Boolean transformation pass (translate every enumeration type to boolean tuples)

This commit is contained in:
Gwenal Delaval 2011-03-10 23:00:18 +01:00
parent d6240e1c67
commit 4e267d82c6
5 changed files with 785 additions and 0 deletions

View file

@ -99,6 +99,8 @@ let main () =
"-stdlib", Arg.String set_stdlib, doc_stdlib;
"-c", Arg.Set create_object_file, doc_object_file;
"-s", Arg.String set_simulation_node, doc_sim;
"-bool", Arg.Set boolean, doc_boolean;
"-deadcode", Arg.Set deadcode, doc_deadcode;
"-tomato", Arg.Set tomato, doc_tomato;
"-tomanode", read_qualname add_tomato_node, doc_tomato;
"-tomacheck", read_qualname add_tomato_check, "";

View file

@ -30,6 +30,11 @@ let compile_program p =
let p =
pass "Automata minimization checks" true Tomato.tomato_checks p pp in
*)
(* Boolean translation of enumerated values *)
let sigali = List.mem "z3z" !target_languages in
let p =
pass "Boolean transformation" (!boolean or sigali) Boolean.program p pp in
(* Scheduling *)
let p = pass "Scheduling" true Schedule.program p pp in

View file

@ -0,0 +1,738 @@
(****************************************************)
(* *)
(* Heptagon/BZR *)
(* *)
(* Author : Gwenaël Delaval *)
(* Organization : INRIA Rennes, VerTeCs *)
(* *)
(****************************************************)
(*
Translate enumerated types (state variables) into boolean
type t = A | B | C | D
A --> 00
B --> 01
C --> 10
D --> 11
x : t --> x1,x2,x2_0,x2_1 : bool (x2_i for keeping correct clocks)
x = B;
-->
(x1,x2) = (0,1);
x2_0 = x2 when False(x1);
x2_1 = x2 when True(x1);
(e when A(x))
-->
(e when False(x1)) when False(x2_0)
ck on A(x)
-->
ck on False(x1) on False(x2_0)
merge x (A -> e0) (B -> e1) (C -> e2) (D -> e3)
-->
merge x1 (False -> merge x2_0 (False -> e0) (True -> e1))
(True -> merge x2_1 (False -> e2) (True -> e3))
*)
(* $Id: boolean.ml 833 2010-02-10 14:15:00Z delaval $ *)
open Names
open Location
open Idents
open Signature
open Types
open Clocks
open Minils
let ty_bool = Tid({ qual = "Pervasives"; name = "bool"})
let strue = mk_static_exp ~ty:ty_bool (Sbool(true))
let sfalse = mk_static_exp ~ty:ty_bool (Sbool(false))
let sbool = function
| true -> strue
| false -> sfalse
let ctrue = { qual = "Pervasives"; name = "true" }
let cfalse = { qual = "Pervasives"; name = "false" }
let mk_tuple e_l =
Eapp((mk_app Etuple),e_l,None)
(* boolean decision tree ; left branch for true ; nodes are constructors *)
type btree = Node of constructor_name option | Tree of btree * btree
(* info associated to each enum type *)
type enuminfo =
{
ty_nb_var : int; (* nb of boolean var representing this type *)
ty_assoc : bool list QualEnv.t;
ty_tree : btree
}
(* ty_nb_var = n : var x of enum type will be represented by
boolean variables x_1,...,x_n
ty_assoc(A) = [b_1,...,b_n] : constant A will be represented by
x_1,...,x_n where x_i = b_i
assert length(ty_assoc(A)) = ty_nb_var
*)
(* Type var_tree : variable binary tree, each variable being of clock
of its direct father (false clock for left son, true for right son).
Then if x translates to (x1,x2)
the corresponding var_tree is
x1
/ \
x2_0 x2_1
x2_0 being on clock False(x1)
x2_1 being on clock True(x1)
*)
type var_tree = Vempty | VNode of var_ident * var_tree * var_tree
type varinfo =
{
var_enum : enuminfo;
var_list : var_ident list;
clocked_var : var_tree;
}
type type_info = Type of tdesc | Enum of enuminfo
let enum_types : type_info QualEnv.t ref = ref QualEnv.empty
let get_enum name =
QualEnv.find name !enum_types
(* split2 k [x1;...;xn] = ([x1;...;xk],[xk+1;...;xn]) *)
let split2 n l =
let rec splitaux k acc l =
if k = 0 then (acc,l) else
begin
match l with
| x::t -> splitaux (k-1) (x::acc) t
| _ -> assert false
end in
let (l1,l2) = splitaux n [] l in
(List.rev l1,l2)
(* create an info from the elements of a name list *)
