
appor t  
de recherche 

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
76

31
--

F
R

+
E

N
G

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Synchronous Control of Reconfiguration in Fractal
Component-based Systems – a Case Study

Tayeb Bouhadiba — Quentin Sabah — Gwenaël Delaval — Eric Rutten

N° 7631

May 2011

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1

http://hal.inria.fr/inria-00596883/fr/
http://hal.archives-ouvertes.fr


in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Synchronous Control of Reconfiguration in

Fractal Component-based Systems – a Case

Study

Tayeb Bouhadiba , Quentin Sabah , Gwenaël Delaval , Eric
Rutten

Theme :
Équipe-Projet SARDES

Rapport de recherche n° 7631 — May 2011 — 32 pages

Abstract: In the context of component-based embedded systems, the man-
agement of dynamic reconfiguration in adaptive systems is an increasingly
important feature. The Fractal component-based framework, and its indus-
trial instantiation MIND, provide for support for control operations in the
lifecycle of components. Nevertheless, the use of complex and integrated
architectures make the management of this reconfiguration operations dif-
ficult to handle by programmers. To address this issue, we propose to use
synchronous languages, which are a complete approach to the design of re-
active systems, based on behavior models in the form of transition systems.
Furthermore, the design of closed-loop reactive managers of reconfigura-
tions can benefit from formal tools like Discrete Controller Synthesis. In
this paper we describe an approach to concretely integrate synchronous re-
configuration managers in Fractal component-based systems. We describe
how to model the state space of the control problem, and how to specify the
control objectives. We describe the implementation of the resulting man-
ager with the Fractal/Cecilia programming environment, taking advantage
of the Comete distributed middleware. We illustrate and validate it with the
case study of the Comanche HTTP server on a multi-core execution plat-
form.

Key-words: Component-based systems, synchronous programming, re-
configurable systems, discrete controller synthesis.

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



Synchronous Control of Reconfiguration in

Fractal Component-based Systems – a Case

Study

Résumé : Dans le contexte des composants pour systèmes embarqués, la
gestion de la reconfiguration dynamique devient de plus en plus importante.
Le modèle à composants Fractal et son implémentation MIND, fournissent
des moyens de contrôle de cycle de vie des composants ainsi que des moyen
pour le contrôle des architectures. L’utilisation des architectures intégrées
de plus en plus complexes, rend la gestion des opérations de reconfiguration
difficile à maintenir par le programmeur. Cette gestion devient plus com-
plexe quand des propriétés globales sur le systèmes doivent être assurées.

Nous proposons d’utiliser des langages synchrones réactifs, reposant sur
des modèles comportementaux sous la forme de systèmes de transitions. De
plus, notre approches, qui produit un manager synchrone pour la reconfig-
uration dynamique profite des techniques formelles comme la Synthèse de
Contrôleurs Discrets.

Ce papier décrit l’intégration concrète d’un manager synchrone pour la
reconfiguration de systèmes-à-composants Fractal. Nous détaillerons notre
approche en commençant par la partie modélisation du problème de con-
trôle sous forme d’espace d’états de configurations, ainsi que la description
des propriétés de contrôle. Ensuite, nous aborderons la partie implémen-
tation du manager résultant en Fractal/Cecilia et son intégration dans des
applications Fractal distribuées en utilisant le middleware Comete. Nous
validerons notre approche au moyen d’un cas d’étude sur le serveur HTTP
Comanche sur une plateforme d’exécution multicoeurs.

Mots-clés : Systèmes à base de composants, Programmation Synchrone,
Systèmes reconfigurables, Synthèse de contrôleurs discrets.

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 3

Contents

1 Introduction 5

2 Background 5

2.1 The Fractal Component Model . . . . . . . . . . . . . . . . . . . 5
2.2 Comete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Heptagon and BZR . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Heptagon language . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 BZR and controller synthesis . . . . . . . . . . . . . . . . . 9
2.3.3 Heptagon/BZR compilation . . . . . . . . . . . . . . . . . . 10

2.4 System/manager Interaction . . . . . . . . . . . . . . . . . . . . . 11

3 The Comanche Http Server 11

3.1 Components architecture . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Execution architecture . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Renconfiguration policy . . . . . . . . . . . . . . . . . . . . . . . 13

4 Designing the manager 13

4.1 Modeling Components With Heptagon . . . . . . . . . . . . . . . 14
4.1.1 Modeling Software Components . . . . . . . . . . . . . . . 14
4.1.2 Modeling Hardware Components . . . . . . . . . . . . . . 15

4.2 Complete system model . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Describing Control Objectives with BZR . . . . . . . . . . . . . . 18

5 Manager Integration 19

5.1 Wrapping the manager into a component . . . . . . . . . . . . . 20
5.2 Concrete integration of the manager . . . . . . . . . . . . . . . . 20

6 Asynchronous commands 22

6.1 Modeling command execution . . . . . . . . . . . . . . . . . . . . 22
6.1.1 Behavioral models . . . . . . . . . . . . . . . . . . . . . . . 22
6.1.2 Objectives and contracts . . . . . . . . . . . . . . . . . . . 22

6.2 Controller Architecture . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Related work 24

8 Conclusion 25

A Complete Example and Integration 26

B Simulation of the Synchronous Program 26

B.1 BZR Program Compilation into C Code . . . . . . . . . . . . . . . 28

C Integration of the step() function 28

C.1 Wrapping The Generated Code Into a Fractal Component . . . . 29
C.1.1 The Component EventReceiver . . . . . . . . . . . . . . . 30
C.1.2 The Component SynchronousProgram . . . . . . . . . . . 30
C.1.3 The Component CommandsGenerator . . . . . . . . . . . 30

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 4

D Retrieving Application/Environment Events 31

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 5

1 Introduction

In the context of component-based embedded systems, the management of
reconfiguration in adaptive systems is an increasingly important feature.
The Fractal component-based framework, and its industrial instantiation
MIND, provide for support for control operations in the lifecycle of compo-
nents. Nevertheless, the use of complex and integrated architectures make
the management of this reconfiguration operations difficult to handle by
programmers. To address this issue, we propose to use synchronous lan-
guages, which are a complete approach to the design of reactive systems,
based on behavior models in the form of transition systems. Furthermore,
the design of closed-loop reactive controllers of reconfigurations can benefit
from formal tools like Discrete Controller Synthesis (DCS).

Using DCS, integrated in a programming language, provides designers
for support in the correct design of controllers. This method is different
from the usual method of first programming and then verifying. It involves
the automated generation of part of the control logic of a system. Discrete
control has until now been applied to computing systems only very rarely
[20]. An important challenge is to integrate this formal reactive systems
design in actual, practical operating systems. An open issue is the identifi-
cation and correct use of the practical sensors and monitors providing for
reliable and significant information; the control points and actuators avail-
able in the API of the OS, enabling enforcement of a management policy;
the firing conditions for the transitions of the automata.

In this paper we describe an approach to concretely integrate synchronous
reconfiguration controllers in Fractal component-based systems. Our con-
tribution is: (i) a synchronous model of the behavior of the reconfigurable
components, in the form of the state space of the control problem, and the
specification of the control objectives (Section 4); (ii) a component-based ar-
chitecture for the implementation of the resulting controller with the Frac-
tal/Cecilia programming environment, taking advantage of the Comete mid-
dleware. (Sections 5 and 6). We validate it by the case study of the Co-
manche HTTP server deployed on a multi-core execution platform.

