) partial_w_list [] in
let class_id_list, w_list = mapfold_right (extvalue is_input) w_list class_id_list in
let class_id_list = match rst with
| None -> class_id_list
| Some rst ->
class_ref_of_var is_input
(mk_extvalue ~ty:Initial.tbool ~linearity:Linearity.Ltop (Wvar rst)) rst
:: class_id_list
in
Eiterator (it, app, sel, partial_w_list, w_list, optional (fun _ -> dummy_var) rst),
id, 0, class_id_list
| Estruct field_val_list ->
let class_id_list, field_val_list = mapfold_right add_clause field_val_list [] in
Estruct field_val_list, id, 0, class_id_list
in
decompose eq.eq_rhs
in
(* effectful equations (e.g. () = printf(...);) may have only unit patterns on the left.
To avoid fusing them all, create a dummy pattern for each
*)
let lhs = pattern_for_map eq.eq_lhs in
let eq_repr =
{
er_class = initial_class;
er_pattern = lhs;
er_head = { eq.eq_rhs with e_desc = ed; };
er_children = class_id_list;
er_add_when = add_when;
er_when_count = when_count;
er_clock_type = eq.eq_rhs.e_ct;
er_base_ck = eq.eq_base_ck;
}
in
PatMap.add lhs eq_repr tenv
and extvalue is_input w class_id_list =
let rec decompose w class_id_list =
let class_id_list, wd = match w.w_desc with
| Wconst _ -> class_id_list, w.w_desc
| Wvar x -> class_ref_of_var is_input w x :: class_id_list, Wvar dummy_var
| Wfield (w, f) ->
let class_id_list, w = decompose w class_id_list in
class_id_list, Wfield (w, f)
| Wwhen (w, cn, x) ->
(* Create the extvalue representing x *)
let w_x = mk_extvalue ~ty:Initial.tbool ~clock:w.w_ck ~linearity:w.w_linearity (Wvar x) in
let class_id_list, w = decompose w (class_ref_of_var is_input w_x x :: class_id_list) in
class_id_list, Wwhen (w, cn, dummy_var)
| Wreinit (w1, w2) ->
let class_id_list, w1 = decompose w1 class_id_list in
let class_id_list, w2 = decompose w2 class_id_list in
class_id_list, Wreinit (w1, w2)
in
class_id_list, { w with w_desc = wd; }
in
decompose w class_id_list
(*******************************************************************)
(* Regroup classes from a minimization environment *)
(*******************************************************************)
let rec compute_classes tenv =
let rec add_eq_repr _ repr cenv =
let repr_list = try IntMap.find repr.er_class cenv with Not_found -> [] in
IntMap.add repr.er_class (repr :: repr_list) cenv in
PatMap.fold add_eq_repr tenv IntMap.empty
(********************************************************************)
(* Reconstruct a list of equation from a set of equivalence classes *)
(********************************************************************)
type info = Info of var_ident
let new_name mapping x =
try
let Info x' = Env.find x mapping in
x'
with Not_found ->
x
(* Takes a tomato env and returns a renaming environment *)
let construct_mapping (_, cenv) =
let construct_mapping_eq_repr _ eq_repr_list mapping =
let rec ty_list_of_ty ty acc = match ty with
| Tprod ty_list -> List.fold_right ty_list_of_ty ty_list acc
| _ -> ty :: acc
in
let rec ck_list_of_ct ct acc = match ct with
| Cprod ct_list -> List.fold_right ck_list_of_ct ct_list acc
| Ck ck -> ck :: acc
in
let idents_list =
(* In OCaml, constructors ain't no functions :'( *)
let add l1 l2 = l1 :: l2 in
List.fold_right
(List.map2 add)
(List.map (fun er -> ident_list_of_pat er.er_pattern) eq_repr_list)
(* Ugly, rewrite *)
(Misc.repeat_list [] (List.length (ident_list_of_pat (List.hd eq_repr_list).er_pattern)))
in
let first = List.hd eq_repr_list in
let ty_list = ty_list_of_ty first.er_head.e_ty [] in
