Fixed linear typing of automata

Each state must be typed in the global environment
and then the accumulator must be joined.
This commit is contained in:
Cédric Pasteur 2011-05-02 10:12:42 +02:00
parent ebf8b354bd
commit 90648f61ff
4 changed files with 173 additions and 139 deletions

View file

@ -26,6 +26,12 @@ module LocationEnv =
let compare = compare let compare = compare
end) end)
module LocationSet =
Set.Make(struct
type t = linearity_var
let compare = compare
end)
(** Returns a linearity object from a linearity list. *) (** Returns a linearity object from a linearity list. *)
let prod = function let prod = function
| [l] -> l | [l] -> l

View file

@ -130,55 +130,45 @@ struct
UnifyFailed -> find_candidate c lins UnifyFailed -> find_candidate c lins
end end
let lin_of_ident x (env, _, _) =
Env.find x env
(** [check_linearity loc id] checks that id has not been used linearly before. (** [check_linearity loc id] checks that id has not been used linearly before.
This function is called every time a variable is used as This function is called every time a variable is used as
a semilinear type. *) a semilinear type. *)
let check_linearity = let check_linearity (env, used_vars, init_vars) loc id =
let used_variables = ref IdentSet.empty in if IdentSet.mem id used_vars then
let add loc id = message loc (Elinear_variables_used_twice id)
if IdentSet.mem id !used_variables then else
message loc (Elinear_variables_used_twice id) let used_vars = IdentSet.add id used_vars in
else (env, used_vars, init_vars)
used_variables := IdentSet.add id !used_variables
in
add
(** This function is called for every exp used as a semilinear type. (** This function is called for every exp used as a semilinear type.
It fails if the exp is not a variable. *) It fails if the exp is not a variable. *)
let check_linearity_exp env e lin = let check_linearity_exp (env, used_vars, init_vars) e lin =
match e.e_desc, lin with match e.e_desc, lin with
| Evar x, Lat _ -> | Evar x, Lat _ ->
(match Env.find x env with (match Env.find x env with
| Lat _ -> check_linearity e.e_loc x | Lat _ -> check_linearity (env, used_vars, init_vars) e.e_loc x
| _ -> ()) | _ -> (env, used_vars, init_vars))
| _ -> () | _ -> (env, used_vars, init_vars)
let used_lin_vars = ref []
(** Checks that the linearity value has not been declared before (** Checks that the linearity value has not been declared before
(in an input, a local var or using copy operator). This makes (in an input, a local var or using copy operator). This makes
sure that one linearity value is only used in one place. *) sure that one linearity value is only used in one place. *)
let check_fresh_lin_var loc lin = let check_fresh_lin_var (env, used_vars, init_vars) loc lin =
let check_fresh r = let check_fresh r =
if List.mem r !used_lin_vars then if LocationSet.mem r init_vars then
message loc (Elocation_already_defined r) message loc (Elocation_already_defined r)
else else
used_lin_vars := r::(!used_lin_vars) let init_vars = LocationSet.add r init_vars in
(env, used_vars, init_vars)
in in
match lin with match lin with
| Lat r -> check_fresh r | Lat r -> check_fresh r
| Ltop -> () | Ltop -> (env, used_vars, init_vars)
| _ -> assert false | _ -> assert false
(** Returns the list of linearity values used by a list of
variable declarations. *)
let rec used_lin_vars_list = function
| [] -> []
| vd::vds ->
let l = used_lin_vars_list vds in
(match vd.v_linearity with
