/** * D header file for interaction with C++ std::string. * * Copyright: Copyright (c) 2019 D Language Foundation * License: Distributed under the * $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost Software License 1.0). * (See accompanying file LICENSE) * Authors: Guillaume Chatelet * Manu Evans * Source: $(DRUNTIMESRC core/stdcpp/string.d) */ module core.stdcpp.string; import core.stdcpp.allocator; import core.stdcpp.xutility : StdNamespace; import core.stdc.stddef : wchar_t; version (OSX) version = Darwin; else version (iOS) version = Darwin; else version (TVOS) version = Darwin; else version (WatchOS) version = Darwin; version (Darwin) { // Apple decided to rock a different ABI... good for them! version = _LIBCPP_ABI_ALTERNATE_STRING_LAYOUT; } version (CppRuntime_Gcc) { version (_GLIBCXX_USE_CXX98_ABI) { private enum StringNamespace = "std"; version = __GTHREADS; } else { import core.internal.traits : AliasSeq; private enum StringNamespace = AliasSeq!("std", "__cxx11"); } } else alias StringNamespace = StdNamespace; enum DefaultConstruct { value } /// Constructor argument for default construction enum Default = DefaultConstruct(); @nogc: /** * Character traits classes specify character properties and provide specific * semantics for certain operations on characters and sequences of characters. */ extern(C++, (StdNamespace)) struct char_traits(CharT) { alias char_type = CharT; static size_t length(const(char_type)* s) @trusted pure nothrow @nogc { static if (is(char_type == char) || is(char_type == ubyte)) { import core.stdc.string : strlen; return strlen(s); } else { size_t len = 0; for (; *s != char_type(0); ++s) ++len; return len; } } static char_type* move(char_type* s1, const char_type* s2, size_t n) @trusted pure nothrow @nogc { import core.stdc.string : memmove; import core.stdc.wchar_ : wmemmove; import core.stdc.stddef : wchar_t; if (n == 0) return s1; version (CRuntime_Microsoft) { enum crt = __traits(getTargetInfo, "cppRuntimeLibrary"); static if (crt.length >= 6 && crt[0 .. 6] == "msvcrt") enum use_wmemmove = false; // https://issues.dlang.org/show_bug.cgi?id=20456 else enum use_wmemmove = true; } else enum use_wmemmove = true; static if (use_wmemmove && (is(char_type == wchar_t) || is(char_type == ushort) && wchar_t.sizeof == ushort.sizeof // Windows || is(char_type == uint) && wchar_t.sizeof == uint.sizeof)) // POSIX return cast(char_type*) wmemmove(s1, s2, n); else return cast(char_type*) memmove(s1, s2, n * char_type.sizeof); } } // I don't think we can have these here, otherwise symbols are emit to druntime, and we don't want that... //alias std_string = basic_string!char; //alias std_u16string = basic_string!wchar; // TODO: can't mangle these yet either... //alias std_u32string = basic_string!dchar; //alias std_wstring = basic_string!wchar_t; // TODO: we can't mangle wchar_t properly (yet?) /** * D language counterpart to C++ std::basic_string. * * C++ reference: $(LINK2 https://en.cppreference.com/w/cpp/string/basic_string) */ extern(C++, class) extern(C++, (StringNamespace)) struct basic_string(T, Traits = char_traits!T, Alloc = allocator!T) { extern(D): @nogc: /// enum size_type npos = size_type.max; /// alias size_type = size_t; /// alias difference_type = ptrdiff_t; /// alias value_type = T; /// alias traits_type = Traits; /// alias allocator_type = Alloc; /// alias pointer = value_type*; /// alias const_pointer = const(value_type)*; /// alias toString = as_array; /// MSVC allocates on default initialisation in debug, which can't be modelled by D `struct` @disable this(); /// alias length = size; /// alias opDollar = length; /// bool empty() const nothrow @safe { return