let ck_list = ck_list_of_ct first.er_clock_type [] in
let fused_ident_list = List.map (Misc.fold_right_1 concat_idents) idents_list in
Misc.fold_left4
(fun mapping x_list fused_x _ _ ->
List.fold_left
(fun mapping x ->
Env.add x (Info fused_x) mapping)
mapping x_list)
mapping
idents_list
fused_ident_list
ty_list
ck_list
in
IntMap.fold construct_mapping_eq_repr cenv Env.empty
let rec reconstruct ((tenv, cenv) as env) mapping =
let reconstruct_class id eq_repr_list eq_list =
assert (List.length eq_repr_list > 0);
let repr = List.hd eq_repr_list in
let e =
let children =
Misc.take (List.length repr.er_children - repr.er_when_count) repr.er_children in
let ed = reconstruct_exp_desc mapping repr.er_head.e_desc repr.er_children in
let level_ck =
reconstruct_clock mapping repr.er_head.e_level_ck in (* not strictly needed, done for
consistency reasons *)
let ct = reconstruct_clock_type mapping repr.er_head.e_ct in
{ repr.er_head with e_desc = ed; e_level_ck = level_ck; e_ct = ct; }
in
let e =
let reconstruct_exp e =
{ e with
e_level_ck = reconstruct_clock mapping e.e_level_ck;
e_ct = reconstruct_clock_type mapping e.e_ct; }
in
repr.er_add_when reconstruct_exp e
in
let pat = reconstruct_pattern mapping repr.er_pattern in
mk_equation ~base_ck:(reconstruct_clock mapping repr.er_base_ck) false pat e :: eq_list in
IntMap.fold reconstruct_class cenv []
and reconstruct_exp_desc mapping headd children =
let reconstruct_clauses clause_list children =
let (qn_list, w_list) = List.split clause_list in
let w_list = reconstruct_extvalues mapping w_list children in
List.combine qn_list w_list in
match headd with
| Eextvalue w ->
let w = assert_1 (reconstruct_extvalues mapping [w] children) in
Eextvalue w
| Efby (ini, w) ->
let w = assert_1 (reconstruct_extvalues mapping [w] children) in
Efby (ini, w)
| Eapp (app, w_list, rst_dummy) ->
let rst, children = match rst_dummy with
| None -> None, children
| Some _ -> Some (reconstruct_class_ref mapping (List.hd children)), List.tl children in
Eapp (app, reconstruct_extvalues mapping w_list children, rst)
| Ewhen _ -> assert false (* no Ewhen in exprs *)
| Emerge (x_ref, clause_list) ->
let x_ref, children = List.hd children, List.tl children in
Emerge (reconstruct_class_ref mapping x_ref,
reconstruct_clauses clause_list children)
| Estruct field_val_list ->
let field_val_list = reconstruct_clauses field_val_list children in
Estruct field_val_list
| Eiterator (it, app, sel, partial_w_list, w_list, rst_dummy) ->
let rst, children = match rst_dummy with
| None -> None, children
| Some _ -> Some (reconstruct_class_ref mapping (List.hd children)), List.tl children in
let total_w_list = reconstruct_extvalues mapping (w_list @ partial_w_list) children in
let w_list, partial_w_list = split_at (List.length w_list) total_w_list in
Eiterator (it, app, sel, partial_w_list, w_list, rst)
and reconstruct_extvalues mapping w_list children =
let rec reconstruct_extvalue w (children : class_ref list) =
let w, children =
match w.w_desc with
| Wconst _ -> w, children
| Wvar _ ->
let w = { w with w_desc = Wvar (reconstruct_class_ref mapping (List.hd children)); } in
w, List.tl children
| Wwhen (w', cn, _) ->
let w_x = reconstruct_class_ref mapping (List.hd children) in
let w', children = reconstruct_extvalue w' (List.tl children) in
{ w with w_desc = Wwhen (w', cn, w_x) }, children
| Wfield (w', fn) ->
let w', children = reconstruct_extvalue w' children in