| Lat r -> r::l
| _ -> l)
(** Substitutes linearity variables (Lvar r) with their value (** Substitutes linearity variables (Lvar r) with their value
given by the map. *) given by the map. *)
let rec subst_lin m lin_list = let rec subst_lin m lin_list =
@ -235,20 +225,21 @@ let subst_from_lin (s,m) expect_lin lin =
let rec not_linear_for_exp e = let rec not_linear_for_exp e =
lin_skeleton Ltop e.e_ty lin_skeleton Ltop e.e_ty
let check_init loc init lin = let check_init env loc init lin =
let check_one init lin = match init with let check_one env (init, lin) = match init with
| Lno_init -> lin | Lno_init -> lin, env
| Linit_var r -> | Linit_var r ->
(match lin with (match lin with
| Lat r1 when r = r1 -> check_fresh_lin_var loc lin; Ltop | Lat r1 when r = r1 -> Ltop, check_fresh_lin_var env loc lin
| Lvar r1 when r = r1 -> check_fresh_lin_var loc lin; Ltop | Lvar r1 when r = r1 -> Ltop, check_fresh_lin_var env loc lin
| _ -> message loc (Ewrong_init (r, lin))) | _ -> message loc (Ewrong_init (r, lin)))
| Linit_tuple _ -> assert false | Linit_tuple _ -> assert false
in in
match init, lin with match init, lin with
| Linit_tuple il, Ltuple ll -> | Linit_tuple il, Ltuple ll ->
Ltuple (List.map2 check_one il ll) let l, env = mapfold check_one env (List.combine il ll) in
| _, _ -> check_one init lin Ltuple l, env
| _, _ -> check_one env (init, lin)
(** [unify_collect collect_list lin_list coll_exp] returns a list of linearities (** [unify_collect collect_list lin_list coll_exp] returns a list of linearities
to use when a choice is possible (eg for a map). It collects the possible to use when a choice is possible (eg for a map). It collects the possible
@ -324,9 +315,20 @@ let rec collect_outputs inputs collect_list outputs =
) in ) in
lin::(collect_outputs inputs collect_list outputs) lin::(collect_outputs inputs collect_list outputs)
let build vds env = let build env vds =
List.fold_left (fun env vd -> Env.add vd.v_ident vd.v_linearity env) env vds List.fold_left (fun env vd -> Env.add vd.v_ident vd.v_linearity env) env vds
let build_ids env vds =
List.fold_left (fun env vd -> IdentSet.add vd.v_ident env) env vds
let build_location env vds =
let add_one env vd =
match vd.v_linearity with
| Lat r -> LocationSet.add r env
| _ -> env
in
List.fold_left add_one env vds
(** [extract_lin_exp args_lin e_list] returns the linearities (** [extract_lin_exp args_lin e_list] returns the linearities
and expressions from e_list that are not yet set to Lat r.*) and expressions from e_list that are not yet set to Lat r.*)
let rec extract_lin_exp args_lin e_list = let rec extract_lin_exp args_lin e_list =
@ -379,7 +381,7 @@ let rec fuse_iterator_collect fixed_coll free_coll =
coll::(fuse_iterator_collect fixed_coll (x::free_coll)) coll::(fuse_iterator_collect fixed_coll (x::free_coll))
let rec typing_pat env = function let rec typing_pat env = function
| Evarpat n -> Env.find n env | Evarpat n -> lin_of_ident n env
| Etuplepat l -> | Etuplepat l ->
prod (List.map (typing_pat env) l) prod (List.map (typing_pat env) l)
@ -387,24 +389,25 @@ let rec typing_pat env = function
Use expect instead, as typing of some expressions need to know Use expect instead, as typing of some expressions need to know
the expected linearity. *) the expected linearity. *)
let rec typing_exp env e = let rec typing_exp env e =
let l = match e.e_desc with let l, env = match e.e_desc with
| Econst _ -> Ltop | Econst _ -> Ltop, env
