// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import ( "internal/cpu" "internal/goarch" "unsafe" ) // For gccgo, use go:linkname to export compiler-called functions. // //go:linkname memhash0 //go:linkname memhash8 //go:linkname memhash16 //go:linkname memhash32 //go:linkname memhash64 //go:linkname memhash128 //go:linkname strhash //go:linkname f32hash //go:linkname f64hash //go:linkname c64hash //go:linkname c128hash //go:linkname interhash //go:linkname nilinterhash //go:linkname memequal0 //go:linkname memequal8 //go:linkname memequal16 //go:linkname memequal32 //go:linkname memequal64 //go:linkname memequal128 //go:linkname strequal //go:linkname f32equal //go:linkname f64equal //go:linkname c64equal //go:linkname c128equal //go:linkname interequal //go:linkname nilinterequal //go:linkname efaceeq //go:linkname ifaceeq //go:linkname ifacevaleq //go:linkname ifaceefaceeq //go:linkname efacevaleq //go:linkname cmpstring // // Temporary to be called from C code. //go:linkname alginit const ( c0 = uintptr((8-goarch.PtrSize)/4*2860486313 + (goarch.PtrSize-4)/4*33054211828000289) c1 = uintptr((8-goarch.PtrSize)/4*3267000013 + (goarch.PtrSize-4)/4*23344194077549503) ) func memhash0(p unsafe.Pointer, h uintptr) uintptr { return h } func memhash8(p unsafe.Pointer, h uintptr) uintptr { return memhash(p, h, 1) } func memhash16(p unsafe.Pointer, h uintptr) uintptr { return memhash(p, h, 2) } func memhash128(p unsafe.Pointer, h uintptr) uintptr { return memhash(p, h, 16) } // runtime variable to check if the processor we're running on // actually supports the instructions used by the AES-based // hash implementation. var useAeshash bool // in C code func aeshashbody(p unsafe.Pointer, h, s uintptr, sched []byte) uintptr func aeshash(p unsafe.Pointer, h, s uintptr) uintptr { return aeshashbody(p, h, s, aeskeysched[:]) } func aeshashstr(p unsafe.Pointer, h uintptr) uintptr { ps := (*stringStruct)(p) return aeshashbody(unsafe.Pointer(ps.str), h, uintptr(ps.len), aeskeysched[:]) } func strhash(a unsafe.Pointer, h uintptr) uintptr { x := (*stringStruct)(a) return memhash(x.str, h, uintptr(x.len)) } // NOTE: Because NaN != NaN, a map can contain any // number of (mostly useless) entries keyed with NaNs. // To avoid long hash chains, we assign a random number // as the hash value for a NaN. func f32hash(p unsafe.Pointer, h uintptr) uintptr { f := *(*float32)(p) switch { case f == 0: return c1 * (c0 ^ h) // +0, -0 case f != f: return c1 * (c0 ^ h ^ uintptr(fastrand())) // any kind of NaN default: return memhash(p, h, 4) } } func f64hash(p unsafe.Pointer, h uintptr) uintptr { f := *(*float64)(p) switch { case f == 0: return c1 * (c0 ^ h) // +0, -0 case f != f: return c1 * (c0 ^ h ^ uintptr(fastrand())) // any kind of NaN default: return memhash(p, h, 8) } } func c64hash(p unsafe.Pointer, h uintptr) uintptr { x := (*[2]float32)(p) return f32hash(unsafe.Pointer(&x[1]), f32hash(unsafe.Pointer(&x[0]), h)) } func c128hash(p unsafe.Pointer, h uintptr) uintptr { x := (*[2]float64)(p) return f64hash(unsafe.Pointer(&x[1]), f64hash(unsafe.Pointer(&x[0]), h)) } func interhash(p unsafe.Pointer, h uintptr) uintptr { a := (*iface)(p) tab := a.tab if tab == nil { return h } t := *(**_type)(tab) if t.equal == nil { // Check hashability here. We could do this check inside // typehash, but we want to report the topmost type in // the error text (e.g. in a struct with a field of slice type // we want to report the struct, not the slice). panic(errorString("hash of unhashable type " + t.string())) } if isDirectIface(t) { return c1 * typehash(t, unsafe.Pointer(&a.data), h^c0) } else { return c1 * typehash(t, a.data, h^c0) } } func nilinterhash(p unsafe.Pointer, h uintptr) uintptr { a := (*eface)(p) t := a._type if t == nil { return h } if t.equal == nil { // See comment in interhash above. panic(errorString("hash of unhashable type " + t.string())) } if isDirectIface(t) { return c1 * typehash(t, unsafe.Pointer(&a.data), h^c0) } else { return c1 * typehash(t, a.data, h^c0) } } // typehash computes the hash of the object of type t at address p. // h is the seed. // This function is seldom used. Most