2 Background

2.1 The Fractal Component Model

We introduce Fractal [3][9], a hierarchical and reflective component model
and Cecilia [1], a component-base software engineering framework provid-
ing a C implementation of this model. Fractal defines components as entities
encompassing behaviours and data. A component can be dismentled in two
parts: a membrane and a content. The content is either a set of operations
or a finite number of sub-components, which are under the control of the
enclosing membrane. Components can be nested at an arbitrary level in a
recursive fashion.

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 6

(a)

lcc api

Loader

comete

start A0

start B1

start B0

bind A0b2
to B0u

bind A0b1
to B0u

B1 ← instantiate B on pe1

B0 ← instantiate B on pe1

A0 ← instantiate A on pe0

(b)

B0 lcc

B1 lcc

lcc api

Loader

lcc
A0

pe0 pe1

Figure 1: The deployment process. (a) the loader is in charge of building
the initial configuration (b)

Components interact with their environment through interfaces. Inter-
faces are typed collections of operations. They can be of two sorts: client
interfaces emit operation invocations, server interfaces receive operation
invocations. One-way operation invocations may carry arguments, two-way
operations consist of an invocation followed by the return of a result. Com-
ponents can expose several interfaces. Client and server interfaces are con-
nected through explicit bindings. Functional interfaces are access points
to content operations, while Controller interfaces define membrane oper-
ations. The membrane embodies the control behaviour associated with a
particular component.

The Fractal model defines a set of optional controller interfaces to adress
minimal requirements in terms of introspection, composition and life-cycle.
Among others are:

• Life-Cycle Controller: controls component’s behavioural phases such
as starting and stopping.

• Binding Controller: establish/break bindings between component’s in-
terfaces and its environment.

The Cecilia framework is a coherent toolchain to design, compile and
deploy component-based applications. It allows the description of hierar-

control interface

membranefunctional interface

binding

internal interface

composite component

C

A B

client interface

primitive component

server interface

Figure 2: Fractal vocabulary.

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 7

chical Fractal architectures using an xml ADL, and the implementation of
the primitive components using the C langage. By automaticaly generating
the controllers related glue-code, the toolchain allow the developer to focus
on the implementation of the primitives’ content operations i.e. the func-
tional interfaces’ methods in figure 2. From an application definition and
its implementation, the toolchain generate a standalone executable or a set
of independent component binaries. The Comete middleware described in
the next section relies on these independent bricks to dynamically load and
bind instances of components to build arbitrary architectures.

2.2 Comete

Comete [2] is a minimal middleware and run-time layer engineered by STMi-
croelectronics to dynamicaly deploy, run and reconfigure Cecilia compo-
nents over distributed platforms. Comete is providing a distributed event-
driven architecture. Applications deployed using Comete can take advan-
tage of the high-level abstraction of this platform to communicate asyn-
chronous messages between components. The middleware models a dis-
tributed platform as a set of processing elements and handles communica-
tion between them so that application developpers don’t have to know about
the underlying communication channels and protocols.

The first step of any application deployment using Comete lies in the in-
stantiation of a loader component (Figure 1(a)) bound to the Comete API
interface (this interface is further detailed in Listing 4). This mandatory
component is in charge of deploying the application by invoking Comete
operations such as instantiations and bindings to build the initial config-
uration (Figure 1(b)). Once the deployment process done, the loader can
remotely manipulate LifeCycleController (lcc) interface of any instantiated
component through the start/stop methods to initiate the execution. Then,
the application is free to diverge from its initial architecture by successive
reconfigurations. The initial deployment is like a reconfiguration from a
single primitive component to a potentially more complex architecture.

Each processing element executes message handlers related to compo-
nents it embodies. The runtime layer consists of a task queue associated
with a FIFO scheduler (Figure 3). The scheduler is non preemptive. Every
message directed to a given component will be handled as task on the re-
spective processing element. The execution model guaranties that: a) At
any given time only one method is executing on a processing element. b)
Components deployed on different processing element may execute meth-
ods concurrently.

At its lowest level, the runtime layer is dealing with platform hetero-
geneity in terms of operating systems, hardware platforms and communi-
cation protocols. This heterogeneity is then abstracted by the middleware
layer. Internally, a remote binding is handled by a couple of stub/skele-
ton components loaded respectively on the client’s and server’s process-
ing element. On the client side, the stub transparently intercepts and se-
rializes emitted messages. Data are then transmitted through a platform

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 8

s
tu
b
a

B0

B1

A0

communication
channel

a0
a1
a2

b0
b1

b0

b1

a0

a1
a2

s
tu
b
b

pe0 pe1

bindinga

bindingb

platform

middleware

application

sched.

fifo

Figure 3: A simple application spanning over two processing elements. In-
ternal implementation of applicative bindings (stroked) involves dedicated
communication components in the middleware layer to support platform
channels.

channel to the server side. The skeleton reads serialized message data,
operates the inverse process and pushes a handler task in the local run-
time queue. The message arguments are stored until the associated task
is scheduled. Thanks to a generic, scalable, component-based architecture,
Comete is targeting a wide range of platforms, from embedded System-On-
Chip to distributed computers. The middleware is built over an extensible
library of components providing support for various processing elements
and communication channels. Noticeable specializations of Comete are:
the STm8010(Traviata) board including three ST200 cores, the xStream
many-cores streaming prototype, posix-compliant operating systems easing
deployment over multi-threaded hardware, computers distributed over a
TCP/IP network.

2.3 Heptagon and BZR

2.3.1 Heptagon language

In this work, we use the language Heptagon/BZR [13]1. The Heptagon lan-
guage allows to describe reactive systems by means of generalized Moore
machines, i.e., mixed synchronous dataflow equations and automata [11],
with parallel and hierarchical composition. The basic behavior is that at
each reaction step, values in the input flows are used in order to compute
the values in the output flows for that step. Inside the nodes, this is ex-
pressed as a set of declarations, which takes the form of equations defining,
for each output, the values that the flow takes, in terms of an expression on
other flows’ instantaneous values, possibly using values computed in pre-
ceding steps (also known as state values).

Figure 4 shows a small program in this language. It describes the control
of a task, which can either be idle or active. When it is idle, i.e., in the initial

1Available at bzr.inria.fr

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1

bzr.inria.fr


BZR for the control of reconfigurations in Fractal 9

Idle state, then the occurrence of the input r requests the launch of the
task. Another input c (which will be controlled further by the synthesized
controller) can either allow the activation, or temporary block the request
and make the automaton go to a waiting state. When active, the task can be
ended with the input e. This delayable node has two outputs, a featuring
the instantaneous activity of the task, and s being emitted on the instant
when it becomes active:

step # 1 2 3 4 5 6 7 . . .

r 0 1 0 0 0 0 0 . . .

c 0 0 1 0 0 0 0 . . .

e 0 0 0 0 0 1 0 . . .

a 0 0 0 1 1 1 0 . . .

s 0 0 1 0 0 0 0 . . .

Active

r∧¬c

r ∧ c / se

c / s

a = 0a = 0

a = 1

delayable(r,c,e)= a,s

Idle wait

node delayable( r ,c ,e : bool) returns (a , s : bool)
let

automaton

state Idle
do a = false ; s = r and c
until r and c then Active

| r and not c then Wait
state Wait
do a = false ; s = c
until c then Active

state Active
do a = true ; s = false

until e then Idle
end

tel

Figure 4: Delayable task (graphical/textual syntax).

2.3.2 BZR and controller synthesis

BZR is an extension of Heptagon, allowing its compilation to involve dis-
crete controller synthesis (DCS) using the DCS tool Sigali [17]. DCS allows
to compute automatically a controller, i.e., a function which will act on the
initial program so as to enforce a given temporal property. Concretely, the
BZR language allows the declaration of controllable variables, which are
not defined by the programmer. These free variables can be used in the
program so as to let some choices undecided (e.g., choice between several
transitions). The controller, computed by DCS, is then able to avoid unde-
sired states of the application by setting and updating appropriate values
for these variables at runtime.

