/* Disassemble support for GDB. Copyright (C) 2000-2022 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "arch-utils.h" #include "target.h" #include "value.h" #include "ui-out.h" #include "disasm.h" #include "gdbcore.h" #include "gdbcmd.h" #include "dis-asm.h" #include "source.h" #include "safe-ctype.h" #include #include "gdbsupport/gdb_optional.h" #include "valprint.h" #include "cli/cli-style.h" /* Disassemble functions. FIXME: We should get rid of all the duplicate code in gdb that does the same thing: disassemble_command() and the gdbtk variation. */ /* This variable is used to hold the prospective disassembler_options value which is set by the "set disassembler_options" command. */ static std::string prospective_options; /* This structure is used to store line number information for the deprecated /m option. We need a different sort of line table from the normal one cuz we can't depend upon implicit line-end pc's for lines to do the reordering in this function. */ struct deprecated_dis_line_entry { int line; CORE_ADDR start_pc; CORE_ADDR end_pc; }; /* This Structure is used to store line number information. We need a different sort of line table from the normal one cuz we can't depend upon implicit line-end pc's for lines to do the reordering in this function. */ struct dis_line_entry { struct symtab *symtab; int line; }; /* Hash function for dis_line_entry. */ static hashval_t hash_dis_line_entry (const void *item) { const struct dis_line_entry *dle = (const struct dis_line_entry *) item; return htab_hash_pointer (dle->symtab) + dle->line; } /* Equal function for dis_line_entry. */ static int eq_dis_line_entry (const void *item_lhs, const void *item_rhs) { const struct dis_line_entry *lhs = (const struct dis_line_entry *) item_lhs; const struct dis_line_entry *rhs = (const struct dis_line_entry *) item_rhs; return (lhs->symtab == rhs->symtab && lhs->line == rhs->line); } /* Create the table to manage lines for mixed source/disassembly. */ static htab_t allocate_dis_line_table (void) { return htab_create_alloc (41, hash_dis_line_entry, eq_dis_line_entry, xfree, xcalloc, xfree); } /* Add a new dis_line_entry containing SYMTAB and LINE to TABLE. */ static void add_dis_line_entry (htab_t table, struct symtab *symtab, int line) { void **slot; struct dis_line_entry dle, *dlep; dle.symtab = symtab; dle.line = line; slot = htab_find_slot (table, &dle, INSERT); if (*slot == NULL) { dlep = XNEW (struct dis_line_entry); dlep->symtab = symtab; dlep->line = line; *slot = dlep; } } /* Return non-zero if SYMTAB, LINE are in TABLE. */ static int line_has_code_p (htab_t table, struct symtab *symtab, int line) { struct dis_line_entry dle; dle.symtab = symtab; dle.line = line; return htab_find (table, &dle) != NULL; } /* Wrapper of target_read_code. */ int gdb_disassembler::dis_asm_read_memory (bfd_vma memaddr, gdb_byte *myaddr, unsigned int len, struct disassemble_info *info) { return target_read_code (memaddr, myaddr, len); } /* Wrapper of memory_error. */ void gdb_disassembler::dis_asm_memory_error (int err, bfd_vma memaddr, struct disassemble_info *info) { gdb_disassembler *self = static_cast(info->application_data); self->m_err_memaddr.emplace (memaddr); } /* Wrapper of print_address. */ void gdb_disassembler::dis_asm_print_address (bfd_vma addr, struct disassemble_info *info) { gdb_disassembler *self = static_cast(info->application_data); print_address (self->arch (), addr, self->stream ()); } /* Format disassembler output to STREAM. */ int gdb_disassembler::dis_asm_fprintf (void *stream, const char *format, ...) { va_list args; va_start (args, format); vfprintf_filtered ((struct ui_file *) stream, format, args); va_end (args); /* Something non -ve. */ return 0; } static bool line_is_less_than (const deprecated_dis_line_entry &mle1, const deprecated_dis_line_entry &mle2) { bool val; /* End of sequence markers have a line number of 0 but don't want to be sorted to the head of the list, instead sort by PC. */ if (mle1.line == 0 || mle2.line == 0) { if (mle1.start_pc != mle2.start_pc) val = mle1.start_pc < mle2.start_pc; else val = mle1.line < mle2.line; } else { if (mle1.line != mle2.line) val = mle1.line < mle2.line; else val = mle1.start_pc < mle2.start_pc; } return val; } /* See disasm.h. */ int gdb_pretty_print_disassembler::pretty_print_insn (const struct disasm_insn *insn, gdb_disassembly_flags flags) { /* parts of the symbolic representation of the address */ int unmapped; int offset; int line; int size; CORE_ADDR pc; struct gdbarch *gdbarch = arch (); { ui_out_emit_tuple tuple_emitter (m_uiout, NULL); pc = insn->addr; if (insn->number != 0) { m_uiout->field_unsigned ("insn-number", insn->number); m_uiout->text ("\t"); } if ((flags & DISASSEMBLY_SPECULATIVE) != 0) { if (insn->is_speculative) { m_uiout->field_string ("is-speculative", "?"); /* The speculative execution indication overwrites the first character of the PC prefix. We assume a PC prefix length of 3 characters. */ if ((flags & DISASSEMBLY_OMIT_PC) == 0) m_uiout->text (pc_prefix (pc) + 1); else m_uiout->text (" "); } else if ((flags & DISASSEMBLY_OMIT_PC) == 0) m_uiout->text (pc_prefix (pc)); else m_uiout->text (" "); } else if ((flags & DISASSEMBLY_OMIT_PC) == 0) m_uiout->text (pc_prefix (pc)); m_uiout->field_core_addr ("address", gdbarch, pc); std::string name, filename; bool omit_fname = ((flags & DISASSEMBLY_OMIT_FNAME) != 0); if (!build_address_symbolic (gdbarch, pc, false, omit_fname, &name, &offset, &filename, &line, &unmapped)) { /* We don't care now about line, filename and unmapped. But we might in the future. */ m_uiout->text (" <"); if (!omit_fname) m_uiout->field_string ("func-name", name, function_name_style.style ()); /* For negative offsets, avoid displaying them as +-N; the sign of the offset takes the place of the "+" here. */ if (offset >= 0) m_uiout->text ("+"); m_uiout->field_signed ("offset", offset); m_uiout->text (">:\t"); } else m_uiout->text (":\t"); /* Clear the buffer into which we will disassemble the instruction. */ m_insn_stb.clear (); /* A helper function to write the M_INSN_STB buffer, followed by a newline. This can be called in a couple of situations. */ auto write_out_insn_buffer = [&] () { m_uiout->field_stream ("inst", m_insn_stb); m_uiout->text ("\n"); }; try { /* Now we can disassemble the instruction. If the disassembler returns a negative value this indicates an error and is handled within the print_insn call, resulting in an exception being thrown. Returning zero makes no sense, as this indicates we disassembled something successfully, but it was something of no size? */ size = m_di.print_insn (pc); gdb_assert (size > 0); } catch (const gdb_exception &ex) { /* An exception was thrown while disassembling the instruction. However, the disassembler might still have written something out, so ensure that we flush the instruction buffer before rethrowing the exception. We can't perform this write from an object destructor as the write itself might throw an exception if the pager kicks in, and the user selects quit. */ write_out_insn_buffer (); throw ex; } if (flags & DISASSEMBLY_RAW_INSN) { CORE_ADDR end_pc; bfd_byte data; const char *spacer = ""; /* Build the opcodes using a temporary stream so we can write them out in a single go for the MI. */ m_opcode_stb.clear (); end_pc = pc + size; for (;pc < end_pc; ++pc) { read_code (pc, &data, 1); m_opcode_stb.printf ("%s%02x", spacer, (unsigned) data); spacer = " "; } m_uiout->field_stream ("opcodes", m_opcode_stb); m_uiout->text ("\t"); } /* Disassembly was a success, write out the instruction buffer. */ write_out_insn_buffer (); } return size; } static int dump_insns (struct gdbarch *gdbarch, struct ui_out *uiout, CORE_ADDR low, CORE_ADDR high, int how_many, gdb_disassembly_flags flags, CORE_ADDR *end_pc) { struct disasm_insn insn; int num_displayed = 0; memset (&insn, 0, sizeof (insn)); insn.addr = low; gdb_pretty_print_disassembler disasm (gdbarch, uiout); while (insn.addr < high && (how_many < 0 || num_displayed < how_many)) { int size; size = disasm.pretty_print_insn (&insn, flags); if (size <= 0) break; ++num_displayed; insn.addr += size; /* Allow user to bail out with ^C. */ QUIT; } if (end_pc != NULL) *end_pc = insn.addr; return num_displayed; } /* The idea here is to present a source-O-centric view of a function to the user. This means that things are presented in source order, with (possibly) out of order assembly immediately following. N.B. This view is deprecated. */ static void do_mixed_source_and_assembly_deprecated (struct gdbarch *gdbarch, struct ui_out *uiout, struct symtab *symtab, CORE_ADDR low, CORE_ADDR high, int how_many, gdb_disassembly_flags flags) { int newlines = 0; int nlines; struct linetable_entry *le; struct deprecated_dis_line_entry *mle; struct symtab_and_line sal; int i; int out_of_order = 0; int next_line = 0; int num_displayed = 0; print_source_lines_flags psl_flags = 0; gdb_assert (symtab != nullptr && symtab->linetable () != nullptr); nlines = symtab->linetable ()->nitems; le = symtab->linetable ()->item; if (flags & DISASSEMBLY_FILENAME) psl_flags |= PRINT_SOURCE_LINES_FILENAME; mle = (struct deprecated_dis_line_entry *) alloca (nlines * sizeof (struct deprecated_dis_line_entry)); /* Copy linetable entries for this function into our data structure, creating end_pc's and setting out_of_order as appropriate. */ /* First, skip all the preceding functions. */ for (i = 0; i < nlines - 1 && le[i].pc < low; i++); /* Now, copy all entries before the end of this function. */ for (; i < nlines - 1 && le[i].pc < high; i++) { if (le[i].line == le[i + 1].line && le[i].pc == le[i + 1].pc) continue; /* Ignore duplicates. */ /* Skip any end-of-function markers. */ if (le[i].line == 0) continue; mle[newlines].line = le[i].line; if (le[i].line > le[i + 1].line) out_of_order = 1; mle[newlines].start_pc = le[i].pc; mle[newlines].end_pc = le[i + 1].pc; newlines++; } /* If we're on the last line, and it's part of the function, then we need to get the end pc in a special way. */ if (i == nlines - 1 && le[i].pc < high) { mle[newlines].line = le[i].line; mle[newlines].start_pc = le[i].pc; sal = find_pc_line (le[i].pc, 0); mle[newlines].end_pc = sal.end; newlines++; } /* Now, sort mle by line #s (and, then by addresses within lines). */ if (out_of_order) std::sort (mle, mle + newlines, line_is_less_than); /* Now, for each line entry, emit the specified lines (unless they have been emitted before), followed by the assembly code for that line. */ ui_out_emit_list asm_insns_list (uiout, "asm_insns"); gdb::optional outer_tuple_emitter; gdb::optional inner_list_emitter; for (i = 0; i < newlines; i++) { /* Print out everything from next_line to the current line. */ if (mle[i].line >= next_line) { if (next_line != 0) { /* Just one line to print. */ if (next_line == mle[i].line) { outer_tuple_emitter.emplace (uiout, "src_and_asm_line"); print_source_lines (symtab, next_line, mle[i].line + 1, psl_flags); } else { /* Several source lines w/o asm instructions associated. */ for (; next_line < mle[i].line; next_line++) { ui_out_emit_tuple tuple_emitter (uiout, "src_and_asm_line"); print_source_lines (symtab, next_line, next_line + 1, psl_flags); ui_out_emit_list temp_list_emitter (uiout, "line_asm_insn"); } /* Print the last line and leave list open for asm instructions to be added. */ outer_tuple_emitter.emplace (uiout, "src_and_asm_line"); print_source_lines (symtab, next_line, mle[i].line + 1, psl_flags); } } else { outer_tuple_emitter.emplace (uiout, "src_and_asm_line"); print_source_lines (symtab, mle[i].line, mle[i].line + 1, psl_flags); } next_line = mle[i].line + 1; inner_list_emitter.emplace (uiout, "line_asm_insn"); } num_displayed += dump_insns (gdbarch, uiout, mle[i].start_pc, mle[i].end_pc, how_many, flags, NULL); /* When we've reached the end of the mle array, or we've seen the last assembly range for this source line, close out the list/tuple. */ if (i == (newlines - 1) || mle[i + 1].line > mle[i].line) { inner_list_emitter.reset (); outer_tuple_emitter.reset (); uiout->text ("\n"); } if (how_many >= 0 && num_displayed >= how_many) break; } } /* The idea here is to present a source-O-centric view of a function to the user. This means that things are presented in source order, with (possibly) out of order assembly immediately following. */ static void do_mixed_source_and_assembly (struct gdbarch *gdbarch, struct ui_out *uiout, struct symtab *main_symtab, CORE_ADDR low, CORE_ADDR high, int how_many, gdb_disassembly_flags flags) { const struct linetable_entry *le, *first_le; int i, nlines; int num_displayed = 0; print_source_lines_flags psl_flags = 0; CORE_ADDR pc; struct symtab *last_symtab; int last_line; gdb_assert (main_symtab != NULL && main_symtab->linetable () != NULL); /* First pass: collect the list of all source files and lines. We do this so that we can only print lines containing code once. We try to print the source text leading up to the next instruction, but if that text is for code that will be disassembled later, then we'll want to defer printing it until later with its associated code. */ htab_up dis_line_table (allocate_dis_line_table ()); pc = low; /* The prologue may be empty, but there may still be a line number entry for the opening brace which is distinct from the first line of code. If the prologue has been eliminated find_pc_line may return the source line after the opening brace. We still want to print this opening brace. first_le is used to implement this. */ nlines = main_symtab->linetable ()->nitems; le = main_symtab->linetable ()->item; first_le = NULL; /* Skip all the preceding functions. */ for (i = 0; i < nlines && le[i].pc < low; i++) continue; if (i < nlines && le[i].pc < high) first_le = &le[i]; /* Add lines for every pc value. */ while (pc < high) { struct symtab_and_line sal; int length; sal = find_pc_line (pc, 0); length = gdb_insn_length (gdbarch, pc); pc += length; if (sal.symtab != NULL) add_dis_line_entry (dis_line_table.get (), sal.symtab, sal.line); } /* Second pass: print the disassembly. Output format, from an MI perspective: The result is a ui_out list, field name "asm_insns", where elements have name "src_and_asm_line". Each element is a tuple of source line specs (field names line, file, fullname), and field "line_asm_insn" which contains the disassembly. Field "line_asm_insn" is a list of tuples: address, func-name, offset, opcodes, inst. CLI output works on top of this because MI ignores ui_out_text output, which is where we put file name and source line contents output. Emitter usage: asm_insns_emitter Handles the outer "asm_insns" list. tuple_emitter The tuples for each group of consecutive disassemblies. list_emitter List of consecutive source lines or disassembled insns. */ if (flags & DISASSEMBLY_FILENAME) psl_flags |= PRINT_SOURCE_LINES_FILENAME; ui_out_emit_list asm_insns_emitter (uiout, "asm_insns"); gdb::optional tuple_emitter; gdb::optional list_emitter; last_symtab = NULL; last_line = 0; pc = low; while (pc < high) { struct symtab_and_line sal; CORE_ADDR end_pc; int start_preceding_line_to_display = 0; int end_preceding_line_to_display = 0; int new_source_line = 0; sal = find_pc_line (pc, 0); if (sal.symtab != last_symtab) { /* New source file. */ new_source_line = 1; /* If this is the first line of output, check for any preceding lines. */ if (last_line == 0 && first_le != NULL && first_le->line < sal.line) { start_preceding_line_to_display = first_le->line; end_preceding_line_to_display = sal.line; } } else { /* Same source file as last time. */ if (sal.symtab != NULL) { if (sal.line > last_line + 1 && last_line != 0) { int l; /* Several preceding source lines. Print the trailing ones not associated with code that we'll print later. */ for (l = sal.line - 1; l > last_line; --l) { if (line_has_code_p (dis_line_table.get (), sal.symtab, l)) break; } if (l < sal.line - 1) { start_preceding_line_to_display = l + 1; end_preceding_line_to_display = sal.line; } } if (sal.line != last_line) new_source_line = 1; else { /* Same source line as last time. This can happen, depending on the debug info. */ } } } if (new_source_line) { /* Skip the newline if this is the first instruction. */ if (pc > low) uiout->text ("\n"); if (tuple_emitter.has_value ()) { gdb_assert (list_emitter.has_value ()); list_emitter.reset (); tuple_emitter.reset (); } if (sal.symtab != last_symtab && !