size() == 0; } /// size_t[2] opSlice(size_t dim : 0)(size_t start, size_t end) const pure nothrow @safe @nogc { return [start, end]; } /// ref inout(T) opIndex(size_t index) inout pure nothrow @safe @nogc { return as_array[index]; } /// inout(T)[] opIndex(size_t[2] slice) inout pure nothrow @safe @nogc { return as_array[slice[0] .. slice[1]]; } /// inout(T)[] opIndex() inout pure nothrow @safe @nogc { return as_array(); } /// Two `basic_string`s are equal if they represent the same sequence of code units. bool opEquals(scope const ref basic_string s) const pure nothrow @safe { return as_array == s.as_array; } /// ditto bool opEquals(scope const T[] s) const pure nothrow @safe { return as_array == s; } /// Performs lexicographical comparison. int opCmp(scope const ref basic_string rhs) const pure nothrow @safe { return __cmp(as_array, rhs.as_array); } /// ditto int opCmp(scope const T[] rhs) const pure nothrow @safe { return __cmp(as_array, rhs); } /// Hash to allow `basic_string`s to be used as keys for built-in associative arrays. /// **The result will generally not be the same as C++ `std::hash>`.** size_t toHash() const @nogc nothrow pure @safe { return .hashOf(as_array); } /// void clear() { eos(0); } // TODO: bounds-check /// void resize(size_type n, T c = T(0)) @trusted { if (n <= size()) eos(n); else append(n - size(), c); } /// ref inout(T) front() inout nothrow @safe { return this[0]; } /// ref inout(T) back() inout nothrow @safe { return this[$-1]; } /// const(T)* c_str() const nothrow @safe { return data(); } // Modifiers /// ref basic_string opAssign()(auto ref basic_string str) { return assign(str); } // ref basic_string assign(size_type n, T c); /// ref basic_string opAssign(const(T)[] str) { return assign(str); } /// ref basic_string opAssign(T c) { return assign((&c)[0 .. 1]); } /// ref basic_string opIndexAssign(T c, size_t index) { as_array[index] = c; return this; } /// ref basic_string opIndexAssign(T c, size_t[2] slice) { as_array[slice[0] .. slice[1]] = c; return this; } /// ref basic_string opIndexAssign(const(T)[] str, size_t[2] slice) { as_array[slice[0] .. slice[1]] = str[]; return this; } /// ref basic_string opIndexAssign(T c) { as_array[] = c; return this; } /// ref basic_string opIndexAssign(const(T)[] str) { as_array[] = str[]; return this; } /// ref basic_string opIndexOpAssign(string op)(T c, size_t index) { mixin("as_array[index] " ~ op ~ "= c;"); return this; } /// ref basic_string opIndexOpAssign(string op)(T c, size_t[2] slice) { mixin("as_array[slice[0] .. slice[1]] " ~ op ~ "= c;"); return this; } /// ref basic_string opIndexOpAssign(string op)(const(T)[] str, size_t[2] slice) { mixin("as_array[slice[0] .. slice[1]] " ~ op ~ "= str[];"); return this; } /// ref basic_string opIndexOpAssign(string op)(T c) { mixin("as_array[] " ~ op ~ "= c;"); return this; } /// ref basic_string opIndexOpAssign(string op)(const(T)[] str) { mixin("as_array[] " ~ op ~ "= str[];"); return this; } /// ref basic_string append(T c) { return append((&c)[0 .. 1]); } /// ref basic_string opOpAssign(string op : "~")(const(T)[] str) { return append(str); } /// ref basic_string opOpAssign(string op : "~")(T c) { return append((&c)[0 .. 