| Evar x -> Env.find x env | Evar x -> lin_of_ident x env, env
| Elast _ -> Ltop | Elast _ -> Ltop, env
| Epre (_, e) -> | Epre (_, e) ->
let lin = (not_linear_for_exp e) in let lin = (not_linear_for_exp e) in
safe_expect env lin e; lin let env = safe_expect env lin e in
lin, env
| Efby (e1, e2) -> | Efby (e1, e2) ->
safe_expect env (not_linear_for_exp e1) e1; let env = safe_expect env (not_linear_for_exp e1) e1 in
safe_expect env (not_linear_for_exp e1) e2; let env = safe_expect env (not_linear_for_exp e1) e2 in
not_linear_for_exp e1 not_linear_for_exp e1, env
| Eapp ({ a_op = Efield }, _, _) -> Ltop | Eapp ({ a_op = Efield }, _, _) -> Ltop, env
| Eapp ({ a_op = Earray }, _, _) -> Ltop | Eapp ({ a_op = Earray }, _, _) -> Ltop, env
| Estruct _ -> Ltop | Estruct _ -> Ltop, env
| Emerge _ | Ewhen _ | Esplit _ | Eapp _ | Eiterator _ -> assert false | Emerge _ | Ewhen _ | Esplit _ | Eapp _ | Eiterator _ -> assert false
in in
e.e_linearity <- l; e.e_linearity <- l;
l l, env
(** Returns the possible linearities of an expression. *) (** Returns the possible linearities of an expression. *)
and collect_exp env e = and collect_exp env e =
@ -415,7 +418,7 @@ and collect_exp env e =
| Eiterator (it, { a_op = Enode f | Efun f }, _, _, e_list, _) -> | Eiterator (it, { a_op = Enode f | Efun f }, _, _, e_list, _) ->
let ty_desc = Modules.find_value f in let ty_desc = Modules.find_value f in
collect_iterator env it ty_desc e_list collect_iterator env it ty_desc e_list
| _ -> VarsCollection.var_collection_of_lin (typing_exp env e) | _ -> VarsCollection.var_collection_of_lin (fst (typing_exp env e))
and collect_iterator env it ty_desc e_list = match it with and collect_iterator env it ty_desc e_list = match it with
| Imap | Imapi -> | Imap | Imapi ->
@ -476,47 +479,47 @@ and collect_app env op e_list = match op with
VarsCollection.prod VarsCollection.prod
(collect_outputs inputs_lins collect_list outputs_lins) (collect_outputs inputs_lins collect_list outputs_lins)
| _ -> VarsCollection.var_collection_of_lin (typing_app env op e_list) | _ -> VarsCollection.var_collection_of_lin (fst (typing_app env op e_list))
and typing_args env expected_lin_list e_list = and typing_args env expected_lin_list e_list =
List.iter2 (fun elin e -> safe_expect env elin e) expected_lin_list e_list List.fold_left2 (fun env elin e -> safe_expect env elin e) env expected_lin_list e_list
and typing_app env op e_list = match op with and typing_app env op e_list = match op with
| Earrow -> | Earrow ->
let e1, e2 = assert_2 e_list in let e1, e2 = assert_2 e_list in
safe_expect env Ltop e1; let env = safe_expect env Ltop e1 in
safe_expect env Ltop e2; let env = safe_expect env Ltop e2 in
Ltop Ltop, env
| Earray_fill | Eselect | Eselect_slice -> | Earray_fill | Eselect | Eselect_slice ->
let e = assert_1 e_list in let e = assert_1 e_list in
safe_expect env Ltop e; let env = safe_expect env Ltop e in
Ltop Ltop, env
| Eselect_dyn -> | Eselect_dyn ->
let e1, defe, idx_list = assert_2min e_list in let e1, defe, idx_list = assert_2min e_list in
safe_expect env Ltop e1; let env = safe_expect env Ltop e1 in
safe_expect env Ltop defe; let env = safe_expect env Ltop defe in
List.iter (safe_expect env Ltop) idx_list; let env = List.fold_left (fun env -> safe_expect env Ltop) env idx_list in
Ltop Ltop, env
| Eselect_trunc -> | Eselect_trunc ->
let e1, idx_list = assert_1min e_list in let e1, idx_list = assert_1min e_list in
