
Heptagon/BZR manual

June 14, 2012

1 Introduction and tutorial

1.1 Heptagon: short presentation

Heptagon is a synchronous data�ow language, with a syntax allowing the expression of control
structures (e.g., switch or mode automata).

A typical Heptagon program will take as input a sequence of values, and will output a sequence
of values. Then, variables (inputs, outputs or locals) as well as constants are actually variable
or constant streams. The usual operators (e.g., arithmetic or Boolean operators) are applied
pointwise on these sequences of values.

For example, the Heptagon program below is composed of one node plus, performing the
pointwise sum of its two integer inputs:

node plus(x:int,y:int) returns (z:int)
let
z = x + y;
tel

x and y are the inputs of the node plus; z is the output. x, y and z are of type int, denoting
integer streams. z is de�ned by the equation z =x + y.

An execution of the node plus can then be:

x 1 2 3 4 . . .
y 1 2 1 2 . . .

plus(x, y) 2 4 4 6 . . .

1.2 Compilation

The Heptagon compiler is named heptc. Its list of options is available by :

> heptc -help

Every options described below are cumulable.
Assuming that the program to compile is in a �le named example.ept, then one can compile

it by typing :

> heptc example.ept

1

However, such compilation will only perform standard analysis (such as typing, causality,
scheduling) and output intermediate object code, but not any �nal or executable code.

The Heptagon compiler can thus generate code in some general languages, in order to obtain
either a standalone executable, or a linkable library. The target language must then be given by
the -target option:

> heptc -target <language> example.ept

Where <language> is the name of the target language. For now, available languages are C
(c option) and Java (java option).

1.3 Generated code

The generic generated code consists, for each node, of two imperative functions:

• one �reset� function, used to reset the internal memory of the node;

• one �step� function, taking as input the nodes inputs, and whose call performs one step of
the node, updates the memory, and outputs the nodes outputs.

A standard way to execute Heptagon program is to compile the generated �les together with
a main program of the following scheme :

call the reset function
for each instant
get the inputs values
outputs ← step(inputs)
do something with outputs values

Appendix A give speci�c technical details for each target language.

1.4 Simulation

A graphical simulator is available: hepts. It allows the user to simulate one node by providing a
graphical window, where simulation steps can be performed by providing inputs of the simulated
node.

This simulator tool interacts with an executable, typically issued of Heptagon programs
compilation, and which await on the standard input the list of the simulated node's inputs, and
prints its outputs on the standard output. Such executable, for the simulation of the node f,
can be obtained by the -s <node> option:

> heptc -target c -s f example.ept

We can then directly compile the generated C program (whose main function stand in the
_main.c �le):

> cd example_c
> gcc -Wall -c example.c
> gcc -Wall -c _main.c
> gcc -o f_sim _main.o example.o # executable creation

This executable f_sim can then be used with the graphical simulator hepts, which takes as
argument:

2

• The name of the module (capitalized name of the program without the .ept extension),

• the name of the simulated node,

• the path to the executable f_sim.

> hepts -mod Example -node f -exec example_c/f_sim

2 Syntax and informal semantics

Heptagon programs are synchronous Moore machines, with parallel and hierarchical composition.
The states of such machines de�ne data�ow equations. The Figure 1 gives an example of such
program.

A

y = false

C

y = true

Idle y1 = false

Act y1 = true

cc

Idle y2 = false

Act y2 = true

dd

y = y1 ∧ y2

c

c ∧ d

d

Figure 1: Mixed state and data�ow example

2.1 Nodes

Heptagon programs are structured in nodes: a program is a sequence of nodes. A node is a
subprogram with a name f , inputs x1, . . . , xn, outputs y1, . . . , yp, local variables z1, . . . , zq and
declarations D. yi and zi variables are to be de�ned in D, using operations between values of
xj , yj , zj . Figure 2 gives the syntax of node de�nitions, together with a graphical syntax used
in this manuel1. The declaration of one variable comes with its type (ti, t

′
i and t′′i being the type

of respectively xi, yi and zi).
The program of the Figure 1 can thus be structured as the semantically equivalent program

of the Figure 3. The Figure 4 gives the textual syntax of this program.
Heptagon allows to distinguish, by mean of clocks and control structures (switch, automata),

for declarations and expressions, the discrete instants of activation, when the declarations and
expressions are computed and progress toward further states, and other instants when neither
computation nor progression are performed.