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 10

twotasks(r1, e1, r2, e2) = a1, s1, a2, s2

enforce not (a1 and a2)

with c1, c2

(a1, s1) = delayable(r1, c1, e1)

(a2, s2) = delayable(r2, c2, e2)

Figure 5: Mutual exclusion in BZR.

Figure 5 shows an example of use of these controllable variables. It con-
sists in two instances of the delayable node, as in Figure 4. They run in
parallel, defined by synchronous composition: one global step corresponds
to one local step for every equation, i.e., here, for every instance of the
automaton in the delayable node. Then, the twotasks node so defined is
given a contract composed of two parts: the with part allowing the decla-
ration of controllable variables (c1 and c2), and the enforce part allowing
the programmer to assert the property to be enforced by DCS, using the
controllable variables. Here, we want to ensure that the two tasks running
in parallel won’t be both active at the same time. Thus, c1 and c2 will be
used by the computed controller to block some requests, leading automata
of tasks to the waiting state whenever the other task is active.

2.3.3 Heptagon/BZR compilation

The compilation of a Heptagon/BZR program produces sequential code in
a target general programming language (C, Java or Caml). This code takes
the form of two functions (or methods), named reset and step. reset ini-
tializes the internal state of the program. The step function is evaluated at
each logical instant to compute output values from an input vector and the
current state, possibly updated. A typical way of using these functions is to
enclose this step call in an infinite loop:

current_state ← reset() // state initialization

for each step do

inputs ← gather current events

outputs, next_state ← step(inputs, current_state)

handle outputs

current_state ← next_state

Eventually, such infinite loop will not be as clearly stated, but hidden
within, e.g., events managers, threads, interrupts, depending on the appli-
cation context. In our context, we will use the C generated code. The API,
for a node f with inputs x1, . . . , xn (typed ti) and outputs y1, . . . , yp (typed
t′i) is given below. The additional input mem is a pointer towards the internal
state, to be used and updated. The result of the f_step call is a structure in
which are placed the outputs values.

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 11

void f_reset(f_mem* mem);

f_res f_step(t_1 x_1, ...,t_n x_n, f_mem* mem);

2.4 System/manager Interaction

Our approach applies to systems supporting dynamic reconfiguration and
providing some events describing their observable states. It relies on the
modeling of the system (and possibly the environment) by means of Hep-
tagon automata and describing the control objectives. The BZR compila-
tion tool-chain compiles the automata and the control objectives into a syn-
chronous program which will be referred to as manager in the sequel. The
manager encapsulates a model of the system and a controller to enforce the
objectives.

Figure 6 illustrates the use of a manager (i.e., synchronous program) to
manage the reconfiguration of a system. The manager receives some input
events from the system and the environment. According to these inputs
and the current state of the model, the controller may update the state of
the model. Internally, this reduces to fill the controllable variables with
the appropriate computed values. The computation of the new state of the
model corresponds to a step of the manager and may fire some commands.
The commands are meant to reconfigure the managed system in order for
this latter to be coherent with its model.

controller

system modelenvironement

user /

commands

managed
system

manager
events events

Figure 6: Application control by a manager

3 The Comanche Http Server

This section describes an example of a reconfigurable component-based
software application written in Fractal together with the execution platform
on which the application will be run. The complete system will be used as
a case-study in order to introduce our approach for the management of re-
configurable systems in Section 4.

3.1 Components architecture

Figure 7 describes the architecture of a HTTP server written in Fractal. It is
a variant of the Comanche server used as an example in tutorials2. Incoming
requests are received by the frontend component, which transmits them

2http://fractal.ow2.org/tutorial

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 12

to the analyzer component. The latter forward well-formed requests to
the dispatcher which queries fileserver1 or fileserver2 to solve the
requests. The analyzer component can also send requests to the logger to
keep track of HTTP requests.

file
server2

server1
filedispactheranalyzerfrontend

logger

Figure 7: Comanche architecture.

The required components for this application to work are frontend,
analyzer, dispatcher and fileserver1. A first available degree of dynam-
ical reconfiguration lies in fileserver2 and logger. As illustrated by the
dashed lines, fileserver2 and loggermay be activated (resp., deactivated)
and connected to (resp., disconnected from) the rest of the components.

3.2 Execution architecture

A second degree of reconfiguration concerns component mapping over pro-
cessing elements. For our experiments, we used a server equipped with
two Intel Xeon dual-core processors, each one running at 1.86GHz clock
frequency. The four available cores enable the execution of four tasks in
parallel. In the sequel, we will refer to each core as a processing element
(pe0, ..., pe3).

Figure 8 describes the initial deployment of Comanche components us-
ing Comete middleware (Section 2.2) on the execution platform. Each com-
ponent is associated with a processing element, on which it will execute in
order to handle messages in its associated FIFO. Component bindings are
implemented by the Comete middleware as asynchronous communication
channels. For the sake of clarity of the figure, the bindings are made im-
plicit. Notice that the manager and Comete loader also execute on the same
platform.

FS1

F

pe3

L

FS2D

A

pe2

pe1 FIFOspe0

manager loader

Figure 8: Architecture of the controlled application

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 13

3.3 Renconfiguration policy

The control objectives we want to enforce are related to distinct aspects
of the Comanche application and the execution platform. We are able to
design a manager to fire reconfiguration commands in order to enforce the
objectives. Comete together with Fractal API provide means to reflect man-
ager commands on the managed system. Those means we are interested
in are component migration provided by Comete API and lifecycle (resp.,
binding) control interface of the Fractal API in order to start/stop (resp.,
bind/unbind) components. In the following, we list the control objectives:

Processing element availability A processing element is a shared resource
that may be unavailable for some reasons (e.g., energy saving, higher
priority task, fault, etc.). We want that no component is running on an
unavailable processing element (component migration).

Workload balancing There is a maximum workload, a processing element
should not exceed. Migrate components in order to decrease the work-
load.

Quality-of-Service When the fileserver1 is overloaded, start the fileserver2
in order to keep the average response time low (lifecycle and binding
control).

Exclusiveness The logger should be started upon the request of the user,
and then fileserver2 should not be running (lifecycle and binding
control).

In order to ensure the objectives we described above, a manager is im-
plemented and put in a closed-loop with the software application as de-
scribed in section 2.4. A simple scenario is as follows. The manager receives
an event stating that the fileserver1 is overloaded. It performs some com-
putation and emits the command to start the fileserver2 and bind it to the
rest of the components. We measure the workload of fileserver1 by com-
paring the size of the FIFO associated to it with a specific threshold. Next,
the controller receives from the environment that the processing element
pe3 is no longer available. The controller reacts by emitting the command
to migrate the components running on pe3 to other processing elements,
balancing the workload as described by the related property.

4 Designing the manager

We follow a modeling method for the design of a manager to enforce the
properties we described above; we will elaborate on it by improving the
treament of reconfiguration actions in Section 6. The use of DCS ensures
that the manager is correct with respect to the properties given as objec-
tives. It mainly consists of the following steps: (1) Providing a synchronous
model of the behavior of the reconfigurable components and the processing
elements, giving the state space of the control problem; (2) Specifying the

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 14

control objectives and identifying the controllable variables; (3) Compiling:
controller synthesis and code generation.

