144 lines
4.3 KiB
OCaml
144 lines
4.3 KiB
OCaml
|
(**************************************************************************)
|
||
|
(* *)
|
||
|
(* Heptagon *)
|
||
|
(* *)
|
||
|
(* Author : Marc Pouzet *)
|
||
|
(* Organization : Demons, LRI, University of Paris-Sud, Orsay *)
|
||
|
(* *)
|
||
|
(**************************************************************************)
|
||
|
(* graph manipulation *)
|
||
|
(* $Id$ *)
|
||
|
type 'a graph =
|
||
|
{ g_top: 'a node list;
|
||
|
g_bot: 'a node list }
|
||
|
|
||
|
and 'a node =
|
||
|
{ g_containt: 'a;
|
||
|
g_tag: int;
|
||
|
mutable g_visited: bool;
|
||
|
mutable g_mark: int;
|
||
|
mutable g_depends_on: 'a node list;
|
||
|
mutable g_depends_by: 'a node list;
|
||
|
}
|
||
|
|
||
|
exception Cycle of int (* returns the index of the node *)
|
||
|
|
||
|
let tag = ref 0
|
||
|
let new_tag () = incr tag; !tag
|
||
|
let containt g = g.g_containt
|
||
|
let linked g1 g2 =
|
||
|
(List.memq g2 g1.g_depends_on) or (List.memq g1 g2.g_depends_on)
|
||
|
let make c =
|
||
|
{ g_containt = c; g_tag = new_tag (); g_visited = false;
|
||
|
g_mark = -1; g_depends_on = []; g_depends_by = [] }
|
||
|
let add_depends node1 node2 =
|
||
|
if not (node1.g_tag = node2.g_tag or linked node1 node2) then (
|
||
|
node1.g_depends_on <- node2 :: node1.g_depends_on;
|
||
|
node2.g_depends_by <- node1 :: node2.g_depends_by
|
||
|
)
|
||
|
|
||
|
let remove_depends node1 node2 =
|
||
|
if not (node1.g_tag = node2.g_tag) then (
|
||
|
node1.g_depends_on <- List.filter (fun n -> n.g_tag <> node2.g_tag) node1.g_depends_on;
|
||
|
node2.g_depends_by <- List.filter (fun n -> n.g_tag <> node1.g_tag) node2.g_depends_by
|
||
|
)
|
||
|
|
||
|
let graph top_list bot_list = { g_top = top_list; g_bot = bot_list }
|
||
|
|
||
|
|
||
|
let topological g_list =
|
||
|
let rec sortrec g_list seq =
|
||
|
match g_list with
|
||
|
| [] -> seq
|
||
|
| g :: g_list ->
|
||
|
if g.g_visited then sortrec g_list seq
|
||
|
else
|
||
|
begin
|
||
|
g.g_visited <- true;
|
||
|
let seq = sortrec g.g_depends_on seq in
|
||
|
sortrec g_list (g :: seq)
|
||
|
end in
|
||
|
let seq = sortrec g_list [] in
|
||
|
List.iter
|
||
|
(fun ({ g_visited = _ } as node) -> node.g_visited <- false) g_list;
|
||
|
List.rev seq
|
||
|
|
||
|
(** Detection of cycles *)
|
||
|
(* Mark nodes with:
|
||
|
- -1 initially, for unvisited nodes
|
||
|
- 0 for "opened" nodes, currently visited, while visiting its descendents
|
||
|
- 1 for "closed" nodes, visited once, no circuits found from it.
|
||
|
A circuit is found when a node marked with 0 is visited again.
|
||
|
*)
|
||
|
|
||
|
let cycle g_list =
|
||
|
(* store nodes in a stack *)
|
||
|
let s = Stack.create () in
|
||
|
(* flush the connected component *)
|
||
|
let rec flush index =
|
||
|
if Stack.is_empty s then []
|
||
|
else let v = Stack.pop s in
|
||
|
v.g_containt :: flush v.g_tag in
|
||
|
|
||
|
let rec visit g =
|
||
|
match g.g_mark with
|
||
|
| -1 ->
|
||
|
(* Unvisited yet *)
|
||
|
(* Open node *)
|
||
|
Stack.push g s;
|
||
|
g.g_mark <- 0;
|
||
|
(* Visit descendents *)
|
||
|
List.iter visit g.g_depends_on;
|
||
|
(* Close node *)
|
||
|
ignore (Stack.pop s);
|
||
|
g.g_mark <- 1
|
||
|
| 0 ->
|
||
|
(* Visit an opened node (visited and not close) : circuit *)
|
||
|
raise (Cycle g.g_tag)
|
||
|
| 1 | _ ->
|
||
|
(* Visit a closed node (no existing circuit) : pass *)
|
||
|
() in
|
||
|
try
|
||
|
List.iter visit g_list; None
|
||
|
with
|
||
|
| Cycle(index) -> Some(flush index)
|
||
|
|
||
|
(** [accessible useful_nodes g_list] returns the list of
|
||
|
accessible nodes starting from useful_nodes and belonging to
|
||
|
g_list. *)
|
||
|
let accessible useful_nodes g_list =
|
||
|
let rec follow g =
|
||
|
if not g.g_visited then
|
||
|
begin
|
||
|
g.g_visited <- true;
|
||
|
List.iter follow g.g_depends_on
|
||
|
end in
|
||
|
let read acc g =
|
||
|
if g.g_visited then begin g.g_visited <- false; g :: acc end else acc in
|
||
|
List.iter follow useful_nodes;
|
||
|
List.fold_left read [] g_list
|
||
|
|
||
|
(** [exists_path nodes n1 n2] returns whether there is a path
|
||
|
from n1 to n2 in the graph. nodes is the list of all the nodes
|
||
|
in the graph. *)
|
||
|
let exists_path nodes n1 n2 =
|
||
|
List.mem n2 (accessible [n1] nodes)
|
||
|
|
||
|
open Format
|
||
|
|
||
|
let print_node print g =
|
||
|
printf "Node : @[<hov>";
|
||
|
print_int g.g_tag;
|
||
|
printf "@]";
|
||
|
printf " Depends on :@\n";
|
||
|
printf " @[<v>";
|
||
|
List.iter
|
||
|
(fun node ->
|
||
|
printf "@[<hov 2>";
|
||
|
print_int node.g_tag;
|
||
|
printf "@]@ ")
|
||
|
g.g_depends_on;
|
||
|
printf "@]"
|
||
|
|
||
|
|