maps use for hashing either // fixed functions (e.g. f32hash) or compiler-generated functions // (e.g. for a type like struct { x, y string }). This implementation // is slower but more general and is used for hashing interface types // (called from interhash or nilinterhash, above) or for hashing in // maps generated by reflect.MapOf (reflect_typehash, below). // Note: this function must match the compiler generated // functions exactly. See issue 37716. func typehash(t *_type, p unsafe.Pointer, h uintptr) uintptr { if t.tflag&tflagRegularMemory != 0 { // Handle ptr sizes specially, see issue 37086. switch t.size { case 4: return memhash32(p, h) case 8: return memhash64(p, h) default: return memhash(p, h, t.size) } } switch t.kind & kindMask { case kindFloat32: return f32hash(p, h) case kindFloat64: return f64hash(p, h) case kindComplex64: return c64hash(p, h) case kindComplex128: return c128hash(p, h) case kindString: return strhash(p, h) case kindInterface: i := (*interfacetype)(unsafe.Pointer(t)) if len(i.methods) == 0 { return nilinterhash(p, h) } return interhash(p, h) case kindArray: a := (*arraytype)(unsafe.Pointer(t)) for i := uintptr(0); i < a.len; i++ { h = typehash(a.elem, add(p, i*a.elem.size), h) } return h case kindStruct: s := (*structtype)(unsafe.Pointer(t)) for _, f := range s.fields { if f.name != nil && *f.name == "_" { continue } h = typehash(f.typ, add(p, f.offset()), h) } return h default: // Should never happen, as typehash should only be called // with comparable types. panic(errorString("hash of unhashable type " + t.string())) } } //go:linkname reflect_typehash reflect.typehash func reflect_typehash(t *_type, p unsafe.Pointer, h uintptr) uintptr { return typehash(t, p, h) } func memequal0(p, q unsafe.Pointer) bool { return true } func memequal8(p, q unsafe.Pointer) bool { return *(*int8)(p) == *(*int8)(q) } func memequal16(p, q unsafe.Pointer) bool { return *(*int16)(p) == *(*int16)(q) } func memequal32(p, q unsafe.Pointer) bool { return *(*int32)(p) == *(*int32)(q) } func memequal64(p, q unsafe.Pointer) bool { return *(*int64)(p) == *(*int64)(q) } func memequal128(p, q unsafe.Pointer) bool { return *(*[2]int64)(p) == *(*[2]int64)(q) } func f32equal(p, q unsafe.Pointer) bool { return *(*float32)(p) == *(*float32)(q) } func f64equal(p, q unsafe.Pointer) bool { return *(*float64)(p) == *(*float64)(q) } func c64equal(p, q unsafe.Pointer) bool { return *(*complex64)(p) == *(*complex64)(q) } func c128equal(p, q unsafe.Pointer) bool { return *(*complex128)(p) == *(*complex128)(q) } func strequal(p, q unsafe.Pointer) bool { return *(*string)(p) == *(*string)(q) } func interequal(p, q unsafe.Pointer) bool { return ifaceeq(*(*iface)(p), *(*iface)(q)) } func nilinterequal(p, q unsafe.Pointer) bool { return efaceeq(*(*eface)(p), *(*eface)(q)) } func efaceeq(x, y eface) bool { t := x._type if !eqtype(t, y._type) { return false } if t == nil { return true } eq := t.equal if eq == nil { panic(errorString("comparing uncomparable type " + t.string())) } if isDirectIface(t) { return x.data == y.data } return eq(x.data, y.data) } func ifaceeq(x, y iface) bool { xtab := x.tab if xtab == nil && y.tab == nil { return true } if xtab == nil || y.tab == nil { return false } t := *(**_type)(xtab) if !eqtype(t, *(**_type)(y.tab)) { return false } eq := t.equal if eq == nil { panic(errorString("comparing uncomparable type " + t.string())) } if isDirectIface(t) { // Direct interface types are ptr, chan, map, func, and single-element structs/arrays thereof. // Maps and funcs are not comparable, so they can't reach here. // Ptrs, chans, and single-element items can be compared directly using ==. return x.data == y.data } return eq(x.data, y.data) } func ifacevaleq(x iface, t *_type, p unsafe.Pointer) bool { if x.tab == nil { return false } xt := *(**_type)(x.tab) if !eqtype(xt, t) { return false } eq := t.equal if eq == nil { panic(errorString("comparing uncomparable type " + t.string())) } if isDirectIface(t) { return x.data == p } return eq(x.data, p) } func ifaceefaceeq(x iface, y eface) bool { if x.tab == nil && y._type == nil { return true } if x.tab == nil || y._type == nil { return false } xt := *(**_type)(x.tab) if !eqtype(xt, y._type) { return false } eq := xt.equal if eq == nil { panic(errorString("comparing uncomparable type " + xt.string())) } if isDirectIface(xt) { return x.data == y.data } return eq(x.data, y.data) } func efacevaleq(x eface, t *_type, p unsafe.Pointer) bool { if x._type == nil { return false } if !eqtype(x._type, t) { return false } eq := t.equal if eq == nil { panic(errorString("comparing uncomparable type " + t.string())) } if isDirectIface(t) { // See comment in efaceeq. return x.data == p } return eq(x.data, p) } func cmpstring(x, y string) int { a := stringStructOf(&x) b := stringStructOf(&y) l := a.len if l > b.len { l = b.len } i := memcmp(unsafe.Pointer(a.str), unsafe.Pointer(b.str), uintptr(l)) if i != 0 { return int(i) } if a.len < b.len { return -1 } else if a.len > b.len { return 1 } return 0 } // For the unsafe.Pointer type descriptor in libgo/runtime/go-unsafe-pointer.c. func pointerhash(p unsafe.Pointer, h uintptr) uintptr { return memhash(p, h, unsafe.Sizeof(unsafe.Pointer)) } func pointerequal(p, q unsafe.Pointer) bool { return *(*unsafe.Pointer)(p) == *(*unsafe.Pointer)(q) } // Force the creation of function descriptors for equality and hash // functions. These will be referenced directly by the compiler. var _ = memhash var _ = memhash0 var _ = memhash8 var _ = memhash16 var _ = memhash32 var _ = memhash64 var _ = memhash128 var _ = strhash var _ = f32hash var _ = f64hash var _ = c64hash var _ = c128hash var _ = interhash var _ = nilinterhash var _ = memequal0 var _ = memequal8 var _ = memequal16 var _ = memequal32 var _ = memequal64 var _ = memequal128 var _ = f32equal var _ = f64equal var _ = c64equal var _ = c128equal var _ = strequal var _ = interequal var _ = nilinterequal var _ = pointerhash var _ = pointerequal // Testing adapters for hash quality tests (see hash_test.go) func stringHash(s string, seed uintptr) uintptr { return strhash(noescape(unsafe.Pointer(&s)), seed) } func bytesHash(b []byte, seed uintptr) uintptr { s := (*slice)(unsafe.Pointer(&b)) return memhash(s.array, seed, uintptr(s.len)) } func int32Hash(i uint32, seed uintptr) uintptr { return memhash32(noescape(unsafe.Pointer(&i)), seed) } func int64Hash(i uint64, seed uintptr) uintptr { return memhash64(noescape(unsafe.Pointer(&i)), seed) } func efaceHash(i any, seed uintptr) uintptr { return nilinterhash(noescape(unsafe.Pointer(&i)), seed) } func ifaceHash(i interface { F() }, seed uintptr) uintptr { return interhash(noescape(unsafe.Pointer(&i)), seed) } const hashRandomBytes = goarch.PtrSize / 4 * 64 // used in asm_{386,amd64,arm64}.s to seed the hash function var aeskeysched [hashRandomBytes]byte // used in hash{32,64}.go to seed the hash function var hashkey [4]uintptr func alginit() { // Install AES hash algorithms if the instructions needed are present. if (GOARCH == "386" || GOARCH == "amd64") && support_aes && cpu.X86.HasAES && // AESENC cpu.X86.HasSSSE3 && // PSHUFB cpu.X86.HasSSE41 { // PINSR{D,Q} initAlgAES() return } if GOARCH == "arm64" && cpu.ARM64.HasAES { initAlgAES() return } getRandomData((*[len(hashkey) * goarch.PtrSize]byte)(unsafe.Pointer(&hashkey))[:]) hashkey[0] |= 1 // make sure these numbers are odd hashkey[1] |= 1 hashkey[2] |= 1 hashkey[3] |= 1 } func initAlgAES() { useAeshash = true // Initialize with random data so hash collisions will be hard to engineer. getRandomData(aeskeysched[:]) } // Note: These routines perform the read with a native endianness. func readUnaligned32(p unsafe.Pointer) uint32 { q := (*[4]byte)(p) if goarch.BigEndian { return uint32(q[3]) | uint32(q[2])<<8 | uint32(q[1])<<16 | uint32(q[0])<<24 } return uint32(q[0]) | uint32(q[1])<<8 | uint32(q[2])<<16 | uint32(q[3])<<24 } func readUnaligned64(p unsafe.Pointer) uint64 { q := (*[8]byte)(p) if goarch.BigEndian { return uint64(q[7]) | uint64(q[6])<<8 | uint64(q[5])<<16 | uint64(q[4])<<24 | uint64(q[3])<<32 | uint64(q[2])<<40 | uint64(q[1])<<48 | uint64(q[0])<<56 } return uint64(q[0]) | uint64(q[1])<<8 | uint64(q[2])<<16 | uint64(q[3])<<24 | uint64(q[4])<<32 | uint64(q[5])<<40 | uint64(q[6])<<48 | uint64(q[7])<<56 }