1]); } /// ref basic_string insert(size_type pos, ref const(basic_string) str) { return insert(pos, str.data(), str.size()); } /// ref basic_string insert(size_type pos, ref const(basic_string) str, size_type subpos, size_type sublen) @trusted { const _strsz = str.size(); assert(subpos <= _strsz); // if (subpos > _strsz) // throw new RangeError("subpos exceeds length of str"); return insert(pos, str.data() + subpos, min(sublen, _strsz - subpos)); } /// ref basic_string insert(S : size_type)(S pos, const(T)* s) { // This overload is declared as a template to give precedence to the slice overload const(T)[] in case of conflict. assert(s); return insert(pos, s, traits_type.length(s)); } /// ref basic_string insert(size_type pos, const(T)[] s) { insert(pos, &s[0], s.length); return this; } /// ref basic_string erase(size_type pos = 0) // TODO: bounds-check { // _My_data._Check_offset(pos); eos(pos); return this; } /// ref basic_string erase(size_type pos, size_type len) // TODO: bounds-check { // _My_data._Check_offset(pos); T[] str = as_array(); size_type new_len = str.length - len; this[pos .. new_len] = this[pos + len .. str.length]; // TODO: should be memmove! eos(new_len); return this; } /// ref basic_string replace()(size_type pos, size_type len, auto ref basic_string str) { return replace(pos, len, str.data(), str.size()); } /// ref basic_string replace()(size_type pos, size_type len, auto ref basic_string str, size_type subpos, size_type sublen=npos) { size_type strsz = str.size(); assert(subpos <= strsz); // if (subpos > strsz) // throw new RangeError("subpos exceeds size of str"); return replace(pos, len, str.data() + subpos, min(sublen, strsz - subpos)); } /// ref basic_string replace(size_type pos, size_type len, const(value_type)[] s) { return replace(pos, len, s.ptr, s.length); } /// ref basic_string replace(S : size_type)(S pos, size_type len, const(value_type)* s) { // This overload is declared as a template to give precedence to the slice overload const(T)[] in case of conflict. assert(s !is null, "string::replace received null"); return replace(pos, len, s, traits_type.length(s)); } /// void push_back(T c) @trusted { append((&c)[0 .. 1]); } /// void pop_back() { erase(size() - 1); } version (CppRuntime_Microsoft) { //---------------------------------------------------------------------------------- // Microsoft runtime //---------------------------------------------------------------------------------- /// this(DefaultConstruct) { _Alloc_proxy(); _Tidy_init(); } /// this(const(T)[] str) { _Alloc_proxy(); _Tidy_init(); assign(str); } /// this(const(T)[] str, ref const(allocator_type) al) { _Alloc_proxy(); _AssignAllocator(al); _Tidy_init(); assign(str); } /// this(this) { _Alloc_proxy(); if (_Get_data()._IsAllocated()) { T[] _Str = _Get_data()._Mystr; _Tidy_init(); assign(_Str); } } /// ~this() { _Tidy_deallocate(); } /// ref inout(Alloc) get_allocator() inout { return _Getal(); } /// size_type max_size() const nothrow @safe { return ((size_t.max / T.sizeof) - 1) / 2; } // HACK: clone the windows version precisely? /// size_type size() const nothrow @safe { return _Get_data()._Mysize; } /// size_type capacity() const nothrow @safe { return _Get_data()._Myres; } /// inout(T)* data() inout @safe { return _Get_data()._Myptr; } /// inout(T)[] as_array() scope return inout nothrow @trusted { return _Get_data()._Myptr[0 .. _Get_data()._Mysize]; } /// ref inout(T) at(size_type i) inout nothrow @trusted { return _Get_data()._Myptr[0 .. _Get_data()._Mysize][i]; } /// ref basic_string assign(const(T)[] str) { size_type _Count = str.length; auto _My_data = &_Get_data(); if (_Count <= _My_data._Myres) { T* _Old_ptr = _My_data._Myptr; _My_data._Mysize = _Count; _Old_ptr[0 .. _Count] = str[]; // TODO: this needs to be a memmove(), does that work here? _Old_ptr[_Count] = T(0); return this; } return _Reallocate_for(_Count, (T* _New_ptr, size_type _Count, const(T)* _Ptr) nothrow { _New_ptr[0 .. _Count] = _Ptr[0 .. _Count]; _New_ptr[_Count] = T(0); }, str.ptr); } /// ref basic_string assign(const ref basic_string str) { if (&this != &str) assign(str.as_array); return