(**************************************************************************) (* *) (* Heptagon *) (* *) (* Author : Marc Pouzet *) (* Organization : Demons, LRI, University of Paris-Sud, Orsay *) (* *) (**************************************************************************) (* simple initialization analysis. This is almost trivial since *) (* input/outputs of a node are forced to be initialized *) (* add a special treatment of clock state variables whose initial *) (* values are known. This allows to accept code generated *) (* for automata *) (* if [clock c = C fby ec] then [merge c (C -> e) ...] is initialized *) (* if [e] is initialized only *) (* $Id: init.ml 615 2009-11-20 17:43:14Z pouzet $ *) open Misc open Names open Ident open Minils open Location open Format type typ = | Iproduct of typ list | Ileaf of init and init = { mutable i_desc: init_desc; mutable i_index: int } and init_desc = | Izero | Ione | Ivar | Imax of init * init | Ilink of init type typ_env = { t_init: init; (* its initialisation type *) t_value: longname option; (* its initial value *) } (* typing errors *) exception Unify let index = ref 0 let gen_index () = incr index; !index let new_var () = { i_desc = Ivar; i_index = gen_index () } let izero = { i_desc = Izero; i_index = gen_index () } let ione = { i_desc = Ione; i_index = gen_index () } let imax i1 i2 = { i_desc = Imax(i1, i2); i_index = gen_index () } let product l = Iproduct(l) let leaf i = Ileaf(i) (* basic operation on initialization values *) let rec irepr i = match i.i_desc with | Ilink(i_son) -> let i_son = irepr i_son in i.i_desc <- Ilink(i_son); i_son | _ -> i (** Simplification rules for max. Nothing fancy here *) let max i1 i2 = let i1 = irepr i1 in let i2 = irepr i2 in match i1.i_desc, i2.i_desc with | (Izero, Izero) -> izero | (Izero, _) -> i2 | (_, Izero) -> i1 | (_, Ione) | (Ione, _) -> ione | _ -> imax i1 i2 let rec itype = function | Iproduct(ty_list) -> itype_list ty_list | Ileaf(i) -> i and itype_list ty_list = List.fold_left (fun acc ty -> max acc (itype ty)) izero ty_list (* saturate an initialization type. Every element must be initialized *) let rec initialized i = let i = irepr i in match i.i_desc with | Izero -> () | Ivar -> i.i_desc <- Ilink(izero) | Imax(i1, i2) -> initialized i1; initialized i2 | Ilink(i) -> initialized i | Ione -> raise Unify (* build an initialization type from a type *) let rec skeleton i ty = match ty with | Tbase _ -> leaf i | Tprod(ty_list) -> product (List.map (skeleton i) ty_list) (* sub-typing *) let rec less left_ty right_ty = if left_ty == right_ty then () else match left_ty, right_ty with | Iproduct(l1), Iproduct(l2) -> List.iter2 less l1 l2 | Ileaf(i1), Ileaf(i2) -> iless i1 i2 | _ -> raise Unify and iless left_i right_i = if left_i == right_i then () else let left_i = irepr left_i in let right_i = irepr right_i in if left_i == right_i then () else match left_i.i_desc, right_i.i_desc with | (Izero, _) | (_, Ione) -> () | _, Izero -> initialized left_i | Imax(i1, i2), _ -> iless i1 right_i; iless i2 right_i | _, Ivar -> let left_i = occur_check right_i.i_index left_i in right_i.i_desc <- Ilink(left_i) | _, Imax(i1, i2) -> let i1 = occur_check left_i.i_index i1 in let i2 = occur_check left_i.i_index i2 in right_i.i_desc <- Ilink(imax left_i (imax i1 i2)) | _ -> raise Unify (* an inequation [a < t[a]] becomes [a = t[0]] *) and occur_check index i = match i.i_desc with | Izero | Ione -> i | Ivar -> if i.i_index = index then izero else i | Imax(i1, i2) -> max (occur_check index i1) (occur_check index i2) | Ilink(i) -> occur_check index i (* computes the initialization type of a merge *) let merge opt_c c_i_list = let rec search c c_i_list = match c_i_list with | [] -> izero | (c0, i) :: c_i_list -> if c = c0 then i else search c c_i_list in match opt_c with | None -> List.fold_left (fun acc (_, i) -> max acc i) izero c_i_list | Some(c) -> search c c_i_list module Printer = struct open Format let rec print_list_r print po sep pf ff = function | [] -> () | x :: l -> fprintf ff "@[%s%a" po print x; List.iter (fprintf ff "%s@]@ @[%a" sep print) l; fprintf ff "%s@]" pf let rec fprint_init ff i = match i.i_desc with | Izero -> fprintf ff "0" | Ione -> fprintf ff "1" | Ivar -> fprintf ff "0" | Imax(i1, i2) -> fprintf ff "@[%a\\/%a@]" fprint_init i1 fprint_init i2 | Ilink(i) -> fprint_init ff i let rec fprint_typ ff = function | Ileaf(i) -> fprint_init ff i | Iproduct(ty_list) -> fprintf ff "@[%a@]" (print_list_r fprint_typ "("" *"")") ty_list let output_typ oc ty = let ff = formatter_of_out_channel oc in fprintf ff "@["; fprint_typ ff ty; fprintf ff "@?