1declaration of local variables are mandatory for the compiler in the textual syntax, however we will sometimes

omit it in the graphical syntax for the sake of brevity

3

f(x1 : t1, . . . , xn : tn) = y1 : t′1, . . . , yp : t′p

D

node f(x1:t1;. . .;xn:tn) returns (y1:t′1,. . .,yp:t
′
p)

var z1:t′′1,. . .,zq:t
′′
q;

let
D
tel

Figure 2: Graphical and textual syntax of node de�nition

2.2 Expressions

2.2.1 Values and combinatorial operations

Heptagon is a data�ow language, i.e., every value, variable or constant, is actually a stream of
value. The usual operators (e.g., arithmetic or Boolean operators) are applied pointwise on these
sequences of values, as combinatorial operations (as opposed to sequential operations, taking into
account the current state of the program: see delays in Section 2.2.2).

Thus, x denotes the stream x1.x2. . . ., and x + y is the stream de�ned by (x + y)i = xi+ yi.

x x1 x2 x3 x4 . . .
y y1 y2 y3 y4 . . .

x+ y x1 + y1 x2 + y2 x3 + y3 x4 + y4 . . .

2.2.2 Delays

Delays are the way to introduce some state in a Heptagon program.

• pre x gives the value of x at the preceding instant. The value at the �rst instant is
unde�ned.

• x ->y takes the value of x at the �rst instant, and then the value of y;

• x fby y is equivalent to x ->pre y.

x x1 x2 x3

y y1 y2 y3
pre x ⊥ x1 x2

x ->y x1 y2 y3
x fby y x1 y1 y2

2.3 Declarations

A declaration D can be either :

• an equation x = e, de�ning variable x by the expression e at each activation instants ;

4

h(a, b) = y

Idle y = false

Act y = true

a ∧ ba

g(a, b) = y

y1 = h(a, c)

y2 = h(b, d)

y = y1 ∧ y2

f(c, d) = y

A

y = false

C

y = true

B y = g(c, d)

c

c ∧ d

d

Figure 3: Structured program example

5

node h(a:bool) returns (y:bool)
let
automaton
state Idle
do y = false
until a then Active
state Active
do y = true
until a then Idle

end
tel

node g (a,b:bool) returns (y:bool)
var y1,y2 : bool;
let
y = y1 & y2;
y1 = h(a);
y2 = h(b);
tel

node f (c,d:bool) returns (y:bool)
let
automaton
state A
do y = false
until c then B
state B
do y = g(c,d)
until c & d then C
state C
do y = true
until d then A

end
tel

Figure 4: Textual syntax

6

• a node application (y1, . . . , yp) = f(e1, . . . , en), de�ning variables y1, . . . , yp by application
of the node f with values e1, . . . , en at each activation instants ;

• parallel declarations of D1 and D2, noted graphically D1

...D2 and textually D1;D2. Vari-
ables de�ned in D1 and D2 must be exclusive. The activation of this parallel declaration
activate both D1 and D2, which are both computed and both progress ;

• a switch control structure ;

• an automaton.

2.3.1 Switch control structures

The switch control structure allows to controls which equations are evaluated:

type modes = Up | Down

node two(m:modes;v:int) returns (o:int)
var last x:int = 0;
let
o = x;
switch m
| Up do x = last x + v
| Down do x = last x - v
end
tel

The last keyword de�nes a memory which is shared by the di�erent modes. Thus, last x
is the value of the variable x in the previous instant, whichever was the activated mode.

2.3.2 Automata

An automaton is a set of states (one of which being the initial one), and transitions between
these states, triggered by Boolean expressions. A declaration is associated to each state. The
set of variables de�ned by the automaton is the union, not necessarily disjoint (variables can
have di�erent de�nitions in di�erent states, and can be partially de�ned : in this case, when the
variable is not de�ned in an active state, the previous value of this variable is taken.

At each automaton activation instant, one and only one state of this automaton is active (the
initial one at the �rst activation instant). The declaration associated to this active state is itself
activated and progress in this activation instant.

Example The following example gives the node updown. This node is de�ned by an automaton
composed of two states:

• the state Up gives to x its previous value augmented of 1

• the state Down gives to x its previous value diminued of 1

This automaton comprises two transitions:

• it goes from Up (the initial state) to Down when x becomes greater or equal than 10;

• it goes from Down to Up when x becomes less or equal 0.

7

node updown() returns (y:int)
var last x:int = 0;
let
y = x;
automaton
state Up
do x = last x + 1
until x >= 10 then Down
state Down
do x = last x - 1
until x <= 0 then Up

end
tel

current state Up Up Up Up Up Up Up Up Up Up Down Down Down . . .
y 1 2 3 4 5 6 7 8 9 10 9 8 7 . . .