safe_expect env Ltop e1; let env = safe_expect env Ltop e1 in
List.iter (safe_expect env Ltop) idx_list; let env = List.fold_left (fun env -> safe_expect env Ltop) env idx_list in
Ltop Ltop, env
| Econcat -> | Econcat ->
let e1, e2 = assert_2 e_list in let e1, e2 = assert_2 e_list in
safe_expect env Ltop e1; let env = safe_expect env Ltop e1 in
safe_expect env Ltop e2; let env = safe_expect env Ltop e2 in
Ltop Ltop, env
| Earray -> | Earray ->
List.iter (safe_expect env Ltop) e_list; let env = List.fold_left (fun env -> safe_expect env Ltop) env e_list in
Ltop Ltop, env
| Efield -> | Efield ->
let e = assert_1 e_list in let e = assert_1 e_list in
safe_expect env Ltop e; let env = safe_expect env Ltop e in
Ltop Ltop, env
| Eequal -> | Eequal ->
List.iter (safe_expect env Ltop) e_list; let env = List.fold_left (fun env -> safe_expect env Ltop) env e_list in
Ltop Ltop, env
| Eifthenelse | Efun _ | Enode _ | Etuple | Eifthenelse | Efun _ | Enode _ | Etuple
| Eupdate | Efield_update -> assert false (*already done in expect_app*) | Eupdate | Efield_update -> assert false (*already done in expect_app*)
@ -535,33 +538,33 @@ and expect_app env expected_lin op e_list = match op with
(* and apply it to the inputs*) (* and apply it to the inputs*)
let inputs_lins = subst_lin m inputs_lins in let inputs_lins = subst_lin m inputs_lins in
(* and check that it works *) (* and check that it works *)
typing_args env inputs_lins e_list; let env = typing_args env inputs_lins e_list in
unify_lin expected_lin (prod outputs_lins) unify_lin expected_lin (prod outputs_lins), env
| Eifthenelse -> | Eifthenelse ->
let e1, e2, e3 = assert_3 e_list in let e1, e2, e3 = assert_3 e_list in
safe_expect env Ltop e1; let env = safe_expect env Ltop e1 in
let c2 = collect_exp env e2 in let c2 = collect_exp env e2 in
let c3 = collect_exp env e3 in let c3 = collect_exp env e3 in
let l2, l3 = assert_2 (unify_collect [c2;c3] [expected_lin] [e2;e3]) in let l2, l3 = assert_2 (unify_collect [c2;c3] [expected_lin] [e2;e3]) in
safe_expect env l2 e2; let env = safe_expect env l2 e2 in
safe_expect env l3 e3; let env = safe_expect env l3 e3 in
expected_lin expected_lin, env
| Efield_update -> | Efield_update ->
let e1, e2 = assert_2 e_list in let e1, e2 = assert_2 e_list in
safe_expect env Ltop e2; let env = safe_expect env Ltop e2 in
expect env expected_lin e1 expect env expected_lin e1
| Eupdate -> | Eupdate ->
let e1, e2, idx = assert_2min e_list in let e1, e2, idx = assert_2min e_list in
safe_expect env Ltop e2; let env = safe_expect env Ltop e2 in
List.iter (safe_expect env Ltop) idx; let env = List.fold_left (fun env -> safe_expect env Ltop) env idx in
expect env expected_lin e1 expect env expected_lin e1
| _ -> | _ ->
let actual_lin = typing_app env op e_list in let actual_lin, env = typing_app env op e_list in
unify_lin expected_lin actual_lin unify_lin expected_lin actual_lin, env
(** Checks the typing of an accumulator. It also checks (** Checks the typing of an accumulator. It also checks
that the function has a targeting compatible with the iterator. *) that the function has a targeting compatible with the iterator. *)
@ -603,8 +606,8 @@ and expect_iterator env loc it expected_lin inputs_lins outputs_lins e_list = ma
with UnifyFailed -> message loc (Emapi_bad_args idx_lin)); with UnifyFailed -> message loc (Emapi_bad_args idx_lin));
(*Check that the args have the wanted linearity*) (*Check that the args have the wanted linearity*)