let rec var_list clist =
match clist with
| [] -> (0,QualEnv.empty,Node(None))
| [c] -> (1, QualEnv.add c [true] QualEnv.empty, Tree(Node(Some c),Node(None)))
| [c1;c2] -> (1,
QualEnv.add c1 [true] (QualEnv.add c2 [false] QualEnv.empty),
Tree(Node(Some c1),Node(Some c2)))
| l ->
let n = List.length l in
let n1 = n asr 1 in
let l1,l2 = split2 n1 l in
let (nv1,vl1,t1) = var_list l1
and (nv2,vl2,t2) = var_list l2 in
(* test and debug *)
(* assert ((nv1 = nv2) or (nv1 = nv2 - 1)); *)
(* QualEnv.iter (fun _ l -> assert ((List.length l) = nv1)) vl1; *)
(* QualEnv.iter (fun _ l -> assert ((List.length l) = nv2)) vl2; *)
(* let nt1 = *)
(* begin *)
(* match (count t1) with *)
(* None -> assert false *)
(* | Some n -> n *)
(* end in *)
(* assert (nt1 = nv1); *)
(* let nt2 = *)
(* begin *)
(* match (count t2) with *)
(* | None -> assert false *)
(* | Some n -> n *)
(* end in *)
(* assert (nt2 = nv2); *)
let vl =
QualEnv.fold (fun c l m -> QualEnv.add c (false::l) m) vl2
(QualEnv.fold
(if nv1 = nv2
then (fun c l m -> QualEnv.add c (true::l) m)
else (fun c l m -> QualEnv.add c (true::false::l) m))
vl1
QualEnv.empty) in
let t1 = if nv1 = nv2 then t1 else Tree(Node(None),t1) in
let t = Tree(t1,t2) in
nv2 + 1, vl, t
(* purge type declarations from enumerated types ; build enuminfo env *)
let build_enum_env type_dec_list =
let build (acc_types,env_enum) type_dec =
match type_dec.t_desc with
| Type_enum clist ->
let (n,env,t) = var_list clist in
(acc_types,
QualEnv.add type_dec.t_name
(Enum({ ty_nb_var = n;
ty_assoc = env;
ty_tree = t}))
env_enum)
| tdesc ->
(type_dec::acc_types),
QualEnv.add type_dec.t_name
(Type(tdesc))
env_enum
in
let (acc_types,env_enum) = List.fold_left build ([],QualEnv.empty) type_dec_list in
enum_types := env_enum;
List.rev acc_types
let var_list prefix n =
let rec varl acc = function
| 0 -> acc
| n ->
let acc = (prefix ^ "_" ^ (string_of_int n)) :: acc in
varl acc (n-1) in
varl [] n
let translate_pat env pat =
let rec trans = function
| Evarpat(name) ->
begin
try
let info = Env.find name env in
match info.var_enum.ty_nb_var with
| 1 ->
Evarpat(List.nth info.var_list 0)
| _ ->
let varpat_list = info.var_list in
Etuplepat(List.map (fun v -> Evarpat(v)) varpat_list)
with Not_found -> Evarpat(name)
end
| Etuplepat(pat_list) -> Etuplepat(List.map trans pat_list) in
trans pat
let translate_ty ty =
let rec trans ty =
match ty with
| Tid({ qual = "Pervasives"; name = "bool" }) -> ty
| Tid(name) ->
begin
try
let info = get_enum name in
begin match info with
| Type(_) -> ty
| Enum { ty_nb_var = 1 } -> ty_bool
| Enum { ty_nb_var = n } ->
let strlist = var_list "" n in
Tprod(List.map (fun _ -> ty_bool) strlist)
end
with Not_found -> ty
end
| Tprod(ty_list) -> Tprod(List.map trans ty_list)
| Tarray(ty,se) -> Tarray(trans ty,se)
in
trans ty
let rec on_list ck bl vtree =
match bl, vtree with
| [], _ -> ck
| b::bl', VNode(v,t0,t1) ->
let (c,t) = if b then (ctrue,t1) else (cfalse,t0) in
on_list (Con(ck,c,v)) bl' t
| _::_, Vempty -> failwith("on_list: non-coherent boolean list and tree")
let rec translate_ck env ck =
match ck with
| Cbase -> Cbase
| Cvar {contents = Clink(ck)} -> translate_ck env ck
| Cvar {contents = Cindex(_)} -> ck
| Con(ck,c,n) ->
let ck = translate_ck env ck in
begin
try
let info = Env.find n env in
let bl = QualEnv.find c info.var_enum.ty_assoc in
on_list ck bl info.clocked_var
with Not_found ->
Printf.printf "Not found in env : %s\n" (name n);
(* Boolean clock *)
Con(ck,c,n)
end
let translate_const c ty e =
match c.se_desc,ty with
| _, Tid({ qual = "Pervasives"; name = "bool" }) -> Econst(c)
| Sconstructor(cname),Tid(tname) ->
begin
try
begin
match (get_enum tname) with
| Type _ -> Econst(c)
| Enum { ty_assoc = assoc } ->
let bl = QualEnv.find cname assoc in
let b_list = List.map (fun b -> Econst(sbool b)) bl in