(flags & DISASSEMBLY_FILENAME)) { /* Remember MI ignores ui_out_text. We don't have to do anything here for MI because MI output includes the source specs for each line. */ if (sal.symtab != NULL) { uiout->text (symtab_to_filename_for_display (sal.symtab)); } else uiout->text ("unknown"); uiout->text (":\n"); } if (start_preceding_line_to_display > 0) { /* Several source lines w/o asm instructions associated. We need to preserve the structure of the output, so output a bunch of line tuples with no asm entries. */ int l; gdb_assert (sal.symtab != NULL); for (l = start_preceding_line_to_display; l < end_preceding_line_to_display; ++l) { ui_out_emit_tuple line_tuple_emitter (uiout, "src_and_asm_line"); print_source_lines (sal.symtab, l, l + 1, psl_flags); ui_out_emit_list chain_line_emitter (uiout, "line_asm_insn"); } } tuple_emitter.emplace (uiout, "src_and_asm_line"); if (sal.symtab != NULL) print_source_lines (sal.symtab, sal.line, sal.line + 1, psl_flags); else uiout->text (_("--- no source info for this pc ---\n")); list_emitter.emplace (uiout, "line_asm_insn"); } else { /* Here we're appending instructions to an existing line. By construction the very first insn will have a symtab and follow the new_source_line path above. */ gdb_assert (tuple_emitter.has_value ()); gdb_assert (list_emitter.has_value ()); } if (sal.end != 0) end_pc = std::min (sal.end, high); else end_pc = pc + 1; num_displayed += dump_insns (gdbarch, uiout, pc, end_pc, how_many, flags, &end_pc); pc = end_pc; if (how_many >= 0 && num_displayed >= how_many) break; last_symtab = sal.symtab; last_line = sal.line; } } static void do_assembly_only (struct gdbarch *gdbarch, struct ui_out *uiout, CORE_ADDR low, CORE_ADDR high, int how_many, gdb_disassembly_flags flags) { ui_out_emit_list list_emitter (uiout, "asm_insns"); dump_insns (gdbarch, uiout, low, high, how_many, flags, NULL); } /* Combine implicit and user disassembler options and return them in a newly-created string. */ static std::string get_all_disassembler_options (struct gdbarch *gdbarch) { const char *implicit = gdbarch_disassembler_options_implicit (gdbarch); const char *options = get_disassembler_options (gdbarch); const char *comma = ","; if (implicit == nullptr) { implicit = ""; comma = ""; } if (options == nullptr) { options = ""; comma = ""; } return string_printf ("%s%s%s", implicit, comma, options); } gdb_disassembler::gdb_disassembler (struct gdbarch *gdbarch, struct ui_file *file, di_read_memory_ftype read_memory_func) : m_gdbarch (gdbarch), m_buffer (!use_ext_lang_colorization_p && disassembler_styling && file->can_emit_style_escape ()), m_dest (file) { init_disassemble_info (&m_di, &m_buffer, dis_asm_fprintf); m_di.flavour = bfd_target_unknown_flavour; m_di.memory_error_func = dis_asm_memory_error; m_di.print_address_func = dis_asm_print_address; /* NOTE: cagney/2003-04-28: The original code, from the old Insight disassembler had a local optimization here. By default it would access the executable file, instead of the target memory (there was a growing list of exceptions though). Unfortunately, the heuristic was flawed. Commands like "disassemble &variable" didn't work as they relied on the access going to the target. Further, it has been superseeded by trust-read-only-sections (although that should be superseeded by target_trust..._p()). */ m_di.read_memory_func = read_memory_func; m_di.arch = gdbarch_bfd_arch_info (gdbarch)->arch; m_di.mach = gdbarch_bfd_arch_info (gdbarch)->mach; m_di.endian = gdbarch_byte_order (gdbarch); m_di.endian_code = gdbarch_byte_order_for_code (gdbarch); m_di.application_data = this; m_disassembler_options_holder = get_all_disassembler_options (gdbarch); if (!m_disassembler_options_holder.empty ()) m_di.disassembler_options = m_disassembler_options_holder.c_str (); disassemble_init_for_target (&m_di); } gdb_disassembler::~gdb_disassembler () { disassemble_free_target (&m_di); } /* See disasm.h. */ bool gdb_disassembler::use_ext_lang_colorization_p = true; /* See disasm.h. */ int gdb_disassembler::print_insn (CORE_ADDR memaddr, int *branch_delay_insns) { m_err_memaddr.reset (); m_buffer.clear (); int length = gdbarch_print_insn (arch (), memaddr, &m_di); /* If we have successfully disassembled an instruction, styling is on, we think that the extension language might be able to perform styling for us, and the destination can support styling, then lets call into the extension languages in order to style this output. */ if (length > 0 && disassembler_styling && use_ext_lang_colorization_p && m_dest->can_emit_style_escape ()) { gdb::optional ext_contents; ext_contents = ext_lang_colorize_disasm (m_buffer.string (), arch ()); if (ext_contents.has_value ()) m_buffer = std::move (*ext_contents); else { /* The extension language failed to add styling to the disassembly output. Set the static flag so that next time we disassemble we don't even bother attempting to use the extension language for styling. */ use_ext_lang_colorization_p = false; /* The instruction we just disassembled, and the extension languages failed to style, might have otherwise had some minimal styling applied by GDB. To regain that styling we need to recreate m_buffer, but this time with styling support. To do this we perform an in-place new, but this time turn on the styling support, then we can re-disassembly the instruction, and gain any minimal styling GDB might add. */ gdb_static_assert ((std::is_same::value)); gdb_assert (!m_buffer.term_out ()); m_buffer.~string_file (); new (&m_buffer) string_file (true); length = gdbarch_print_insn (arch (), memaddr, &m_di); gdb_assert (length > 0); } } /* Push any disassemble output to the real destination stream. We do this even if the disassembler reported failure (-1) as the disassembler may have printed something to its output stream. */ m_di.fprintf_func (m_dest, "%s", m_buffer.c_str ()); /* If the disassembler failed then report an appropriate error. */ if (length < 0) { if (m_err_memaddr.has_value ()) memory_error (TARGET_XFER_E_IO, *m_err_memaddr); else error (_("unknown disassembler error (error = %d)"), length); } if (branch_delay_insns != NULL) { if (m_di.insn_info_valid) *branch_delay_insns = m_di.branch_delay_insns; else *branch_delay_insns = 0; } return length; } void gdb_disassembly (struct gdbarch *gdbarch, struct ui_out *uiout, gdb_disassembly_flags flags, int how_many, CORE_ADDR low, CORE_ADDR high) { struct symtab *symtab; int nlines = -1; /* Assume symtab is valid for whole PC range. */ symtab = find_pc_line_symtab (low); if (symtab != NULL && symtab->linetable () != NULL) nlines = symtab->linetable ()->nitems; if (!(flags & (DISASSEMBLY_SOURCE_DEPRECATED | DISASSEMBLY_SOURCE)) || nlines <= 0) do_assembly_only (gdbarch, uiout, low, high, how_many, flags); else if (flags & DISASSEMBLY_SOURCE) do_mixed_source_and_assembly (gdbarch, uiout, symtab, low, high, how_many, flags); else if (flags & DISASSEMBLY_SOURCE_DEPRECATED) do_mixed_source_and_assembly_deprecated (gdbarch, uiout, symtab, low, high, how_many, flags); gdb_flush (gdb_stdout); } /* Print the instruction at address MEMADDR in debugged memory, on STREAM. Returns the length of the instruction, in bytes, and, if requested, the number of branch delay slot instructions. */ int gdb_print_insn (struct gdbarch *gdbarch, CORE_ADDR memaddr, struct ui_file *stream, int *branch_delay_insns) { gdb_disassembler di (gdbarch, stream); return di.print_insn (memaddr, branch_delay_insns); } /* Return the length in bytes of the instruction at address MEMADDR in debugged memory. */ int gdb_insn_length (struct gdbarch *gdbarch, CORE_ADDR addr) { return gdb_print_insn (gdbarch, addr, &null_stream, NULL); } /* An fprintf-function for use by the disassembler when we know we don't want to print anything. Always returns