import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression import numpy as np Y = [1100, 2150, 3200, 4250, 5300, 6350, 7400, 8450, 9500] Y2 = [1100, 2150, 3200, 4250, 5300, 6350, 7400, 8450, 9500] Y_ARM = [912, 1736 , 2560 , 3352, 4216, 5304 , 5840, 6704, 7464] Y_ARMO3 = [173, 329, 480, 633, 789, 945, 1098, 1308, 1406] Y_gcc = [2296, 5119, 6715, 9078, 10830, 12541, 15041, 16780, 18883] Y_O3 = [165, 287, 380, 559, 900, 901, 776, 1122, 1574] f_RISCV1 = 50e6 f_RISCV2 = 100e6 f_ARM = 800e6 f_PC = 2400e6 X = [] for i in range(9) : Y[i] = (Y[i]*1e9)/f_RISCV1 Y2[i] = (Y2[i]*1e9)/f_RISCV2 Y_ARM[i] = (Y_ARM[i]*1e9)/f_ARM Y_ARMO3[i] = (Y_ARMO3[i]*1e9)/f_ARM Y_gcc[i] = (Y_gcc[i]*1e9)/f_PC Y_O3[i] = (Y_O3[i]*1e9)/f_PC X.append(50*(1+i)) plt.scatter(X, Y, color="b", marker="x", label="RISCV 50 MHz") plt.scatter(X, Y2, color="g", marker="x", label="RISCV 100 MHz") plt.scatter(X, Y_ARM, color="b", label="mesures ARM") plt.scatter(X, Y_ARMO3, color="g", label="mesures ARM -O3") plt.scatter(X, Y_gcc, color="b",marker="*", label="desktop -O0 2,4Ghz") plt.scatter(X, Y_O3, color="g", marker="*",label="desktop -O3 2,4Ghz") x = np.array(X).reshape(-1, 1) y = np.array(Y).reshape(-1, 1) y2 = np.array(Y2).reshape(-1, 1) reg = LinearRegression().fit(x, y) reg2 = LinearRegression().fit(x, y2) print("score obtenu : " + str(reg.score(x, y))) print("score obtenu : " + str(reg.score(x, y2))) print("attente à zéro : {}".format(reg.intercept_)) print("attente à zéro : {}".format(reg2.intercept_)) x_lin = [0, max(X)] y_lin = [reg.predict(np.array([0]).reshape(-1, 1)), reg.predict(np.array([x_lin[1]]).reshape(-1, 1))] y_lin2 = [reg2.predict(np.array([0]).reshape(-1, 1)), reg2.predict(np.array([x_lin[1]]).reshape(-1, 1))] y_lin = [y_lin[0][0][0], y_lin[1][0][0]] y_lin2 = [y_lin2[0][0][0], y_lin2[1][0][0]] # plt.plot(x_lin, y_lin, color = "r", label="RegLin 50 score : {:.4f}".format(reg.score(x, y))) # plt.plot(x_lin, y_lin2, color = "r") plt.yscale("log") plt.xlim([0, 500]) plt.ylim([0, 1000000]) plt.legend() plt.title("Temps d'exécution en fonction de n_max") plt.ylabel("T (ns)") plt.xlabel("N_max") plt.show() plt.savefig("M2_SETI/A2/fibonacci/linéaire.png")