begin
match b_list with
| [] -> assert false
| [b] -> b
| _::_ ->
mk_tuple
(List.map
(fun b -> {e with
e_desc = b;
e_ty = ty_bool })
b_list)
end
end
with Not_found -> Econst(c)
end
| _ -> Econst(c)
let new_var_list d_list ty ck n =
let rec varl acc d_list = function
| 0 -> acc,d_list
| n ->
let v = fresh "bool" in
let acc = v :: acc in
let d_list = (mk_var_dec ~clock:ck v ty) :: d_list in
varl acc d_list (n-1) in
varl [] d_list n
let intro_tuple context e =
let n =
match e.e_ty with
| Tprod(l) -> List.length l
| _ -> assert false in
match e.e_desc with
Eapp({a_op=Etuple},e_l,None) -> context,e_l
| _ ->
let (d_list,eq_list) = context in
let v_list,d_list = new_var_list d_list ty_bool e.e_ck n in
let pat = Etuplepat(List.map (fun v -> Evarpat(v)) v_list) in
let eq_list = (mk_equation pat e) :: eq_list in
let e_list = List.map (fun v -> { e with e_ty = ty_bool; e_desc = Evar(v) }) v_list in
(d_list,eq_list),e_list
let rec when_list e bl vtree =
match bl, vtree with
| [], _ -> e
| b::bl', VNode(v,t0,t1) ->
let (c,t) = if b then (ctrue,t1) else (cfalse,t0) in
let e_when = { e with
e_ck = Con(e.e_ck,c,v);
e_desc = Ewhen(e,c,v) } in
when_list e_when bl' t
| _::_, Vempty -> failwith("when_list: non-coherent boolean list and tree")
let rec when_ck desc ty ck =
match ck with
| Cbase | Cvar _ ->
{ e_desc = desc;
e_ck = ck;
e_ty = ty;
e_loc = no_location }
| Con(ck',c,v) ->
let e = when_ck desc ty ck' in
{ e_desc = Ewhen(e,c,v);
e_ck = ck;
e_ty = ty;
e_loc = no_location }
let rec base_value ck ty =
match ty with
| Tid({qual = "Pervasives"; name = "int" }) ->
when_ck (Econst(mk_static_exp ~ty:ty (Sint(0)))) ty ck
| Tid({qual = "Pervasives"; name = "float"}) ->
when_ck (Econst(mk_static_exp ~ty:ty (Sfloat(0.)))) ty ck
| Tid({qual = "Pervasives"; name = "bool" }) ->
when_ck (Econst(strue)) ty ck
| Tid(sname) ->
begin
try
begin
let info = get_enum sname in
(* boolean tuple *)
match info with
| Type(Type_abs) -> failwith("Abstract types not implemented")
| Type(Type_alias aty) -> base_value ck aty
| Type(Type_enum(l)) ->
when_ck
(Econst(mk_static_exp ~ty:ty (Sconstructor(List.hd l))))
ty ck
| Type(Type_struct(l)) ->
let fields =
List.map
(fun {f_name = name; f_type = ty} ->
name,(base_value ck ty))
l in
when_ck (Estruct(fields)) ty ck
| Enum { ty_nb_var = 1 } ->
when_ck (Econst(strue)) ty_bool ck
| Enum { ty_nb_var = n } ->
let e = when_ck (Econst(strue)) ty_bool ck in
let rec aux acc = function
| 0 -> acc
| n -> aux (e::acc) (n-1) in
let e_list = aux [] n in
{ e_desc = mk_tuple e_list;
e_ty = Tprod(List.map (fun _ -> ty_bool) e_list);
e_ck = ck;
e_loc = no_location }
end
with Not_found ->
Printf.printf "Name : %s\n" sname.name; assert false
end
| Tprod(ty_list) ->
let e_list = List.map (base_value ck) ty_list in
{ e_desc = mk_tuple e_list;
e_ty = Tprod(List.map (fun e -> e.e_ty) e_list);
e_ck = ck;
e_loc = no_location;
}
| Tarray(ty,se) ->
let e = base_value ck ty in
{ e_desc = Eapp((mk_app ~params:[se] Earray_fill), [e], None);
e_ty = Tarray(e.e_ty,se);
e_ck = ck;
e_loc = no_location;
}
let rec merge_tree ck ty e_map btree vtree =
match btree, vtree with
| Node(None), _ -> base_value ck ty
| Node(Some name), _ ->
let e = QualEnv.find name e_map in
{ e with e_ck = ck }
| Tree(t1,t2), VNode(v,vt1,vt2) ->
let e1 = merge_tree (Con(ck,ctrue,v)) ty e_map t1 vt1
and e2 = merge_tree (Con(ck,cfalse,v)) ty e_map t2 vt2
in
{ e_desc = Emerge(v,[(ctrue,e1);(cfalse,e2)]);
e_ty = ty;
e_ck = ck;
e_loc = no_location }
| Tree (_,_), Vempty -> failwith("merge_tree: non-coherent trees")
let rec translate env context ({e_desc = desc; e_ty = ty; e_ck = ck} as e) =
let ck = translate_ck env ck in
let context,desc =
match desc with
| Econst(c) ->
context, translate_const c ty e
| Evar(name) ->
let desc = begin
try
let info = Env.find name env in
if info.var_enum.ty_nb_var = 1 then