{ w with w_desc = Wfield (w', fn); }, children
| Wreinit (w1, w2) ->
let w1, children = reconstruct_extvalue w1 children in
let w2, children = reconstruct_extvalue w2 children in
{ w with w_desc = Wreinit (w1, w2); }, children
in
{ w with w_ck = reconstruct_clock mapping w.w_ck }, children
in
let consume w (children, result_w_list) =
let w, children = reconstruct_extvalue w children in
children, w :: result_w_list
in
let (_, w_list) = List.fold_right consume w_list (List.rev children, []) in
w_list
(* and extract_name w = match w.w_desc with *)
(* | Wvar x -> x *)
(* | _ -> invalid_arg "extract_name: not a var" *)
and reconstruct_class_ref mapping cr = match cr with
| Cr_input w -> (match w.w_desc with Wvar x -> x | _ -> assert false)
| Cr_plain x ->
let Info x = Env.find x mapping in
x
and reconstruct_clock mapping ck = match ck_repr ck with
| Con (ck, c, x) -> Con (reconstruct_clock mapping ck, c, new_name mapping x)
| _ -> ck
and reconstruct_clock_type mapping ct = match ct with
| Cprod ct_list -> Cprod (List.map (reconstruct_clock_type mapping) ct_list)
| Ck ck -> Ck (reconstruct_clock mapping ck)
and reconstruct_pattern mapping pat = match pat with
| Evarpat x -> Evarpat (new_name mapping x)
| Etuplepat pat_list when List.for_all ((=) (Etuplepat [])) pat_list -> Etuplepat []
| Etuplepat pat_list -> Etuplepat (List.map (reconstruct_pattern mapping) pat_list)
(***********************************************************************)
(* Compute the next equivalence classes for a minimization environment *)
(***********************************************************************)
module EqClasses = Map.Make(
struct
type t = exp * ct * (int * int list) option list
let unsafe { e_desc = ed } = match ed with
| Eapp (app, _, _) | Eiterator (_, app, _, _, _, _) -> app.a_unsafe
| _ -> false
let compare_children c1 c2 = match c1, c2 with
| None, _ -> -1
| _, None -> 1
| Some c1', Some c2' -> Pervasives.compare c1' c2'
let compare (e1, ck1, cr_list1) (e2, ck2, cr_list2) =
let cr = ClockCompareModulo.clock_type_compare ck1 ck2 in
if cr <> 0 then cr
else
(let cr = CompareModulo.exp_compare e1 e2 in
if cr <> 0 then cr
else
if unsafe e1 then 1
else
(if unsafe e2 then -1 else list_compare compare_children cr_list1 cr_list2))
end)
let rec path_environment tenv =
let enrich_env pat { er_class = id } env =
let rec enrich pat path env = match pat with
| Evarpat x -> Env.add x (id, path) env
| Etuplepat pat_list ->
let (_, env) =
List.fold_right
(fun pat (i, env) -> (i + 1, enrich pat (i :: path) env))
pat_list
(0, env)
in
env
in
enrich pat [] env
in
PatMap.fold enrich_env tenv Env.empty;;
let compute_new_class (tenv : tom_env) =
let mapping = path_environment tenv in
(* Do comparisons with respect to tenv! *)
ClockCompareModulo.env := mapping;
let fresh_id, get_id = let id = ref 0 in ((fun () -> incr id; !id), (fun () -> !id)) in
let add_eq_repr _ eqr classes =
let map_class_ref cref = match cref with
| Cr_input _ -> None
| Cr_plain x ->
try Some (Env.find x mapping)
with Not_found -> Format.eprintf "Unknown class %a@." print_ident x; assert false
in
let children = List.map map_class_ref eqr.er_children in
let key = (eqr.er_head, eqr.er_clock_type, children) in
let id = try EqClasses.find key classes with Not_found -> fresh_id () in
eqr.er_class <- id;
EqClasses.add key id classes
in
let classes = PatMap.fold add_eq_repr tenv EqClasses.empty in
(get_id (), tenv)
let rec separate_classes tenv =