typing_args env inputs_lins e_list; let env = typing_args env inputs_lins e_list; in
prod expected_lin prod expected_lin, env
| Imapfold -> | Imapfold ->
(* Check the linearity of the accumulator*) (* Check the linearity of the accumulator*)
@ -612,8 +615,8 @@ and expect_iterator env loc it expected_lin inputs_lins outputs_lins e_list = ma
let inputs_lins, acc_in_lin = split_last inputs_lins in let inputs_lins, acc_in_lin = split_last inputs_lins in
let outputs_lins, acc_out_lin = split_last outputs_lins in let outputs_lins, acc_out_lin = split_last outputs_lins in
let expected_lin, expected_acc_lin = split_last expected_lin in let expected_lin, expected_acc_lin = split_last expected_lin in
typing_accumulator env acc acc_in_lin acc_out_lin let env = typing_accumulator env acc acc_in_lin acc_out_lin
expected_acc_lin inputs_lins; expected_acc_lin inputs_lins in
(* First find the linearities fixed by the linearities of the (* First find the linearities fixed by the linearities of the
iterated function. *) iterated function. *)
@ -630,18 +633,18 @@ and expect_iterator env loc it expected_lin inputs_lins outputs_lins e_list = ma
let inputs_lins = fuse_args_lin inputs_lins collect_lin in let inputs_lins = fuse_args_lin inputs_lins collect_lin in
(*Check that the args have the wanted linearity*) (*Check that the args have the wanted linearity*)
typing_args env inputs_lins e_list; let env = typing_args env inputs_lins e_list in
prod (expected_lin@[expected_acc_lin]) prod (expected_lin@[expected_acc_lin]), env
| Ifold -> | Ifold ->
let e_list, acc = split_last e_list in let e_list, acc = split_last e_list in
let inputs_lins, acc_in_lin = split_last inputs_lins in let inputs_lins, acc_in_lin = split_last inputs_lins in
let _, acc_out_lin = split_last outputs_lins in let _, acc_out_lin = split_last outputs_lins in
let _, expected_acc_lin = split_last expected_lin in let _, expected_acc_lin = split_last expected_lin in
ignore (List.map (safe_expect env Ltop) e_list); let env = List.fold_left (fun env -> safe_expect env Ltop) env e_list in
typing_accumulator env acc acc_in_lin acc_out_lin let env = typing_accumulator env acc acc_in_lin acc_out_lin
expected_acc_lin inputs_lins; expected_acc_lin inputs_lins in
expected_acc_lin expected_acc_lin, env
| Ifoldi -> | Ifoldi ->
let e_list, acc = split_last e_list in let e_list, acc = split_last e_list in
@ -649,75 +652,92 @@ and expect_iterator env loc it expected_lin inputs_lins outputs_lins e_list = ma
let inputs_lins, _ = split_last inputs_lins in let inputs_lins, _ = split_last inputs_lins in
let _, acc_out_lin = split_last outputs_lins in let _, acc_out_lin = split_last outputs_lins in
let _, expected_acc_lin = split_last expected_lin in let _, expected_acc_lin = split_last expected_lin in
ignore (List.map (safe_expect env Ltop) e_list); let env = List.fold_left (fun env -> safe_expect env Ltop) env e_list in
typing_accumulator env acc acc_in_lin acc_out_lin let env = typing_accumulator env acc acc_in_lin acc_out_lin
expected_acc_lin inputs_lins; expected_acc_lin inputs_lins in
expected_acc_lin expected_acc_lin, env
and typing_eq env eq = and typing_eq env eq =
match eq.eq_desc with match eq.eq_desc with
| Eautomaton(state_handlers) -> | Eautomaton(state_handlers) ->
List.iter (typing_state_handler env) state_handlers let typing_state (u, i) h =
let env, u1, i1 = typing_state_handler env h in