Expressions on outgoing transitions of this active state are evaluated, so as to compute the
next active state : these are weak transitions. Transitions are evaluated in declaration order, in
the textual syntax. If no transition can be triggered, then the current state is the next active
state.

3 BZR: Contracts for controller synthesis

Contracts are an extension of the Heptagon language, so as to allow to perform discrete controller
synthesis on Heptagon programs. The extended language is named BZR.

We associate to each node a contract, which is a program associated with two outputs :

• an output eA representing the environment model ;

• an invariance objective eG ;

• a set {c1, . . . , cn} of controllable variables used for ensuring this objective.

This contract means that the node will be controlled, i.e., that values will be given to c1, . . . , cn
such that, given any input trace yielding eA, the output trace will yield the true value for eG.

f(x1, . . . , xn) = (y1, . . . , yn)

assume eA

guarantee eG with (c1, . . . , cn)

y1 = f1(x1, . . . , xn, c1, . . . , cn)
. . .
yn = fn(x1, . . . , xn, c1, . . . , cn)

In the textual syntax, the contracts are noted :

8

node f(x1:t1;. . .;xn:tn) returns (y1:t′1;. . .;yp:t
′
p)

contract
var . . .
let

. . .
tel
assume eA
enforce eG
with (c1:t′′1;. . .;cq:t

′′
n)

var . . .
let
y1 = f1(x1, . . . , xn, c1, . . . , cq);
...
yp = fp(x1, . . . , xn, c1, . . . , cq);
tel

4 BZR Running Example: Multi-task System

4.1 Delayable Tasks

We consider a multi-task system composed of n delayable tasks. Figure 5 shows a delayable task.
A delayable task takes three inputs r, c and e: r is the task launch request from the environment,
e is the end request, and c is meant to be a controllable input controlling whether, on request,
the task is actually launched (and therefore goes in the active state), or delayed (and then forced
by the controller to go in the waiting state by stating the false value to c). This node outputs a
unique boolean act which is true when the task is in the active state.

node delayable(r,c,e:bool) returns (act:bool)
let
automaton
state Idle
do act = false
until r & c then Active
| a & not c then Wait

state Wait
do act = false
until c then Active
state Active
do act = true
until e then Idle

end
tel

Figure 5: Delayable task

9

The Figure 6 shows then a node ntasks where n delayable tasks have been put in parallel.
The tasks are inlined so as to be able to perform DSC on this node, taking into account the
tasks' states. Until now, the only interest of modularity is, from the programmer's point of view,
to be able to give once the delayable task code.

node ntasks(r1, . . . , rn, e1, . . . , en:bool)
returns (a1, . . . , an:bool)

contract
let
ca1 = a1 & (a2 or . . . or an);
...
can−1 = an−1 & an;
tel
enforce not (ca1 or \ldots or can−1)
with (c1, . . . , cn:bool)
let
a1 = inlined delayable(r1,c1,e1);
...
an = inlined delayable(rn,cn,en);
tel

Figure 6: ntasks node: n delayable tasks in parallel

This ntasks node is provided with a contract, stating that its composing tasks are exclusive,
i.e., that there are no two tasks in the active state at the same instant. This contract is enforced
with the help of the controllable inputs ci.

4.2 Contract composition

We want know to reuse the ntasks node, in order to build modularly a system composed of 2n
tasks. The Figure 7 shows the parallel composition of two ntasks nodes. We associate to this
composition a new contract, which role is to enforce the exclusivity of the 2n tasks.

It is easy to see that the contract of ntasks is not precise enough to be able to compose several
of these nodes. Therefore, we need to re�ne this contract by adding some way to externally control
the activity of the tasks.

4.3 Contract re�nement

We �rst add an input c, meant to be controllable. The re�ned contract will enforce that:

1. the tasks are exclusive,

2. one task is active only at instants when the input c is true. This property, appearing
in the contract, allow a node instantiating ntasks to forbid any activity of the n tasks
instantiated.

The Figure 8 contains this new ntasks node.
However, the controllability introduced here is know too strong. The synthesis will succeed,

but the computed controller, without knowing how c will be instantiated, will actually block

10

node main(r1, . . . , r2n, e1, . . . , e2n:bool)
returns (a1, . . . , a2n:bool)

contract
let
ca1 = a1 & (a2 or . . . or a2n);
...
ca2n−1 = a2n−1 & a2n;
tel
enforce not (ca1 or . . . or ca2n−1)
let
(a1, . . . , an) = ntasks(r1, . . . , rn,e1, . . . , en);
(an+1, . . . , a2n) = ntasks(rn+1, . . . , r2n,en+1, . . . , e2n);
tel

Figure 7: Composition of two ntasks nodes

every tasks in their idle state. Indeed, if the controller allows one task to go in its active state,
the input c can become false at the next instant, violating the property to enforce.