Evar(List.nth info.var_list 0)
else
let ident_list = info.var_list in
mk_tuple (List.map
(fun v -> { e with
e_ty = ty_bool;
e_ck = ck;
e_desc = Evar(v); })
ident_list)
with Not_found -> Evar(name)
end in
context,desc
| Efby(None, e) ->
let context,e = translate env context e in
context,Efby(None,e)
| Efby(Some c,e) ->
let e_c = translate_const c ty e in
let context,e = translate env context e in
begin
match e_c with
| Econst(c) -> context,Efby(Some c,e)
| Eapp({ a_op = Etuple },e_c_l,None) ->
let context,e_l = intro_tuple context e in
let c_l = List.map (function
| { e_desc = Econst(c) } -> c
| _ -> assert false) e_c_l in
context,
mk_tuple
(List.map2
(fun c e -> { e with
e_ty = ty_bool;
e_desc = Efby(Some c,e)})
c_l e_l)
| _ -> assert false
end
| Eapp(app, e_list, r) ->
let context,e_list = translate_list env context e_list in
context, Eapp(app, e_list, r)
| Ewhen(e,c,ck) ->
let context,e = translate env context e in
begin
try
let info = Env.find ck env in
let bl = QualEnv.find c info.var_enum.ty_assoc in
let e_when = when_list e bl info.clocked_var in
context,e_when.e_desc
with Not_found ->
(* Boolean clock *)
context,Ewhen(e,c,ck)
end
| Emerge(ck_m,l) (* of name * (longname * exp) list *)
->
begin
try
let info = Env.find ck_m env in
let context,e_map = List.fold_left
(fun (context,e_map) (n,e) ->
let context,e = translate env context e in
context,QualEnv.add n e e_map)
(context,QualEnv.empty) l in
let e_merge =
merge_tree ck ty e_map
info.var_enum.ty_tree
info.clocked_var in
context,e_merge.e_desc
with Not_found ->
(* Boolean clock *)
let context, l =
List.fold_left
(fun (context,acc_l) (n,e) ->
let context,e = translate env context e in
context, (n,e)::acc_l)
(context,[]) l in
context,Emerge(ck_m,l)
end
| Estruct(l) ->
let context,acc =
List.fold_left
(fun (context,acc) (c,e) ->
let context,e = translate env context e in
(context,(c,e)::acc))
(context,[]) l in
context,Estruct(List.rev acc)
| Eiterator(it,app,se,e_list,r) ->
let context,e_list = translate_list env context e_list in
context,Eiterator(it,app,se,e_list,r)
in
context,{ e with
e_desc = desc;
e_ty = translate_ty ty;
e_ck = ck}
and translate_list env context e_list =
let context,acc_e =
List.fold_left
(fun (context,acc_e) e ->
let context,e = translate env context e in
(context,e::acc_e))
(context,[]) e_list in
context,List.rev acc_e
let translate_eq env context ({ eq_lhs = pat; eq_rhs = e } as eq) =
let pat = translate_pat env pat in
let (d_list,eq_list),e = translate env context e in
d_list,{ eq with eq_lhs = pat; eq_rhs = e }::eq_list
let translate_eqs env eq_list =
List.fold_left
(fun context eq ->
translate_eq env context eq) ([],[]) eq_list
(* Tranlate variable declaration list : outputs
- new declaration list
- added local variables suffixed with "(_(1|0))*" for clock coherence
- equations of these added variables
*)
let var_dec_list (acc_vd,acc_loc,acc_eq) var_from n =
(* when_ck [v3_1_0;v2_1;v1] (ck on True(v1) on False(v2_1) on True(v3_1_0)) v4
= ((v4 when True(v1)) when False(v2_1)) when True(v3_1_0)
-> builds v4_1_0_1
*)
let rec when_ck ckvar_list ck var =
match ckvar_list,ck with
| [], _ ->
{ e_desc = Evar(var);
e_ck = ck;
e_ty = ty_bool;
e_loc = no_location }
| _ckvar::l, Con(ck',c,v) ->
(* assert v = _ckvar *)
let e = when_ck l ck' var in
{ e_desc = Ewhen(e,c,v);
e_ck = ck;
e_ty = ty_bool;
e_loc = no_location }
| _ -> failwith("when_ck: non coherent clock and var list")
in
let prefix = name var_from.v_ident in
(* From v, build of v1...vn *)
let rec varl acc_vd k =
if k>n
then acc_vd
else
begin
let var_prefix = prefix ^ "_" ^ (string_of_int k) in
let var = fresh var_prefix in
(* addition of var_k *)
let acc_vd = { var_from with
v_ident = var;
v_type = ty_bool } :: acc_vd in
varl acc_vd (k+1)
end in
let vd_list = varl [] 1 in