this; } /// ref basic_string append(const(T)[] str) { size_type _Count = str.length; auto _My_data = &_Get_data(); size_type _Old_size = _My_data._Mysize; if (_Count <= _My_data._Myres - _Old_size) { pointer _Old_ptr = _My_data._Myptr; _My_data._Mysize = _Old_size + _Count; _Old_ptr[_Old_size .. _Old_size + _Count] = str[]; // TODO: this needs to be a memmove(), does that work here? _Old_ptr[_Old_size + _Count] = T(0); return this; } return _Reallocate_grow_by(_Count, (T* _New_ptr, const(T)[] _Old_str, const(T)[] _Str) { _New_ptr[0 .. _Old_str.length] = _Old_str[]; _New_ptr[_Old_str.length .. _Old_str.length + _Str.length] = _Str[]; _New_ptr[_Old_str.length + _Str.length] = T(0); }, str); } /// ref basic_string append(size_type n, T c) { alias _Count = n; alias _Ch = c; auto _My_data = &_Get_data(); const size_type _Old_size = _My_data._Mysize; if (_Count <= _My_data._Myres - _Old_size) { _My_data._Mysize = _Old_size + _Count; pointer _Old_ptr = _My_data._Myptr(); _Old_ptr[_Old_size .. _Old_size + _Count] = _Ch; _Old_ptr[_Old_size + _Count] = T(0); return this; } return _Reallocate_grow_by(_Count, (T* _New_ptr, const(T)[] _Old_str, size_type _Count, T _Ch) { _New_ptr[0 .. _Old_str.length] = _Old_str[]; _New_ptr[_Old_str.length .. _Old_str.length + _Count] = _Ch; _New_ptr[_Old_str.length + _Count] = T(0); }, _Count, _Ch); } /// void reserve(size_type _Newcap = 0) { // determine new minimum length of allocated storage auto _My_data = &_Get_data(); if (_My_data._Mysize > _Newcap) { // requested capacity is not large enough for current size, ignore return; // nothing to do } if (_My_data._Myres == _Newcap) { // we're already at the requested capacity return; // nothing to do } if (_My_data._Myres < _Newcap) { // reallocate to grow const size_type _Old_size = _My_data._Mysize; _Reallocate_grow_by( _Newcap - _Old_size, (T* _New_ptr, const(T)[] _Old_str) { _New_ptr[0 .. _Old_str.length] = _Old_str[]; _New_ptr[_Old_str.length] = _Old_str.ptr[_Old_str.length]; }); _My_data._Mysize = _Old_size; return; } if (_My_data._BUF_SIZE > _Newcap && _My_data._Large_string_engaged()) { // deallocate everything; switch back to "small" mode _Become_small(); return; } // ignore requests to reserve to [_BUF_SIZE, _Myres) } /// void shrink_to_fit() { // reduce capacity auto _My_data = &_Get_data(); if (!_My_data._Large_string_engaged()) { // can't shrink from small mode return; } if (_My_data._Mysize < _My_data._BUF_SIZE) { _Become_small(); return; } const size_type _Target_capacity = min(_My_data._Mysize | _My_data._ALLOC_MASK, max_size()); if (_Target_capacity < _My_data._Myres) { // worth shrinking, do it auto _Al = &_Getal(); pointer _New_ptr = _Al.allocate(_Target_capacity + 1); // throws _Base._Orphan_all(); _New_ptr[0 .. _My_data._Mysize + 1] = _My_data._Bx._Ptr[0 .. _My_data._Mysize + 1]; _Al.deallocate(_My_data._Bx._Ptr, _My_data._Myres + 1); _My_data._Bx._Ptr = _New_ptr; _My_data._Myres = _Target_capacity; } } /// ref basic_string insert(size_type pos, const(T)* s, size_type n) { // insert [_Ptr, _Ptr + _Count) at _Off alias _Off = pos; alias _Ptr = s; alias _Count = n; auto _My_data = &_Get_data(); // _My_data._Check_offset(_Off); const size_type _Old_size = _My_data._Mysize; if (_Count <= _My_data._Myres - _Old_size) { _My_data._Mysize = _Old_size + _Count; T* _Old_ptr = _My_data._Myptr(); T* _Insert_at = _Old_ptr + _Off; // the range [_Ptr, _Ptr + _Ptr_shifted_after) is left alone by moving the suffix out, // while the range [_Ptr + _Ptr_shifted_after, _Ptr + _Count) shifts down by _Count size_type _Ptr_shifted_after; if (_Ptr + _Count <= _Insert_at || _Ptr > _Old_ptr + _Old_size) { // inserted content is before the