4.1 Modeling Components With Heptagon

We adopt a modular modeling approach to enable reusing models. More-
over, we distinguish between the application models (i.e., software) and the
execution platform (e.g., hardware) models. Instances of these models will
be associated in the main synchronous program (see Section 4.3) to ob-
tain the global model. Hence, the approach facilitates replacing hardware
models without modifying software ones in case the application is ported to
other execution platforms.

4.1.1 Modeling Software Components

Component Lifecycle Figure 9-(a) shows the automaton modeling a Frac-
tal component lifecycle. A component may be in one of three possible states.
A Running (R) component is connected to the other components and may
handle incoming messages in its associated FIFO. A Stopped (S) compo-
nent is disconnected from the others and can not execute to handle mes-
sages in its input FIFO. Finally, a component may be put in a Safe Stopping

(SS) in order to handle the remaining messages in its FIFO before com-
pletely stopping.

The automaton has three inputs (ch, fe and s for change, FIFOs empty

and stop respectively), and two outputs run and disc. Initially, the compo-
nent is stopped (i.e., state S). It goes to R (i.e., running) upon receiving ch.
From this state, it goes to state SS upon receiving ch. At state SS, it goes to
state S upon receiving fe which means that the input FIFOs are empty. At
any state, receiving s forces the automaton to go to the state S. The two out-
puts of the automaton run and disc (for running and disconnect) take their
values as described by the figure. These outputs tell whether a component
is running (resp., disconnected) or not.

FE FF

¬f

f full=1

full=0

fifo(f)=full

disc=1run=0

ch∧¬fe/disconnect

fe∨s/stop

SS

S

R

ch/start,
connect

s∨(ch∧fe)/stop, disconnect

lifecycle(ch,fe,s)=run, disc,...

(a) (b)

disc=0
run=1run=1

disc=1

Figure 9: Model of: (a) Lifcecyle, (b)FIFO state

As described by the transitions of the automaton, some reconfiguration
commands (start, stop, connect, disconnect), represented as additional out-
puts, are fired upon changing state. These commands are meant to re-
configure the related component in order to be coherent with its lifecycle

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 15

model. For instance the transition from S to R, outputs the commands start
and connect in order to start the component and connect it to the rest of the
components.

FIFO State With each server interface of a component is associated a
FIFO. The FIFO stores the input events before they are handled by the
component. Figure 9-(b) models the state of such FIFOs. It is a two state
automaton with one input and one output (f and full respectively). Initially,
the FIFO is empty. It goes to the state FF (resp., FE) upon receiving f (resp.,
¬f). The value output full indicates the state of the FIFO: true (resp., false)
means that the FIFO size is above (resp., below) a given threshold.

4.1.2 Modeling Hardware Components

Component mapping on Processing Elements Figure 10 models the
mapping of a component on the available processing elements. It is a four
state automaton. Each state represents mapping on one processing ele-
ment, on which a component may run. It may change from one state to
another depending on the Boolean inputs a and b. That is, each state has
three outgoing transitions (one to each remaining state). The transition to
take depends on the value of a and b (two Boolean inputs to encode four
possibilities). For the sake of clarity, not all of the transitions are present in
the figure. The output of the automaton is of enumerated type; it takes its
values in {pe0, pe1, pe2, pe3} depending on the state of the automaton.

The transitions of the automaton are associated with outputs (mig0, mig1,

mig2, mig3). They are associated to migration commands, in order to mi-
grate the corresponding component to its new processing element.

PE1

PE0

PE2

PE3

¬a∧¬b/mig1 ¬a∧b/mig2

¬a∧¬b/mig3 ¬a∧¬b/mig2

pos=pe0

pos=pe3

pos=pe2

position(a,b)=pos,...

pos=pe1

a∧¬b/mig3

Figure 10: Partial model of a component mapping.

Processing Element Availability We need a model of the availability of
a processing element in order to know whether a component may run on it
or not. Figure 11 describes such a model. It is a two states automaton with
one input dis (for disable) and one output onwhich tells on the availability of
the processing element. Initially, a processing element is available (i.e., at
state ON). It goes to the state OFF (resp., ON) upon receiving dis (resp., ¬dis).
The output on takes its value depending on the state of the automaton.

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 16

ON OFF

¬dis

dis

on=1

on=0

proc(dis)=on

Figure 11: Model of processing element availability

Processing Element Workload The workload of a pei depends on the
components running on it and their bindings to the other components. Two
components C and S (client and server), bound through their respective
interfaces Ic and Is induce some workload on their associated processing
elements pec and pes. Based on some benchmarks, we estimate the work-
load related to pec and pes as described by the following equations:

a) load(pe, s) = f × c. b) load(pe, c) = f × distance.
The workload of the processing element running the server component

S depends on the cost c of the executed function, and the function call fre-
quency f . The processing element running the client component is charged
with the communication effort. That is, the processing element workload
depends on the call frequency and a parameter distance which depends on
the position of the two communicating processing elements. In our case-
study, the processing elements are processor cores. The communication
uses cache memories of distinct levels. The values we associate to distance

represent the fact that the communication cost differs depending on the
type of cache used between the processing elements. These values are:
distance = 200 in case pec and pes refer to the same core, distance = 500

in case the processing elements are distinct cores of the same processor,
distance = 1000 in case the two processing elements refer to distinct cores
of distinct processors.

In Listing 1, we give the interface of the node cost implementing work-
load equations. For a given binding between two components, the node
takes as input the position of the client and the server component, the fre-
quency f of the calls between them and the cost of the function executed
by the server component. The outputs are integer values associating work-
loads induced by the two components with the available processing ele-
ments. The involved processing elements will be associated with positive
integer values, the others will take the value zero.

node cost (posC, posS: peid ; f , c : int )
returns (cp0, cp1, cp2, cp3: int )

Listing 1: The interface of the node cost

4.2 Complete system model

The main program (partially described in listing of Listing 2) consists of
the synchronous composition of the automata modeling each component
(hardware and software). The inputs of the main node consist of the events
stating on: (pes1) the availability of the processing element pe1; (add_L) the

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 17

request of the logger; (f_S1, f_S2, f_L) the load of the FIFO associated with
fileserver1, fileserver2 and logger respectively.

The outputs of the main program correspond to the reconfiguration/mi-
gration commands fired by the automata. For instance mig_L_p0 is fired
by the automaton modeling the position of the component logger (line 22).
When mig_L_p0 takes the value true, the component logger should be mi-
grated to pe0. The output start_S2 is fired by the automaton modeling
fileserver2 lifecycle (line 17). When it is true, it states that the compo-
nent should be started.

The main program is composed of: An instance of node fifo for each
server interface of the components (lines 11-13). An instance of node life-
cycle for each component (lines 15-17). An instance of processing element
availability for each processing element (lines 19-20). An instance of node
position for each component (lines 22-24). An instance of node cost for
each binding between components (lines 26-28). Finally, the cost imposed
on each processing element corresponds to the sum of all the cost induced
by the bindings (lines 29-30).

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 18

node main(pes1 , add_L, f_S1 , f_S2 , f_L : bool)
2 returns (mig_L_p0, . . . , mig_L_p3: int ; . . .

mig_F_p0, . . . , mig_F_p3: int ;
4 start_S2 , stop_S2 , conn_S2, disc_S2 :bool;

start_L , stop_L , conn_L, disc_L :bool)
6 contract

enforce(pe_av and wl_ba and qos and exc ) ;
8 with ( . . . . )

10 let

full_S1 = f i fo ( f_S1 ) ;
12 full_S2 = f i fo ( f_S2 ) ;

ful l_L = f i fo ( f_L ) ;
14 . . .