(* v_list = [vn;...;v1] *)
let acc_vd = List.rev_append vd_list acc_vd in
let v_list = List.rev_map (fun vd -> vd.v_ident) vd_list in
(* From v1...vn, build clocked tree
( vi_(0|1)* on ... on (True|False) (v1) ) *)
let rec clocked_tree (acc_loc,acc_eq) acc_var suffix v_list ck =
begin match v_list, acc_var with
[], _ ->
(* Leafs *)
acc_loc,acc_eq,Vempty
| v1::v_list, [] ->
(* Root : no new id, only rec calls for sons *)
(* Build left son (ck on False(vi_...)) *)
let ck_0 = Con(ck,cfalse,v1) in
let acc_loc,acc_eq,t0 =
clocked_tree
(acc_loc,acc_eq)
([v1])
("_0")
v_list ck_0 in
(* Build right son (ck on True(vi_...))*)
let ck_1 = Con(ck,ctrue,v1) in
let acc_loc,acc_eq,t1 =
clocked_tree
(acc_loc,acc_eq)
([v1])
("_1")
v_list ck_1 in
acc_loc,acc_eq,VNode(v1,t0,t1)
| vi::v_list, _ ->
(* Build name vi_(0|1)* *)
let v = (sourcename vi) ^ suffix in
(* Build ident from this name *)
let id = fresh v in
let acc_loc = { v_ident = id;
v_type = ty_bool;
v_clock = ck;
v_loc = no_location } :: acc_loc in
(* vi_... = vi when ... when (True|False)(v1) *)
let acc_eq =
{ eq_lhs = Evarpat(id);
eq_rhs = when_ck acc_var ck vi;
eq_loc = no_location }::acc_eq in
(* Build left son (ck on False(vi_...)) *)
let ck_0 = Con(ck,cfalse,id) in
let acc_loc,acc_eq,t0 =
clocked_tree
(acc_loc,acc_eq)
(id::acc_var)
(suffix ^ "_0")
v_list ck_0 in
(* Build right son (ck on True(vi_...))*)
let ck_1 = Con(ck,ctrue,id) in
let acc_loc,acc_eq,t1 =
clocked_tree
(acc_loc,acc_eq)
(id::acc_var)
(suffix ^ "_1")
v_list ck_1 in
acc_loc,acc_eq,VNode(id,t0,t1)
end
in
let acc_loc,acc_eq,t =
clocked_tree (acc_loc,acc_eq) [] "" v_list var_from.v_clock in
(acc_vd,acc_loc,acc_eq,v_list,t)
let translate_var_dec (acc_vd,acc_loc,acc_eq,env) ({v_type = ty} as v) =
match ty with
| Tprod _ | Tarray _ -> v::acc_vd, acc_loc, acc_eq, env
| Tid(tname) ->
begin
match tname with
| { qual = "Pervasives"; name = ("bool" | "int" | "float") } ->
v::acc_vd, acc_loc, acc_eq, env
| _ ->
begin
try
begin
match (get_enum tname) with
| Type _ -> v::acc_vd, acc_loc, acc_eq ,env
| Enum(info) ->
let (acc_vd,acc_loc,acc_eq,vl,t) =
var_dec_list
(acc_vd,acc_loc,acc_eq)
v info.ty_nb_var in
let env =
Env.add
v.v_ident
{ var_enum = info;
var_list = vl;
clocked_var = t }
env in
acc_vd, acc_loc, acc_eq, env
end
with Not_found -> v::acc_vd, acc_loc, acc_eq, env
end
end
let translate_var_dec_list env vlist =
List.fold_left translate_var_dec ([],[],[],env) vlist
let translate_contract env contract =
match contract with
| None -> None, env
| Some { c_local = v;
c_eq = eq_list;
c_assume = e_a;
c_enforce = e_g;
c_controllables = cl } ->
let cl, cl_loc, cl_eq, env = translate_var_dec_list env cl in
let v, v', v_eq, env' = translate_var_dec_list env v in
let context = translate_eqs env' eq_list in
let context, e_a = translate env' context e_a in
let context, e_g = translate env' context e_g in
let (d_list,eq_list) = context in
Some { c_local = v@v'@cl_loc@d_list;
c_eq = eq_list@v_eq@cl_eq;
c_assume = e_a;
c_enforce = e_g;
c_controllables = cl },
env
let node ({ n_local = locals;
n_input = inputs;
n_output = outputs;
n_contract = contract;
n_equs = eq_list } as n) =
let inputs,in_loc,in_eq,env = translate_var_dec_list Env.empty inputs in
let outputs,out_loc,out_eq,env = translate_var_dec_list env outputs in
let contract, env = translate_contract env contract in
let locals,locals',loc_eq,env = translate_var_dec_list env locals in
let (d_list,eq_list) = translate_eqs env eq_list in
{ n with
n_local = locals@locals'@in_loc@out_loc@d_list;
n_input = List.rev inputs;
n_output = List.rev outputs;
n_contract = contract;
n_equs = eq_list@loc_eq@in_eq@out_eq }
let program ({ p_types = pt_list; p_nodes = n_list } as p) =
let pt_list = build_enum_env pt_list in
let n_list = List.map node n_list in
{ p with p_types = pt_list; p_nodes = n_list }