@]" end module Error = struct open Location type error = | Eclash of typ * typ exception Error of location * error let error loc kind = raise (Error(loc, kind)) let message loc kind = begin match kind with | Eclash(left_ty, right_ty) -> Printf.eprintf "%aInitialization error: this expression has type \ %a, \n\ but is expected to have type %a\n" output_location loc Printer.output_typ left_ty Printer.output_typ right_ty end; raise Misc.Error end let less_exp e actual_ty expected_ty = try less actual_ty expected_ty with | Unify -> Error.message e.e_loc (Error.Eclash(actual_ty, expected_ty)) let rec typing h e = match e.e_desc with | Econst(c) -> leaf izero | Evar(x) -> let { t_init = i } = Env.find x h in leaf i | Efby(None, e) -> expect h e (skeleton izero e.e_ty); leaf ione | Efby(Some _, e) -> expect h e (skeleton izero e.e_ty); leaf izero | Etuple(e_list) -> product (List.map (typing h) e_list) | Eop(_, e_list) -> let i = List.fold_left (fun acc e -> itype (typing h e)) izero e_list in skeleton i e.e_ty | Eapp(_, e_list) -> List.iter (fun e -> expect h e (skeleton izero e.e_ty)) e_list; skeleton izero e.e_ty | Eevery(_, e_list, n) -> List.iter (fun e -> expect h e (skeleton izero e.e_ty)) e_list; let { t_init = i } = Env.find n h in skeleton i e.e_ty | Ewhen(e, c, n) -> let { t_init = i1 } = Env.find n h in let i2 = itype (typing h e) in skeleton (max i1 i2) e.e_ty | Eifthenelse(e1, e2, e3) -> let i1 = itype (typing h e1) in let i2 = itype (typing h e2) in let i3 = itype (typing h e3) in let i = max i1 (max i2 i3) in skeleton i e.e_ty | Emerge(n, c_e_list) -> let { t_init = i; t_value = opt_c } = Env.find n h in let i = merge opt_c (List.map (fun (c, e) -> (c, itype (typing h e))) c_e_list) in skeleton i e.e_ty | Efield(e1,n) -> let i = itype (typing h e1) in skeleton i e.e_ty | Estruct(l) -> let i = List.fold_left (fun acc (_, e) -> max acc (itype (typing h e))) izero l in skeleton i e.e_ty and expect h e expected_ty = let actual_ty = typing h e in less_exp e actual_ty expected_ty let rec typing_pat h = function | Evarpat(x) -> let { t_init = i } = Env.find x h in leaf i | Etuplepat(pat_list) -> product (List.map (typing_pat h) pat_list) let typing_eqs h eq_list = List.iter (fun { p_lhs = pat; p_rhs = e } -> let ty_pat = typing_pat h pat in expect h e ty_pat) eq_list let build h eq_list = let rec build_pat h = function | Evarpat(x) -> Env.add x { t_init = new_var (); t_value = None } h | Etuplepat(pat_list) -> List.fold_left build_pat h pat_list in let build_equation h { p_lhs = pat; p_rhs = e } = match pat, e.e_desc with | Evarpat(x), Efby(Some(Cconstr c), _) -> (* we keep the initial value of state variables *) Env.add x { t_init = new_var (); t_value = Some(c) } h | _ -> build_pat h pat in List.fold_left build_equation h eq_list let sbuild h dec = List.fold_left (fun h { v_name = n } -> Env.add n { t_init = izero; t_value = None } h) h dec let typing_contract h contract = match contract with | None -> h | Some { c_local = l_list; c_eq = eq_list; c_assume = e_a; c_enforce = e_g; c_controllables = c_list } -> let h = sbuild h c_list in let h' = build h eq_list in typing_eqs h' eq_list; (* assumption *) expect h' e_a (skeleton izero e_a.e_ty); (* property *) expect h' e_g (skeleton izero e_g.e_ty); h let typing_node { n_name = f; n_input = i_list; n_output = o_list; n_contract = contract; n_local = l_list; n_equs = eq_list } = let h = sbuild Env.empty i_list in let h = sbuild h o_list in let h = typing_contract h contract in let h = build h eq_list in typing_eqs h eq_list let program ({ p_nodes = p_node_list } as p) = List.iter typing_node p_node_list; p