( run_L, disc_L , start_L , stop_L ,conn_L, disc_L )
16 = lifecycle (ch_L , full_L , s_L ) ;

(run_S2 , disc_S2 . . . )= l i fecycle (ch_S2, full_S2 ,s_S2) ;
18 . . .

pe1 = proc (pes1 ) ;
20 pe2 = proc ( false ) ;

. . .
22 (pos_L ,mig_L_p0,mig_L_p1,mig_L_p2,mig_L_p3)

= position (a_L , b_L ) ;
24 (pos_S1 , . . . )= position (a_S1, b_S1 ) ;

. . .
26 (c11,c21,c31,c41)=cost (pos_D, pos_S1 , f_1 , c_1 ) ;

(c12,c22,c32,c42)=cost (pos_D, pos_S1 , f_2 , c_2 ) ;
28 . . .

wl1 = c11 + c12 + . . . + c18;
30 . . .

tel

Listing 2: The main program of the model

4.3 Describing Control Objectives with BZR

We now have a complete model of the possible behaviors of the system, in
the absence of control. We want to obtain a controller that will enforce the
policy given informally in Section 3.3. We do this in the form of a contract
for each of the points of the policy as follows.

Processing element availability We want no component running on an
unavailable processing element: this can be achieved by component migra-
tion.

The corresponding expression in the contract to be enforced i.e., to be
controlled for invariance, is:

pe_av =
∧

i∈PE

( pei ∨ not (
∨

j∈comp

pos_j = pei) )

The involved controllable variables defined in the with part will be, for
each component: a_j, b_j, j ∈ comp. The effect of the control will be that,
when some processing element becomes unavailable, appropriate migra-
tions will be fired. More precisely: upon reception of input pesi at value
true, the availability model makes a transition as shown in Figure 11. In
the global model, a transition will be taken to a next state where the above
expression is true. For components on the unavailable PE, the automata
shown in Figure 10 can not stay in the current state without violating the

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 19

property, therefore controllables will take a value such that a local transition
occurs, hence firing a migration action towards another available PE.

Workload balancing Workload on each PEi is bounded by Maxi: this is
achieved by component migration.The expression is:

wl_ba =
∧

i∈PE( wli ≤Maxi ).
The involved controllables are: a_j, b_j, j ∈ comp. The effect of the

control will be that, if some migration or starting of a component happens
on a PE, the choice encoded by controllables will be between PEs for which
this addition would not violate the bound.

Quality-of-Service When the fileserver1 is overloaded, start the fileserver2:
this is achieved by lifecycle and binding control. The expressions are:

qos=((not full_S1)⇒ (disc_S2))

and((not run_L and full_S1)⇒ (run_S2 and not disc_S2)).
The involved controllables are: s_S2, ch_S2. The effect of the control will

be that, if the FIFO of fileserver1 reaches its threshold, the fileserver2
is started unless the Logger runs; and when the FIFO goes back under the
threshold, it is disconnected, and eventually stopped.

Exclusiveness When the logger runs, fileserver2 doesn’t: this is achieved
by lifecycle and binding control. The corresponding expression is:

exc =(run_L and not disc_L)⇒ disc_S2

The involved controllable is: s_S2. The effect of the control is that, when
the Logger is started, the fileserver2 must be stopping or idle.

5 Manager Integration

The C code generated by the BZR compilation tool-chain consists of two
functions step(...) and reset(...). Listing 3 is a sketch of a program using
these functions in order to manage the reconfiguration of a system. At line
2, reset() is called once to initialize the memory of the program. The piece
of code ranging from line 5 to line 10 is made sensitive to incoming events;
i.e., this part of the code is executed each time new events are received.
The function prepare_events() prepares the events and provides the inputs
for the function step(). The signature of the function step() corresponds to
the one of the main program of Listing 2. A call to this function corresponds
to a step of the synchronous program. The outputs of step() are given to
the function generate_commands() in order to translate the outputs into the
consequent reconfiguration commands.

1 / / program in i t ia l i zat ion
2 reset(&mem) ;
3 . . .
4 / / reading input events
5 <pes1 , add_L, f_S1 , f_S2 , f_L> = prepare_events ( ) ;
6 / / calling the step function

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 20

7 <outputs>=step(pes1 , add_L, f_S1 , f_S2 , f_L , &mem) ;
8 / / translate outputs to reconfiguration commands
9 generate_commands(<outputs>);

10 . . .

Listing 3: Principle of manager integration

5.1 Wrapping the manager into a component

The functions listed in Listing 3 are wrapped into a Fractal component in
order to be connected to the rest of application and middleware compo-
nents (see Figure 12). This component provides one server interface Events
and one client interface Commands. The signature of the interface Events
is described in Listing 4. The method setEvent provided by this interface
enables components to register event values. Indeed, the manager hides a
buffer containing the last value registered of each event. The function pre-
pare_events() uses this buffer to provide the inputs for the function step().

The function generate_commands() translates the outputs of the function
step() into method calls through the Commands interface. Indeed, the sig-
nature of the required interface Commands is that of ComponentManager
provided by Comete API (see Listing 4). It provides methods for component
migration, reconfiguration and lifecycle management.

buffer of event values step()

prepare_events() generate_commands()

Events Commands

e0, e1
migrate(),
start(),
...

Figure 12: The manager as a Fractal component

interface SynchronousManager. api .Events{
setEvent( in event_name, in event_value)

}

interface Comete. generic . api .ComponentManager {
instantiate ( in component_binary_name,

in target_pe_id , out instance_id)
destroy ( in instance_id)
bind( in client_id , in client_interface_name ,

in server_id , in server_interface_id ,
in binding_type)

unbind( in client_id , in client_interface_name )
start ( in instance_id)
stop( in instance_id)
migrate ( in instance_id , in target_pe_id)

}

Listing 4: Events and Commands interface signature

5.2 Concrete integration of the manager

Figure 13 describes the concrete integration of the manager together with
the application and Comete middleware components. The component user

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 21

is connected to the Events interface of the manager. It intercepts user re-
quests (add logger for instance) and registers them as events. The FIFO
components (part of Comete) are made implicit in the figure. As illustrated
by the dotted lines, the FIFOs associated with fileserver1, fileserver2
and logger are connected to the Events interface of the manager in order
to register events related to their size.

Upon receiving events, the manager performs some computation and
fires some reconfiguration commands in the form of method calls. These
method calls are handled by the loader of Comete. Indeed, as illustrated
by the dashed lines, the loader is connected to the control interface of the
application components in order to start/stop bind/unbind them. Moreover,
the loader knows how migrating components should be achieved regarding
the execution platform.

F A D FS1

loadermanager

user

events

lifecycle/binding

L FS2

Commands

Events

Figure 13: Integration of the manager in the system

Comete middleware hides complex mechanisms and provides a simple
API to manage component lifecycle, migration, and architecture transpar-
ently, whatever the execution platform is. For that purpose, we adopted
a centralized version of the manager emitting reconfiguration commands
to Comete instead of application components. We could make the man-
ager communicate directly with the components (modulo re-engineering
Comete) to enable a distributed implementation of the manager. This means
that parts of the manager would be integrated into Fractal component mem-
branes.

In this section we presented a simple version of the use of a synchronous
manager for the reconfiguration of a parallel and asynchronous application.
The reconfiguration commands were considered to be short enough to com-
plete before the next reaction of the manager. However, this is not always
the case. Indeed, some reconfiguration commands may take non negligi-
ble time to complete. During this time interval, the system model inside
the manager does not reflect the actual state of the system. For instance,
when the command to start a component Cx is fired, the model of Cx is at
state Running (R) but the actual component is not yet started. The man-
ager reaction to other incoming events during reconfiguration progress may
lead the managed system to undesirable states. Next section proposes an
extension to our modeling approach in order to solve issues related to asyn-
chronous commands.