shifted region, or does not alias _Ptr_shifted_after = _Count; // none of _Ptr's data shifts } else if (_Insert_at <= _Ptr) { // all of [_Ptr, _Ptr + _Count) shifts _Ptr_shifted_after = 0; } else { // [_Ptr, _Ptr + _Count) contains _Insert_at, so only the part after _Insert_at shifts _Ptr_shifted_after = cast(size_type)(_Insert_at - _Ptr); } _Traits.move(_Insert_at + _Count, _Insert_at, _Old_size - _Off + 1); // move suffix + null down _Insert_at[0 .. _Ptr_shifted_after] = _Ptr[0 .. _Ptr_shifted_after]; (_Insert_at + _Ptr_shifted_after)[0 .. _Count - _Ptr_shifted_after] = (_Ptr + _Count + _Ptr_shifted_after)[0 .. _Count - _Ptr_shifted_after]; return this; } return _Reallocate_grow_by( _Count, (T* _New_ptr, const(T)[] _Old_str, size_type _Off, const(T)* _Ptr, size_type _Count) { _New_ptr[0 .. _Off] = _Old_str[0 .. _Off]; _New_ptr[_Off .. _Off + _Count] = _Ptr[0 .. _Count]; _New_ptr[_Off + _Count .. _Old_str.length + _Count + 1] = _Old_str.ptr[_Off .. _Old_str.length + 1]; }, _Off, _Ptr, _Count); } /// ref basic_string insert(size_type pos, size_type n, T c) { // insert _Count * _Ch at _Off alias _Off = pos; alias _Count = n; alias _Ch = c; auto _My_data = &_Get_data(); // _My_data._Check_offset(_Off); const size_type _Old_size = _My_data._Mysize; if (_Count <= _My_data._Myres - _Old_size) { _My_data._Mysize = _Old_size + _Count; T* _Old_ptr = _My_data._Myptr(); T* _Insert_at = _Old_ptr + _Off; _Traits.move(_Insert_at + _Count, _Insert_at, _Old_size - _Off + 1); // move suffix + null down _Insert_at[0 .. _Count] = _Ch; // fill hole return this; } return _Reallocate_grow_by( _Count, (T* _New_ptr, const(T)[] _Old_str, size_type _Off, size_type _Count, T _Ch) { _New_ptr[0 .. _Off] = _Old_str[0 .. _Off]; _New_ptr[_Off .. _Off + _Count] = _Ch; _New_ptr[_Off + _Count .. _Old_str.length + 1] = _Old_str.ptr[_Off .. _Old_str.length + 1]; }, _Off, _Count, _Ch); } /// ref basic_string replace(size_type pos, size_type len, const(T)* s, size_type slen) { // replace [_Off, _Off + _N0) with [_Ptr, _Ptr + _Count) alias _Off = pos; alias _N0 = len; alias _Ptr = s; alias _Count = slen; auto _My_data = &_Get_data(); // _Mypair._Myval2._Check_offset(_Off); _N0 = _My_data._Clamp_suffix_size(_Off, _N0); if (_N0 == _Count) { // size doesn't change, so a single move does the trick _Traits.move(_My_data._Myptr() + _Off, _Ptr, _Count); return this; } const size_type _Old_size = _My_data._Mysize; const size_type _Suffix_size = _Old_size - _N0 - _Off + 1; if (_Count < _N0) { // suffix shifts backwards; we don't have to move anything out of the way _My_data._Mysize = _Old_size - (_N0 - _Count); T* _Old_ptr = _My_data._Myptr(); T* _Insert_at = _Old_ptr + _Off; _Traits.move(_Insert_at, _Ptr, _Count); _Traits.move(_Insert_at + _Count, _Insert_at + _N0, _Suffix_size); return this; } const size_type _Growth = cast(size_type)(_Count - _N0); if (_Growth <= _My_data._Myres - _Old_size) { // growth fits _My_data._Mysize = _Old_size + _Growth; T* _Old_ptr = _My_data._Myptr(); T* _Insert_at = _Old_ptr + _Off; T* _Suffix_at = _Insert_at + _N0; size_type _Ptr_shifted_after; // see rationale in insert if (_Ptr + _Count <= _Insert_at || _Ptr > _Old_ptr + _Old_size) _Ptr_shifted_after = _Count; else if (_Suffix_at <= _Ptr) _Ptr_shifted_after = 0; else _Ptr_shifted_after = cast(size_type)(_Suffix_at - _Ptr); _Traits.move(_Suffix_at + _Growth, _Suffix_at, _Suffix_size); // next case must be move, in case _Ptr begins before _Insert_at and contains part of the hole; // this case doesn't occur in insert because the new content must come from outside the removed // content there (because in insert there is no removed content) _Traits.move(_Insert_at, _Ptr, _Ptr_shifted_after); // the