Thus, we propose to add an assumption to this contract: the input c will not become false if
a task was active an instant before. This new contract is visible in Figure 9.

We can then use this new ntasks version for the parallel composition, by instantiating the c
input by a controllable variable and its negation. This composition can be found in Figure 10.

A Generated code

A.1 C generated code

C generated �les from an Heptagon program example.ept are placed in a directory named
example_c. This directory contains one �le example.c. For each node f of the source program,
assuming that f has inputs (x1 : t1, . . . , xn : tn) and outputs (y1 : t′1, . . . , yp : t′p), ti and t′i being
the data types of these inputs and outputs, then the example.c �le contains, for each node f:

• A Example__f_reset function, with an argument self being a memory structure instance:

void Example__f_reset(Example__f_mem* self);

• A Example__f_step function, with as arguments the nodes inputs, a structure _out where
the output will be put, and a memory structure instance self:

void Example__f_step(t1 x1, ..., tn xn,
Example__f_out* _out,
Example__f_mem* self);

After the call of this function, the structure _out contains the outputs of the node:

typedef struct \{
t′1 y1;
...

11

node ntasks(c,r1, . . . , rn,e1, . . . , en:bool) returns (a1, . . . , an:bool)
contract
let
ca1 = a1 & (a2 or . . . or an);. . .
can−1 = an−1 & an;
one = a1 or . . . or an;
tel
enforce not (ca1 or . . . or can−1) & (c or not one)
with (c1, . . . , cn:bool)
let
a1 = inlined delayable(r1,c1,e1);
...
an = inlined delayable(rn,cn,en);
tel

Figure 8: First contract re�nement for the ntasks node

t′p yp;
\} Example__f_ans;

An example of main C code for the execution of this node would be then:

#include "example.h"

int main(int argc, char * argv[]) \{

Example__f_m mem;
t1 x1;
...
tn xn;
Example__f_out ans;

/* initialize memory instance */
f_reset(&mem);

while(1) \{
/* read inputs */
scanf("...", &x1, ..., &xn);

/* perform step */
Example__f_step(x1, ..., xn, &ans, &mem);

/* write outputs */
printf("...", ans.y1, ..., ans.yp);
\}
\}

The above code is nearly what is produce for the simulator with the -s option (see Section 1.4).

12

node ntasks(c,r1, . . . , rn,e1, . . . , en:bool) returns (a1, . . . , an:bool)
contract
let
ca1 = a1 & (a2 or . . . or an);. . .
can−1 = an−1 & an;
one = a1 or . . . or an;
pone = false fby one;
tel
assume (not pone or c)
enforce not (ca1 or . . . or can−1) & (c or not one)
with (c1, . . . , cn)
let
a1 = inlined delayable(r1,c1,e1);
...
an = inlined delayable(rn,cn,en);
tel

Figure 9: Second contract re�nement for the ntasks node

A.2 Java generated code

Java generated �les from an Heptagon program example.ept are placed in a directory named
example_java. This directory contains one Java class f (in the �le f.java) for each node f of the
source program. Assuming that f has inputs (x1 : t1, . . . , xn : tn) and outputs (y1 : t′1, . . . , yp :
t′p), ti and t′i being the data types of these inputs and outputs, then this f class implements the
following interface:

public interface f {

public void reset();

public fAnswer step(t1 x1, ..., tn xn);
}

The fAnswer class being a structure containing the outputs:

public class fAnswer {
t′1 y1;
...
t′p yp;
}

13

node main(r1, . . . , r2n,e1, . . . , e2n:bool) returns (a1, . . . , a2n:bool)
contract
let
ca1 = a1 & (a2 or . . . or a2n);
...
ca2n−1 = a2n−1 & a2n;
tel
enforce not (ca1 or . . . or ca2n−1)
with (c:bool)
let
(a1, . . . , an) = ntasks(c,r1, . . . , rn,e1, . . . , en);
(an+1, . . . , a2n) = ntasks(\Not c,rn+1, . . . , r2n,en+1, . . . , e2n);
tel

Figure 10: Two ntasks parallel composition

14

	Introduction and tutorial
	Heptagon: short presentation
	Compilation
	Generated code
	Simulation

	Syntax and informal semantics
	Nodes
	Expressions
	Values and combinatorial operations
	Delays

	Declarations
	Switch control structures
	Automata

	BZR: Contracts for controller synthesis
	BZR Running Example: Multi-task System
	Delayable Tasks
	Contract composition
	Contract refinement

	Generated code
	C generated code
	Java generated code