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 22

6 Asynchronous commands

We propose a controller architecture together with some guidelines for writ-
ing synchronous models in order to overcome the issues related to the tran-
sient incoherence of the model with respect to the state of the system. Our
approach relies on the explicit representation of the states where some com-
mands are being processed but not completed, together with some synchro-
nization mechanisms.

The purpose of identifying the states where some reconfiguration com-
mands are in progress is to make it possible for the programmer to de-
cide what should happen during reconfigurations. The programmer should
rewrite objectives properties taking into account these situations.

6.1 Modeling command execution

6.1.1 Behavioral models

Some synchronous languages (e.g., Esterel) provide built-in constructs in
order to perform asynchronous calls within a synchronous program [7, 18].
We follow the same principle of such constructs and model the asynchronous3

aspect of reconfiguration commands by means of an automaton.
Such an automaton is illustrated by Figure 14. At state P (for pending),

the command is emitted but not yet completed. At state D, the command has
finished. The automaton has two inputs do and done. The output pending
tells whether the command is pending or not. From the initial state, upon
receiving dowhich corresponds to the firing of the command, the automaton
goes to state P. The automaton stay at state P until receiving the input done.
The input done signals that the command has been completed.

command(do, done)=pending

PDpending=0 pending=1

do

done

Figure 14: Automaton for an asynchronous action.

We associate an instance of such an automaton with each asynchcronous
command. Hence the modification w.r.t. model of Section 4 is systematic
and modular.

6.1.2 Objectives and contracts

Being aware of the state where a command is in progress but not finished,
one can add some properties to be enforced and modify the previous ones
in order to decide what should happen during reconfigurations. For illus-
tration purpose, we consider the same program as in Section 4.3 with the

3by asynchronous we mean that a command takes more than one reaction step to complete.

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 23

command start_S2 as the only command taking non-negligible time to com-
plete. In the following fragment of program, we associate an instance of the
node command to start_S2 (line 5) and modify the contract:

1 . . .
2 enforce (pend and pe_av and wl_ba and

3 (not pen_sS2 =⇒ (qos and exc ) ) )
4 . . .
5 pen_sS2 = command( start_S2 , done ) ;
6 pend = not (pen_sS2 and disc_S2 ) ; . . .

The contract changes as follows:
• The properties qos and exc are now dependent to the pending of the
command. not pen_sS2 =⇒ (qos and exc) tells that qos and exc

may not be enforced when the command start_S2 is in progress. But,
they must be enforced once the command completes.

• pend (defined at line 6) is a new property. It forbids the controller to
modify the state of the fileserver2 when the command to start it is
in progress. This property is explained below.

In order to understand the property pend, consider the automata mod-
eling fileserver2 lifecycle and start_S2 command execution in Figure 15.
Adding the property pend = not (pen_sS2 and disc_S2) forces the con-
troller to avoid the states where the command is pending (i.e., at state p)
and any state where disc_S2 is true (i.e., at states s and ss). That is, to avoid
the states (ss,p) and (s,p) in the product of the two automata.

P

D

ch∧¬fe/disconnect_S2

fe∨s/stop_S2

SS

S

R

ch/start_S2,
connect_S2

pen_sS2=0

pen_sS2=1

s∨(ch∧fe)/... run_S2=0
disc_S2=1

d
o
n
e

s
ta
rt_

S
2

(a) (b)

run_S2=1
disc_S2=1

run_S2=1
disc_S2=0

Figure 15: Instances of lifecycle(a) and command(b)

At the beginning the automata are at state (s,d). Upon receiving ch,
automaton (a) changes states and fires the command start_S2 which makes
automaton (b) change state at the same instant. That is, the global state is
(r,p). Unless receiving done, which is uncontrollable, the controller will not
make automaton (a) change state in order not to violate the property pend.

6.2 Controller Architecture

The actual implementation of the manager is component-based. Figure 16
describes the internals of such a component. It consists of three subcompo-
nents: evt, ctrl, and cmd. The functions prepare_events(), reset(), step(),
and generate_commands() are spread over the subcomponents as follows:
evt encapsulates prepare_events(). It prepares the inputs to ctrl that en-

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 24

capsulates reset() and step() generated by the BZR compilation. The compo-
nent cmd translates the outputs of ctrl into reconfiguration methods calls.

The component evt is in charge of implementing the method provided
by the interface Events from which components and the environment may
register events. The component cmd is in charge of calling reconfiguration
methods through Commands interface. Moreover, each time a reconfigu-
ration command is completed, cmd notices done events related to this com-
mand. That is why cmd is bound to evt.

C
o
m
m
a
n
d
s

manager

evt ctrl cmdE
v
e
n
ts

Figure 16: Internal view of the controller

7 Related work

A lot of work has been devoted to dynamic reconfiguration of component-
based software systems. In the case of Fractal, one can refer to the tools
for component introspection and the languages for specifying reconfigura-
tions [12] or integration in parallel frameworks [10].

Our work fits in the context of applying formal methods for dynamic
reconfiguration [6, 16, 15, 19] in order to ensure properties related to com-
ponents and reconfigurations. In [15] the authors specify reconfiguration
properties by means of temporal logic in order to apply model checking
or runtime monitoring of system reconfigurations. In comparison, our ap-
proach benefits from the discrete controller synthesis which provides a
correct by construction manager ensuring properties on components and
reconfigurations. In [14], the authors give a general software engineer-
ing framework, with some indications of integration, but no complete im-
plementation. In comparison, we perform a concrete integration of syn-
chronous managers with Fractal, in the form of its Cecilia programming
environment, and the Comete middleware. In addition, we consider and
treat the case of asynchronous reconfiguration actions.

Other related work concern the concrete integration of synchronous pro-
grams for the management of asynchronous systems. In [8], the authors
provides a synchronous controller for configuring device drivers aiming at
global power management of embedded systems. Apart from their not using
DCS techniques, the difference with our approach lies in the call of recon-
figuration functions. Indeed, in [8], function calls are performed inside the
reaction of the controller. This has the benefit of always keeping a model
reflecting the exact state of the system. In our case we use to follow the
principle of asynchronous function calls as in [7, 18].

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 25

8 Conclusion

Our contribution is on the one hand a synchronous model of the behavior of
the reconfigurable components, in the form of the state space of the control
problem, and the specification of the control objectives (Section 4). On the
other hand, we contribute a component-based architecture for the imple-
mentation of the resulting controller with the Fractal/Cecilia programming
environment, taking advantage of the Comete middleware. (Sections 5 and
6)

In this work, we apply formal techniques issued from academic research
to an open, stable and available framework supported by an independent
industry consortium [5]. The Fractal model is currently being implemented
in the MIND project [4], a sequel to the Cecilia framework. The MIND
framework is a collaborative initiative to spread component-based software
engineering to an even larger community of academic institutions and in-
dustries. The present contribution keeps its legitimacy in the MIND context
as most of the concepts and semantics introduced with Cecilia and Comete
remain. Therefore, applying our contribution to MIND should be limited to
a straightforward adaptation.

We have ongoing work on another interesting case study: an H264 video
processing application, implemented on a multicore architecture using Ce-
cilia and Comete. It could be handled following the very same methodology
we propose, because it follows essentially the same structure: degrees of
reconfiguration concern migrations, and adding and removal of components
performing video effects on the stream.