IdentSet.union u u1, LocationSet.union i i1
in
let env, u, i = env in
let u, i = List.fold_left typing_state (u, i) state_handlers in
env, u, i
| Eswitch(e, switch_handlers) -> | Eswitch(e, switch_handlers) ->
safe_expect env Ltop e; let typing_switch (u, i) h =
List.iter (typing_switch_handler env) switch_handlers let env, u1, i1 = typing_switch_handler env h in
IdentSet.union u u1, LocationSet.union i i1
in
let env, u, i = safe_expect env Ltop e in
let u, i = List.fold_left typing_switch (u, i) switch_handlers in
env, u, i
| Epresent(present_handlers, b) -> | Epresent(present_handlers, b) ->
List.iter (typing_present_handler env) present_handlers; let env, u, i = List.fold_left typing_present_handler env present_handlers in
ignore (typing_block env b) let _, u, i = typing_block (env, u, i) b in
env, u, i
| Ereset(b, e) -> | Ereset(b, e) ->
safe_expect env Ltop e; let env, u, i = safe_expect env Ltop e in
ignore (typing_block env b) let _, u, i = typing_block (env, u, i) b in
env, u, i
| Eeq(pat, e) -> | Eeq(pat, e) ->
let lin_pat = typing_pat env pat in let lin_pat = typing_pat env pat in
let lin_pat = check_init eq.eq_loc eq.eq_inits lin_pat in let lin_pat, env = check_init env eq.eq_loc eq.eq_inits lin_pat in
safe_expect env lin_pat e safe_expect env lin_pat e
| Eblock b -> | Eblock b ->
ignore (typing_block env b) let env, u, i = env in
let _, u, i = typing_block (env, u, i) b in
env, u, i
and typing_state_handler env sh = and typing_state_handler env sh =
let env = typing_block env sh.s_block in let env = typing_block env sh.s_block in
List.iter (typing_escape env) sh.s_until; let env = List.fold_left typing_escape env sh.s_until in
List.iter (typing_escape env) sh.s_unless; List.fold_left typing_escape env sh.s_unless
and typing_escape env esc = and typing_escape env esc =
safe_expect env Ltop esc.e_cond safe_expect env Ltop esc.e_cond
and typing_block env block = and typing_block (env,u,i) block =
let env = build block.b_local env in let env = build env block.b_local in
List.iter (typing_eq env) block.b_equs; List.fold_left typing_eq (env, u, i) block.b_equs
env
and typing_switch_handler env sh = and typing_switch_handler (env, u, i) sh =
ignore (typing_block env sh.w_block) let _, u, i = typing_block (env,u,i) sh.w_block in
env, u, i
and typing_present_handler env ph = and typing_present_handler env ph =
safe_expect env Ltop ph.p_cond; let (env, u, i) = safe_expect env Ltop ph.p_cond in
ignore (typing_block env ph.p_block) let _, u, i = typing_block (env, u, i) ph.p_block in
env, u, i
and expect env lin e = and expect env lin e =
let l = match e.e_desc with let l, env = match e.e_desc with
| Evar x -> | Evar x ->
let actual_lin = Env.find x env in let actual_lin = lin_of_ident x env in
check_linearity_exp env e lin; let env = check_linearity_exp env e lin in
unify_lin lin actual_lin unify_lin lin actual_lin, env
| Emerge (_, c_e_list) -> | Emerge (_, c_e_list) ->
List.iter (fun (_, e) -> safe_expect env lin e) c_e_list; let env = List.fold_left (fun env (_, e) -> safe_expect env lin e) env c_e_list in
lin lin, env
| Ewhen (e, _, _) -> | Ewhen (e, _, _) ->
expect env lin e expect env lin e
| Esplit (c, e) -> | Esplit (c, e) ->
safe_expect env Ltop c; let env = safe_expect env Ltop c in
let l = linearity_list_of_linearity lin in let l = linearity_list_of_linearity lin in
safe_expect env (List.hd l) e; let env = safe_expect env (List.hd l) e in
lin lin, env