View file

@ -0,0 +1,34 @@
(****************************************************)
(* *)
(* Heptagon/BZR *)
(* *)
(* Author : Gwenaël Delaval *)
(* Organization : INRIA Rennes, VerTeCs *)
(* *)
(****************************************************)
(*
Translate enumerated types (state variables) into boolean
type t = A | B | C | D
A --> 00
B --> 01
C --> 10
D --> 11
x : t --> x1,x2 : bool
(e when A(x))
-->
(e when False(x1)) when False(x2)
merge x (A -> e0) (B -> e1) (C -> e2) (D -> e3)
-->
merge x1 (False -> merge x2 (False -> e0) (True -> e1))
(True -> merge x2 (False -> e2) (True -> e3))
*)
(* $Id: boolean.mli 74 2009-03-11 10:21:25Z delaval $ *)
val program : Minils.program -> Minils.program

View file

@ -85,6 +85,10 @@ let add_inlined_node s = inline := s :: !inline
let flatten = ref false
let boolean = ref false
let deadcode = ref false
let tomato = ref false
let tomato_nodes : qualname list ref = ref []
@ -117,6 +121,8 @@ and doc_full_name = "\t\t\tPrint full variable name information"
and doc_target_path =
"<path>\tGenerated files will be placed in <path>\n\t\t\t(the directory is"
^ " cleaned)"
and doc_boolean = "\t\tTranslate enumerated values towards boolean vectors"
and doc_deadcode = "\t\tDeadcode removal"
and doc_nocaus = "\t\tDisable causality analysis"
and doc_noinit = "\t\tDisable initialization analysis"
and doc_assert = "<node>\t\tInsert run-time assertions for boolean node <node>"