Perspectives are in the line of generalizing our proposal at the language-
level, by extending the Fractal ADL with a way to incorporate automata no-
tation for reconfiguration description, as well as the behavioral contracts,
and integrating the application of BZR in a global Fractal compilation flow.
Also, the integration of synchronous controllers in a Fractal components ar-
chitecture should be facilitated by identifying general programming guide-
lines, providing end-users with informal rules such that components are
controllable, and the synchronous instant and step (and the states in the
automata) fits well with the event granularity.

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 26

A Complete Example and Integration

In what follows, we describe the complete integration process of the code
produced by the bzr compilation for the control of the comanche applica-
tion software. Writing the synchronous model of the manager has been
discussed above. Here we give more details providing simulation results of
the manager and the process of integration in the Fractal application.

B Simulation of the Synchronous Program

The interface of the synchronous program is described in Listing 5. The
input disable states on the availability of the processing element PE3. This
input takes the value false as long as PE3 is available (false otherwise).
fifoH1F, fifoH2F, fifoL2F are Booleans stating on the size of the FIFOs as-
sociated with FileServer1, FileServer2 and Logger respectively. They take
the value false as long as the size of the associated FIFOs is under their
specific threshold. The input addlog tells whether the logger is required
or not. The input c_startH2_done notifies that the command for starting
FileServer2 has been actually completed.

The outputs of the main program are associated with the possible com-
mands provided by the reconfigurable system. An output associated with a
command takes the value false until the command has to be fired. Then, it
takes the value true during one step.

1 node main( disable , fifoH1F , fifoH2F , fifoL2F , addlog , c_startH2_done:bool)
2 returns (
3 c_startH2 , c_stopH2 , c_connectH2 , c_diconnectH2:bool;
4 c_startL , c_stopL , c_connectL , c_diconnectL :bool ;
5 c_mig1f1 , c_mig2f1 , c_mig3f1 , c_mig4f1 ,
6 c_mig1f2 , c_mig2f2 , c_mig3f2 , c_mig4f2 ,
7 c_mig1d , c_mig2d , c_mig3d , c_mig4d:bool;
8 . . . )

Listing 5: The interface of the main program

Figure 17 illustrates part of the simulation results. The inputs (in blue
color) are given (by the user) in order to simulate the events received from
the application. The outputs (in red color) corresponding to reconfiguration
commands take the value true each time a command has to be fired.

The interaction scenario as illustrated by the figure is as follows:

• Step 1 is for initializing the system (not relevant).

• at Step 4 the input fifoH1F changes value to true. The program reacts
and assigns the value true to the outputs c_startH2 and c_connectH2
to true. These are the commands to be fired at this step. This situation
corresponds to the activation of fileserver2 when fileserver1 is
overloaded.

• at Step 8, the program receives the notification that c_startH2 has
been completed.

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 27

c_startH2_done

disable

fifoH1F

fifoH2F

fifoL2F

addlog

c_startH2

c_stopH2

c_connectH2

c_diconnectH2

c_startL

c_stopL

c_connectL

c_diconnectL

c_mig1f1

c_mig2f1

c_mig3f1

c_mig4f1

c_mig1f2

c_mig2f2

c_mig3f2

c_mig4f2

c_mig1d

c_mig2d

c_mig3d

c_mig4d

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

Figure 17:

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 28

• at Step 10 the input fifoH2F changes value to true. The program reacts
but no command is fired.

• at Step 13 the input fifoH1F changes value to false. The program re-
acts and assigns the value true to the output c_disconnectH2. This cor-
responds to the situation where the FileServer2 is no longer required.
It should be disconnected and left executing in order to terminate the
remaining inputs in its FIFO.

• at Step 16, the input fifoH2F changes value to false. The program
reacts and assigns the value true to c_stopH2. Now that the FIFO
associated with the FileServer2 is empty, the component can be com-
pletely stopped.

• at Step 18, the input disable changes to true. The program reacts and
assigns the value true to c_mig1f2 and c_mig1d. This corresponds to
the migration of the components running on PE0 to other PEs. The
output c_mig1f2 (resp., c_mig1d) corresponds to the migration of the
fileserver2 (resp., dispatcher) to PE1.

B.1 BZR Program Compilation into C Code

The BZR compilation tool chain compiles the synchronous program into C
code. The generated functions of our interest are the reset() and step()
functions of the main program. reset() initializes the memory associated
with the synchronous program. The function step() computes the outputs of
the program depending on the inputs. It also updates the internal memory.

1

2 main_res main_step( int disable , int fifoH1F , int fifoH2F ,
3 int fifoL2F , int addlog ,
4 int c_startH2_done, main_mem* self ) ;

Listing 6: Prototype of the function step

The prototype of the function step() is presented in Listing 5. It has the
same input parameters as the main function of the synchronous program
in Listing 5. The parameter self refer to the memory of the complete pro-
gram. The returned value of the function step() is of type main_res it is a
structure. Each field of this structure corresponds to an output of the main
program.

C Integration of the step() function

The integration process of a synchronous manager for the control of re-
configuration lies in the integration of the step() function generated by the
synchronous compilation. In order to achieve this, we have to make some
choices. In particular, we need to decide when the function should be called,
and how to apply reconfiguration commands:

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 29

• Calling Step(): Two approaches are possible: Time-triggered or Event-
triggered. The first solution consists of calling the step periodically
each t time units. The second one consists of making the step func-
tion sensitive to incoming events; i.e., each time a new event is noti-
fied, step is called.

• Firing commands: The outputs of the step function correspond to
commands to be fired. One way to apply these commands is to call
the reconfiguration commands before the step is finished. The advan-
tage of doing so is to have a model always reflecting the state of the
system. The other approach is to complete the step and deal with the
commands to be fired in an asynchronous way.

Our choice for this case study is to consider event-triggered calls of the
step together with asynchronous firing of commands. The choice may be
discussed. But this is out of the scope of the paper.

C.1 Wrapping The Generated Code Into a Fractal Com-

ponent

The C generated code is wrapped into a Fractal component in order to re-
ceive application events and fire reconfiguration commands. Figure 18 de-
scribes the internals of such a component and the type of the provided (resp.
required) interface of the components. Notice that two interfaces may be
bound if an only if they are of the same type.

Event

Receiver

CommandsSynchronous

GeneratorProgram

1 interface Synchronous{
2 void step( in inputs ) ;
3 }

1 interface manager. api . events{
2 void setValue ( in event , in value ) ;
3 }

1 interface Actions{
2 void doAction( in commands) ;
3 }

1 interface manager. api .commands {
2 void migrate ( in cpt , in core ) ;
3 void start ( in cpt ) ;
4 void stop( in cpt ) ;
5 void bind( in cpt ) ;
6 void unbind( in cpt ) ;
7 }

Figure 18:

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 30

C.1.1 The Component EventReceiver

Listing 7 illustrates part of the implementation of the method setValue of
the EventReceiver component. This method is called by other components
in order to notify events.

The component manages an array of Boolean values (DATA.step_inputs).
Each cell of the array corresponds to one input event. Each time an event
is notified through this method, its value is updated, then the method step is
called. This method is implemented by the component SynchronousProgram.
The parameter of the call is the array of event values.

1 void METHOD(events , setValue )(void *_this , int event , int value ) {
2 . . .
3 DATA. step_inputs [event]=value ;
4 . . .
5 CALL(REQUIRED. synchprog, step , DATA. step_inputs ) ;
6 }

Listing 7: code of the setValue method

C.1.2 The Component SynchronousProgram

Listing 8 illustrates the code associated with the method step of the compo-
nent SynchronousProgram. This method contains a call to the step method
actually generated by the BZR compilation (at line 7). The result of the syn-
chronous step (i.e., DATA.res) are forwarded to the CommandsGenerator in
order to translate them into the consequent reconfiguration commands.