success. */ static int ATTRIBUTE_PRINTF (2, 3) gdb_disasm_null_printf (void *stream, const char *format, ...) { return 0; } /* See disasm.h. */ void init_disassemble_info_for_no_printing (struct disassemble_info *dinfo) { init_disassemble_info (dinfo, nullptr, gdb_disasm_null_printf); } /* Initialize a struct disassemble_info for gdb_buffered_insn_length. Upon return, *DISASSEMBLER_OPTIONS_HOLDER owns the string pointed to by DI.DISASSEMBLER_OPTIONS. */ static void gdb_buffered_insn_length_init_dis (struct gdbarch *gdbarch, struct disassemble_info *di, const gdb_byte *insn, int max_len, CORE_ADDR addr, std::string *disassembler_options_holder) { init_disassemble_info_for_no_printing (di); /* init_disassemble_info installs buffer_read_memory, etc. so we don't need to do that here. The cast is necessary until disassemble_info is const-ified. */ di->buffer = (gdb_byte *) insn; di->buffer_length = max_len; di->buffer_vma = addr; di->arch = gdbarch_bfd_arch_info (gdbarch)->arch; di->mach = gdbarch_bfd_arch_info (gdbarch)->mach; di->endian = gdbarch_byte_order (gdbarch); di->endian_code = gdbarch_byte_order_for_code (gdbarch); *disassembler_options_holder = get_all_disassembler_options (gdbarch); if (!disassembler_options_holder->empty ()) di->disassembler_options = disassembler_options_holder->c_str (); disassemble_init_for_target (di); } /* Return the length in bytes of INSN. MAX_LEN is the size of the buffer containing INSN. */ int gdb_buffered_insn_length (struct gdbarch *gdbarch, const gdb_byte *insn, int max_len, CORE_ADDR addr) { struct disassemble_info di; std::string disassembler_options_holder; gdb_buffered_insn_length_init_dis (gdbarch, &di, insn, max_len, addr, &disassembler_options_holder); int result = gdbarch_print_insn (gdbarch, addr, &di); disassemble_free_target (&di); return result; } char * get_disassembler_options (struct gdbarch *gdbarch) { char **disassembler_options = gdbarch_disassembler_options (gdbarch); if (disassembler_options == NULL) return NULL; return *disassembler_options; } void set_disassembler_options (const char *prospective_options) { struct gdbarch *gdbarch = get_current_arch (); char **disassembler_options = gdbarch_disassembler_options (gdbarch); const disasm_options_and_args_t *valid_options_and_args; const disasm_options_t *valid_options; gdb::unique_xmalloc_ptr prospective_options_local = make_unique_xstrdup (prospective_options); char *options = remove_whitespace_and_extra_commas (prospective_options_local.get ()); const char *opt; /* Allow all architectures, even ones that do not support 'set disassembler', to reset their disassembler options to NULL. */ if (options == NULL) { if (disassembler_options != NULL) { free (*disassembler_options); *disassembler_options = NULL; } return; } valid_options_and_args = gdbarch_valid_disassembler_options (gdbarch); if (valid_options_and_args == NULL) { fprintf_filtered (gdb_stderr, _("\ 'set disassembler-options ...' is not supported on this architecture.\n")); return; } valid_options = &valid_options_and_args->options; /* Verify we have valid disassembler options. */ FOR_EACH_DISASSEMBLER_OPTION (opt, options) { size_t i; for (i = 0; valid_options->name[i] != NULL; i++) if (valid_options->arg != NULL && valid_options->arg[i] != NULL) { size_t len = strlen (valid_options->name[i]); bool found = false; const char *arg; size_t j; if (memcmp (opt, valid_options->name[i], len) != 0) continue; arg = opt + len; for (j = 0; valid_options->arg[i]->values[j] != NULL; j++) if (disassembler_options_cmp (arg, valid_options->arg[i]->values[j]) == 0) { found = true; break; } if (found) break; } else if (disassembler_options_cmp (opt, valid_options->name[i]) == 0) break; if (valid_options->name[i] == NULL) { fprintf_filtered (gdb_stderr, _("Invalid disassembler option value: '%s'.