| Eapp ({ a_op = Etuple }, e_list, _) -> | Eapp ({ a_op = Etuple }, e_list, _) ->
let lin_list = linearity_list_of_linearity lin in let lin_list = linearity_list_of_linearity lin in
(try (try
prod (List.map2 (expect env) lin_list e_list) let l, env = mapfold2 expect env lin_list e_list in
prod l, env
with with
Invalid_argument _ -> message e.e_loc (Eunify_failed_one lin)) Invalid_argument _ -> message e.e_loc (Eunify_failed_one lin))
@ -733,22 +753,23 @@ and expect env lin e =
let inputs_lins = linearities_of_arg_list ty_desc.node_inputs in let inputs_lins = linearities_of_arg_list ty_desc.node_inputs in
let _, inputs_lins = Misc.split_at (List.length pe_list) inputs_lins in let _, inputs_lins = Misc.split_at (List.length pe_list) inputs_lins in
let outputs_lins = linearities_of_arg_list ty_desc.node_outputs in let outputs_lins = linearities_of_arg_list ty_desc.node_outputs in
List.iter (fun e -> safe_expect env (not_linear_for_exp e) e) pe_list; let env =
List.fold_left (fun env e -> safe_expect env (not_linear_for_exp e) e) env pe_list in
(try (try
expect_iterator env e.e_loc it expected_lin_list inputs_lins outputs_lins e_list expect_iterator env e.e_loc it expected_lin_list inputs_lins outputs_lins e_list
with with
UnifyFailed -> message e.e_loc (Eunify_failed_one lin)) UnifyFailed -> message e.e_loc (Eunify_failed_one lin))
| _ -> | _ ->
let actual_lin = typing_exp env e in let actual_lin, env = typing_exp env e in
unify_lin lin actual_lin unify_lin lin actual_lin, env
in in
e.e_linearity <- l; e.e_linearity <- l;
l l, env
and safe_expect env lin e = and safe_expect env lin e =
begin try begin try
ignore (expect env lin e) let _, env = (expect env lin e) in env
with with
UnifyFailed -> message e.e_loc (Eunify_failed_one (lin)) UnifyFailed -> message e.e_loc (Eunify_failed_one (lin))
end end
@ -770,10 +791,10 @@ let check_outputs inputs outputs =
List.iter (check_out env) outputs List.iter (check_out env) outputs
let node f = let node f =
used_lin_vars := used_lin_vars_list (f.n_input); let env = build Env.empty (f.n_input @ f.n_output) in
let used_vars = build_ids IdentSet.empty f.n_output in
let env = build (f.n_input @ f.n_output) Env.empty in let init_vars = build_location LocationSet.empty f.n_input in
ignore (typing_block env f.n_block); ignore (typing_block (env, used_vars, init_vars) f.n_block);
check_outputs f.n_input f.n_output; check_outputs f.n_input f.n_output;
(* Update the function signature *) (* Update the function signature *)

View file

@ -129,6 +129,12 @@ let mapfold f acc l =
([],acc) l in ([],acc) l in
List.rev l, acc List.rev l, acc
let mapfold2 f acc l1 l2 =
let l,acc = List.fold_left2
(fun (l,acc) e1 e2 -> let e,acc = f acc e1 e2 in e::l, acc)
([],acc) l1 l2 in
List.rev l, acc
let mapfold_right f l acc = let mapfold_right f l acc =
List.fold_right (fun e (acc, l) -> let acc, e = f e acc in (acc, e :: l)) List.fold_right (fun e (acc, l) -> let acc, e = f e acc in (acc, e :: l))
l (acc, []) l (acc, [])

View file

@ -65,6 +65,7 @@ val option_compare : ('a -> 'a -> int) -> 'a option -> 'a option -> int
(** Mapfold *) (** Mapfold *)
val mapfold: ('acc -> 'b -> 'c * 'acc) -> 'acc -> 'b list -> 'c list * 'acc val mapfold: ('acc -> 'b -> 'c * 'acc) -> 'acc -> 'b list -> 'c list * 'acc
val mapfold2: ('acc -> 'b -> 'd -> 'c * 'acc) -> 'acc -> 'b list -> 'd list -> 'c list * 'acc
(** Mapfold, right version. *) (** Mapfold, right version. *)
val mapfold_right val mapfold_right