1 void METHOD(step , step )(void *_this , jboolean *inputs ) {
2 int input_disable = inputs [0] ;
3 int input_fifoH1F = inputs [1] ;
4 . . .
5

6 / / Call to the generated method step ()
7 DATA. res = Migration_main_step( input_disable , input_fifoH1F ,
8 input_fifoH2F , input_fifoL2F ,
9 input_addlog , input_c_startH2_done ,

10 &DATA.mem) ;
11

12 CALL(REQUIRED.actionManager , doAction , (void *) &DATA. res ) ;
13 }

Listing 8: Code of the step method

C.1.3 The Component CommandsGenerator

Listing 9 illustrates the implementation of the method doAction of the com-
ponent CommandsGenerator. It receives a structure containing the Boolean
values associated with the possible commands. This method parses the re-
ceived values and fire a command each time the associated output variable
has the value true.

1 void METHOD(actionManager , doAction )(void *_this , void * sync_output ) {
2 Migration_main_res *commands;
3 commands = (Migration_main_res *) sync_output ;
4

5 i f (commands−>Migration_c_startH2 )
6 CALL(REQUIRED.commands, start , FILES2 ) ;
7

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 31

8 i f (commands−>Migration_c_stopH2)
9 CALL(REQUIRED.commands, stop , FILES2 ) ;

10 . . . .

Listing 9: Code of the doAction method

D Retrieving Application/Environment Events

As explained above, the component EventReceiver of the manager offers a
method for event notification. The components in charge of notifying these
events are connected to this interface. Among the application components,
only the FIFOs associated with fileserver1, fileserver2 and logger are
supposed to send events to the manager. Moreover, there is a component
modeling the user and the environment. The component is in charge of no-
tifying the events related to adding the logger and the availability of a pro-
cessing element. These components call the method setValue() of the com-
ponent EventReceiver whenever a particular condition holds. Listing 10 is
a sample piece of program for notifying events. The condition depends on
the nature of the event to be notified. In case of the FIFOs, the condition
concerns the size of the FIFO regarding to its associated threshold.

1 . . .
2 i f ( condition )
3 CALL(REQUIRED. events , setValue , EVENT_ID, EVENT_VALUE) ;
4 . . .

Listing 10: Event notification

References

[1] Cecilia on the ow2 website. http://fractal.ow2.org/cecilia-site/current.

[2] Comete on the ow2 website. http://fractal.ow2.org/minus-
site/current/comete.

[3] Fractal on the ow2 website. http://fractal.ow2.org/.

[4] Mind on the ow2 website. http://mind.ow2.org.

[5] The ow2 consortium website. http://www.ow2.org.

[6] T. Barros, R. Ameur-Boulifa, A. Cansado, L. Henrio, and E. Made-
laine. Behavioural models for distributed fractal components. Annals
of Telecommunications, 64, 2009.

[7] G. Berry, S. Ramesh, and R. K. Shyamasundar. Communicating Re-
active Processes. In ACM Symposium on Principles of Programming
Languages, Charleston, South Carolina, 1993.

[8] N. Berthier, F. Maraninchi, and L. Mounier. Synchronous programming
of device drivers for global resource control in embedded operating

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



BZR for the control of reconfigurations in Fractal 32

systems. In ACM SIGPLAN/SIGBED Conference on Languages, Com-
pilers, Tools and Theory for Embedded Systems (LCTES), Chicago, IL,
USA, apr 2011.

[9] E. Bruneton, T. Coupaye, and J. B. Stefani. Recursive and dynamic
software composition with sharing. In European Conference on Object
Oriented Programming, 2002.

[10] J. Buisson, F. André, and J.-L. Pazat. A framework for dynamic adap-
tation of parallel components. In ParCo 2005, Málaga, Spain, 13-16
September 2005.

[11] J.-L. Colaço, B. Pagano, and M. Pouzet. A Conservative Extension of
Synchronous Data-flow with State Machines. In International Confer-
ence on Embedded Software, 2005.

[12] P.-C. David, T. Ledoux, M. Léger, and T. Coupaye. Fpath and fscript:
Language support for navigation and reliable reconfiguration of fractal
architectures. Annals of Telecommunications, 64:45–63, 2009.

[13] G. Delaval, H. Marchand, and E. Rutten. Contracts for modular dis-
crete controller synthesis. In ACM International Conference on Lan-
guages, Compilers, and Tools for Embedded Systems, 2010.

[14] G. Delaval and E. Rutten. Reactive model-based control of reconfigu-
ration in the fractal component-based model. In Proc. of the 13th Int.
Symp. on Component Based Software Engineering (CBSE), Prague, 23-
25 June, 2010.

[15] J. Dormoy, O. Kouchnarenko, and A. Lanoix. Using Temporal Logic for
Dynamic Reconfigurations of Components. In 7th International Work-
shop on Formal Aspects of Component Software - FACS’2010.

[16] M. Léger, T. Ledoux, and T. Coupaye. Reliable dynamic reconfigura-
tions in a reflective component model. In Proc. of the 13th Int. Symp.
on Component Based Software Engineering (CBSE), Prague, 23-25
June. 2010.

[17] H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guernic. Synthesis of
discrete-event controllers based on the signal environment. j. Discrete
Event Dynamic System, 10(4), October 2000.

[18] J.-P. Paris. Exécution de tâches asynchrones depuis Esterel. PhD thesis,
University of Nice, 1992.

[19] M. Poulhiès, J. Pulou, and J. Sifakis. Buzz: analyzable embedded
component-based software. In Workshop on Component Models for
Embedded Systems (COMES), 2008.

[20] Y. Wang, , H. Cho, H. Liao, A. Nazeem, T. Kelly, S. Lafortune, S. Mahlke,
and S. A. Reveliotis. Supervisory control of software execution for fail-
ure avoidance: Experience from the gadara project. In Proc.Workshop
on Discrete Event Systems, Berlin, Germany, Sept. 2010.

RR n° 7631

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1



Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

in
ria

-0
05

96
88

3,
 v

er
si

on
 2

 - 
31

 M
ay

 2
01

1


	1 Introduction
	2 Background
	2.1 The Fractal Component Model
	2.2 Comete
	2.3 Heptagon and BZR
	2.3.1 Heptagon language
	2.3.2 BZR and controller synthesis
	2.3.3 Heptagon/BZR compilation

	2.4 System/manager Interaction

	3 The Comanche Http Server
	3.1 Components architecture
	3.2  Execution architecture
	3.3  Renconfiguration policy

	4 Designing the manager
	4.1 Modeling Components With Heptagon
	4.1.1 Modeling Software Components
	4.1.2 Modeling Hardware Components

	4.2 Complete system model
	4.3 Describing Control Objectives with BZR

	5 Manager Integration
	5.1 Wrapping the manager into a component
	5.2 Concrete integration of the manager

	6 Asynchronous commands
	6.1 Modeling command execution
	6.1.1 Behavioral models
	6.1.2 Objectives and contracts

	6.2 Controller Architecture

	7 Related work
	8 Conclusion
	A Complete Example and Integration
	B Simulation of the Synchronous Program
	B.1 BZR Program Compilation into C Code

	C Integration of the step() function
	C.1 Wrapping The Generated Code Into a Fractal Component
	C.1.1 The Component EventReceiver
	C.1.2 The Component SynchronousProgram
	C.1.3 The Component CommandsGenerator


	D Retrieving Application/Environment Events