\n"), opt); return; } } free (*disassembler_options); *disassembler_options = xstrdup (options); } static void set_disassembler_options_sfunc (const char *args, int from_tty, struct cmd_list_element *c) { set_disassembler_options (prospective_options.c_str ()); } static void show_disassembler_options_sfunc (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { struct gdbarch *gdbarch = get_current_arch (); const disasm_options_and_args_t *valid_options_and_args; const disasm_option_arg_t *valid_args; const disasm_options_t *valid_options; const char *options = get_disassembler_options (gdbarch); if (options == NULL) options = ""; fprintf_filtered (file, _("The current disassembler options are '%s'\n\n"), options); valid_options_and_args = gdbarch_valid_disassembler_options (gdbarch); if (valid_options_and_args == NULL) { fputs_filtered (_("There are no disassembler options available " "for this architecture.\n"), file); return; } valid_options = &valid_options_and_args->options; fprintf_filtered (file, _("\ The following disassembler options are supported for use with the\n\ 'set disassembler-options OPTION [,OPTION]...' command:\n")); if (valid_options->description != NULL) { size_t i, max_len = 0; fprintf_filtered (file, "\n"); /* Compute the length of the longest option name. */ for (i = 0; valid_options->name[i] != NULL; i++) { size_t len = strlen (valid_options->name[i]); if (valid_options->arg != NULL && valid_options->arg[i] != NULL) len += strlen (valid_options->arg[i]->name); if (max_len < len) max_len = len; } for (i = 0, max_len++; valid_options->name[i] != NULL; i++) { fprintf_filtered (file, " %s", valid_options->name[i]); if (valid_options->arg != NULL && valid_options->arg[i] != NULL) fprintf_filtered (file, "%s", valid_options->arg[i]->name); if (valid_options->description[i] != NULL) { size_t len = strlen (valid_options->name[i]); if (valid_options->arg != NULL && valid_options->arg[i] != NULL) len += strlen (valid_options->arg[i]->name); fprintf_filtered (file, "%*c %s", (int) (max_len - len), ' ', valid_options->description[i]); } fprintf_filtered (file, "\n"); } } else { size_t i; fprintf_filtered (file, " "); for (i = 0; valid_options->name[i] != NULL; i++) { fprintf_filtered (file, "%s", valid_options->name[i]); if (valid_options->arg != NULL && valid_options->arg[i] != NULL) fprintf_filtered (file, "%s", valid_options->arg[i]->name); if (valid_options->name[i + 1] != NULL) fprintf_filtered (file, ", "); file->wrap_here (2); } fprintf_filtered (file, "\n"); } valid_args = valid_options_and_args->args; if (valid_args != NULL) { size_t i, j; for (i = 0; valid_args[i].name != NULL; i++) { fprintf_filtered (file, _("\n\ For the options above, the following values are supported for \"%s\":\n "), valid_args[i].name); for (j = 0; valid_args[i].values[j] != NULL; j++) { fprintf_filtered (file, " %s", valid_args[i].values[j]); file->wrap_here (3); } fprintf_filtered (file, "\n"); } } } /* A completion function for "set disassembler". */ static void disassembler_options_completer (struct cmd_list_element *ignore, completion_tracker &tracker, const char *text, const char *word) { struct gdbarch *gdbarch = get_current_arch (); const disasm_options_and_args_t *opts_and_args = gdbarch_valid_disassembler_options (gdbarch); if (opts_and_args != NULL) { const disasm_options_t *opts = &opts_and_args->options; /* Only attempt to complete on the last option text. */ const char *separator = strrchr (text, ','); if (separator != NULL) text = separator + 1; text = skip_spaces (text); complete_on_enum (tracker, opts->name, text, word); } } /* Initialization code. */ void _initialize_disasm (); void _initialize_disasm () { /* Add the command that controls the disassembler options. */ set_show_commands set_show_disas_opts = add_setshow_string_noescape_cmd ("disassembler-options", no_class, &prospective_options, _("\ Set the disassembler options.\n\ Usage: set disassembler-options OPTION [,OPTION]...\n\n\ See: 'show disassembler-options' for valid option values."), _("\ Show the disassembler options."), NULL, set_disassembler_options_sfunc, show_disassembler_options_sfunc, &setlist, &showlist); set_cmd_completer (set_show_disas_opts.set, disassembler_options_completer); }