let rec fix (id, tenv) =
let new_id, tenv = compute_new_class tenv in
debug_do (fun () -> Format.printf "New tenv %d:\n%a@." id debug_tenv tenv) ();
if new_id = id then tenv else fix (new_id, tenv)
in
debug_do (fun () -> Format.printf "Initial tenv:\n%a@." debug_tenv tenv) ();
let id, tenv = compute_new_class tenv in
debug_do (fun () -> Format.printf "New tenv %d:\n%a@." id debug_tenv tenv) ();
fix (id, tenv)
(********************************************************************)
(* Top-level functions: plug everything together to minimize a node *)
(********************************************************************)
let rec fix_local_var_dec mapping vd (seen, vd_list) =
let Info x = Env.find vd.v_ident mapping in
if IdentSet.mem x seen
then (seen, vd_list)
else
(IdentSet.add x seen,
{ vd with v_ident = x; v_clock = reconstruct_clock mapping vd.v_clock; } :: vd_list)
and fix_local_var_decs mapping vd_list =
snd (List.fold_right (fix_local_var_dec mapping) vd_list (IdentSet.empty, []))
(* May add new local equations in the case of fused outputs *)
let rec fix_output_var_dec mapping vd (seen, equs, vd_list) =
let Info x = Env.find vd.v_ident mapping in
if IdentSet.mem x seen
then
let new_id = vd.v_ident in
let new_clock = reconstruct_clock mapping vd.v_clock in
let new_vd = { vd with v_ident = new_id; v_clock = new_clock } in
let new_eq =
let w = mk_extvalue ~ty:vd.v_type ~clock:new_clock ~linearity:Linearity.Ltop (Wvar x) in
mk_equation false
(Evarpat new_id)
(mk_exp new_clock vd.v_type ~ct:(Ck new_clock)
~linearity:Linearity.Ltop (Eextvalue w))
in
(seen, new_eq :: equs, new_vd :: vd_list)
else
(IdentSet.add x seen, equs,
{ vd with v_ident = x; v_clock = reconstruct_clock mapping vd.v_clock } :: vd_list)
and fix_output_var_decs tenv (equs, vd_list) =
let (_, eq_list, vd_list) =
List.fold_right (fix_output_var_dec tenv) vd_list (IdentSet.empty, equs, []) in
eq_list, vd_list
let update_node nd =
let change_name vd arg = { arg with a_name = Some (name vd.v_ident) } in
let sign = Modules.find_value nd.n_name in
let sign = { sign with node_outputs = List.map2 change_name nd.n_output sign.node_outputs } in
Check_signature.check_signature sign;
ignore (Modules.replace_value nd.n_name sign)
let node nd =
debug_do (fun () -> Format.eprintf "Minimizing %a@." print_qualname nd.n_name);
Idents.enter_node nd.n_name;
(* Initial environment *)
let tenv =
let is_input id = List.exists (fun vd -> ident_compare vd.v_ident id = 0) nd.n_input in
List.fold_left (add_equation is_input) PatMap.empty nd.n_equs in
debug_do (fun () -> Format.printf "Very first tenv:\n%a@." debug_tenv tenv) ();
(* Compute fix-point of [compute_new_class] *)
let tenv = separate_classes tenv in
(* Regroup equivalence classes *)
let cenv = compute_classes tenv in
(* Map old identifiers to new ones *)
let mapping = construct_mapping (tenv, cenv) in
(* Reconstruct equation list from grouped equivalence classes *)
let eq_list = reconstruct (tenv, cenv) mapping in
(* Fix renamed var_decs, and add intermediate equations for fused outputs *)
let local = fix_local_var_decs mapping nd.n_local in
let eq_list, output = fix_output_var_decs mapping (eq_list, nd.n_output) in
let nd = { nd with n_equs = eq_list; n_output = output; n_local = local; } in
update_node nd;
nd
let program_desc pd pd_list = match pd with
| Pnode nd -> Pnode (node nd) :: pd_list
| _ -> pd :: pd_list
let program p = { p with p_desc = List.fold_right program_desc p.p_desc []; }