next case can be copy, because it comes from the chunk moved out of the way in the // first move, and the hole we're filling can't alias the chunk we moved out of the way _Insert_at[_Ptr_shifted_after .. _Count] = _Ptr[_Growth + _Ptr_shifted_after .. _Growth + _Count]; return this; } return _Reallocate_grow_by( _Growth, (T* _New_ptr, const(T)[] _Old_str, size_type _Off, size_type _N0, const(T)* _Ptr, size_type _Count) { _New_ptr[0 .. _Off] = _Old_str[0 .. _Off]; _New_ptr[_Off .. _Count] = _Ptr[0 .. _Count]; const __n = _Old_str.length - _N0 - _Off + 1; (_New_ptr + _Off + _Count)[0 .. __n] = (_Old_str.ptr + _Off + _N0)[0 .. __n]; }, _Off, _N0, _Ptr, _Count); } /// ref basic_string replace(size_type _Off, size_type _N0, size_type _Count, T _Ch) { // replace [_Off, _Off + _N0) with _Count * _Ch auto _My_data = &_Get_data(); // _My_data._Check_offset(_Off); _N0 = _My_data._Clamp_suffix_size(_Off, _N0); if (_Count == _N0) { _My_data._Myptr()[_Off .. _Off + _Count] = _Ch; return this; } const size_type _Old_size = _My_data._Mysize; if (_Count < _N0 || _Count - _N0 <= _My_data._Myres - _Old_size) { // either we are shrinking, or the growth fits _My_data._Mysize = _Old_size + _Count - _N0; // may temporarily overflow; // OK because size_type must be unsigned T* _Old_ptr = _My_data._Myptr(); T* _Insert_at = _Old_ptr + _Off; _Traits.move(_Insert_at + _Count, _Insert_at + _N0, _Old_size - _N0 - _Off + 1); _Insert_at[0 .. _Count] = _Ch; return this; } return _Reallocate_grow_by( _Count - _N0, (T* _New_ptr, const(T)[] _Old_str, size_type _Off, size_type _N0, size_type _Count, T _Ch) { _New_ptr[0 .. _Off] = _Old_str[0 .. _Off]; _New_ptr[_Off .. _Off + _Count] = _Ch; const __n = _Old_str.length - _N0 - _Off + 1; (_New_ptr + _Off + _Count)[0 .. __n] = (_Old_str.ptr + _Off + _N0)[0 .. __n]; }, _Off, _N0, _Count, _Ch); } /// void swap(ref basic_string _Right) { import core.internal.lifetime : swap; import core.stdcpp.type_traits : is_empty; if (&this != &_Right) { static if (!is_empty!allocator_type.value && allocator_traits!allocator_type.propagate_on_container_swap) { swap(_Getal(), _Right._Getal()); } static if (_ITERATOR_DEBUG_LEVEL != 0) { auto _My_data = &_Get_data(); const bool _My_large = _My_data._Large_string_engaged(); const bool _Right_large = _Right._Get_data()._Large_string_engaged(); if (!_My_large) _Base._Orphan_all(); if (!_Right_large) _Right._Base._Orphan_all(); if (_My_large || _Right_large) _My_data._Base._Swap_proxy_and_iterators(_Right._Get_data()._Base); } // _ITERATOR_DEBUG_LEVEL != 0 } _Swap_data!_Can_memcpy_val(_Right); } private: import core.stdcpp.xutility : MSVCLinkDirectives; import core.stdcpp.xutility : _Container_base; alias _Traits = traits_type; alias _Scary_val = _String_val!T; enum bool _Can_memcpy_val = is(_Traits == char_traits!E, E) && is(pointer == U*, U); // This offset skips over the _Container_base members, if any enum size_t _Memcpy_val_offset = _Size_after_ebco_v!_Container_base; enum size_t _Memcpy_val_size = _Scary_val.sizeof - _Memcpy_val_offset; // Make sure the object files wont link against mismatching objects mixin MSVCLinkDirectives!true; pragma (inline, true) { void eos(size_type offset) nothrow { _Get_data()._Myptr[_Get_data()._Mysize = offset] = T(0); } ref inout(_Base.Alloc) _Getal() inout nothrow @safe { return _Base._Mypair._Myval1; } ref inout(_Base.ValTy) _Get_data() inout nothrow @safe { return _Base._Mypair._Myval2; } } void _Alloc_proxy() nothrow { static if (_ITERATOR_DEBUG_LEVEL > 0) _Base._Alloc_proxy(); } void _AssignAllocator(ref const(allocator_type) al) nothrow { static if (_Base._Mypair._HasFirst) _Getal() = al; } void _Become_small() { // release any held storage and return to small string mode // pre: *this is in large string mode // pre: this is small enough to return to small string mode auto _My_data = &_Get_data(); _Base._Orphan_all(); pointer _Ptr = _My_data._Bx._Ptr; auto _Al = &_Getal(); _My_data._Bx._Buf[0 .. _My_data._Mysize + 1] = _Ptr[0 .. _My_data._Mysize + 1]; _Al.deallocate(_Ptr, _My_data._Myres + 1); _My_data._Myres = _My_data._BUF_SIZE - 1; } void _Tidy_init() nothrow { auto _My_data = &_Get_data(); _My_data._Mysize = 0; _My_data._Myres = _My_data._BUF_SIZE - 1; _My_data._Bx._Buf[0] = T(0); } size_type _Calculate_growth(size_type _Requested) const nothrow { auto _My_data = &_Get_data(); size_type _Masked = _Requested | _My_data._ALLOC_MASK; size_type _Old = _My_data._Myres; size_type _Expanded = _Old + _Old / 2; return _Masked > _Expanded ? _Masked : _Expanded; } ref basic_string _Reallocate_for(_ArgTys...)(size_type _New_size, void function(pointer, size_type, _ArgTys) nothrow @nogc _Fn, _ArgTys _Args) { auto _My_data = &_Get_data(); size_type _Old_capacity = _My_data._Myres; size_type _New_capacity = _Calculate_growth(_New_size); auto _Al = &_Getal(); pointer _New_ptr = _Al.allocate(_New_capacity + 1); // throws _Base._Orphan_all(); _My_data._Mysize = _New_size; _My_data._Myres = _New_capacity; _Fn(_New_ptr, _New_size, _Args); if (_My_data._BUF_SIZE <= _Old_capacity) _Al.deallocate(_My_data._Bx._Ptr, _Old_capacity + 1); _My_data._Bx._Ptr = _New_ptr; return this; } ref basic_string _Reallocate_grow_by(_ArgTys...)(size_type _Size_increase, void function(pointer, const(T)[], _ArgTys) nothrow @nogc _Fn, _ArgTys _Args) { auto _My_data = &_Get_data(); size_type _Old_size = _My_data._Mysize; size_type _New_size = _Old_size + _Size_increase; size_type _Old_capacity = _My_data._Myres; size_type _New_capacity = _Calculate_growth(_New_size); auto _Al = &_Getal(); pointer _New_ptr = _Al.allocate(_New_capacity + 1); // throws _Base._Orphan_all(); _My_data._Mysize = _New_size; _My_data._Myres = _New_capacity; if (_My_data._BUF_SIZE <= _Old_capacity) { pointer _Old_ptr = _My_data._Bx._Ptr; _Fn(_New_ptr, _Old_ptr[0 .. _Old_size], _Args); _Al.deallocate(_Old_ptr, _Old_capacity + 1); } else _Fn(_New_ptr, _My_data._Bx._Buf[0 .. _Old_size], _Args); _My_data._Bx._Ptr = _New_ptr; return this; } void _Tidy_deallocate() { _Base._Orphan_all(); auto _My_data = &_Get_data(); if (_My_data._BUF_SIZE <= _My_data._Myres) { pointer _Ptr = _My_data._Bx._Ptr; auto _Al = &_Getal(); _Al.deallocate(_Ptr, _My_data._Myres + 1); } _My_data._Mysize = 0; _My_data._Myres = _My_data._BUF_SIZE - 1; _My_data._Bx._Buf[0] = T(0); } void _Swap_data(bool _memcpy : true)(ref basic_string _Right) { import core.stdc.string : memcpy; // exchange _String_val instances with _Right, memcpy optimization auto _My_data = &_Get_data(); auto _My_data_mem = cast(ubyte*)_My_data + _Memcpy_val_offset; auto _Right_data_mem = cast(ubyte*)(&_Right._Get_data()) + _Memcpy_val_offset; ubyte[_Memcpy_val_size] _Temp_mem; memcpy(_Temp_mem.ptr, _My_data_mem, _Memcpy_val_size); memcpy(_My_data_mem, _Right_data_mem, _Memcpy_val_size); memcpy(_Right_data_mem, _Temp_mem.ptr, _Memcpy_val_size); } void _Swap_data(bool _memcpy : false)(ref basic_string _Right) { import core.lifetime : swap; // exchange _String_val instances with _Right, general case auto _My_data = &_Get_data(); auto _Right_data = &_Right._Get_data(); const bool _My_large = _My_data._Large_string_engaged(); const bool _Right_large = _Right_data._Large_string_engaged(); if (_My_large) { if (_Right_large) // swap buffers, iterators preserved swap(_My_data._Bx._Ptr, _Right_data._Bx._Ptr); else // swap large with small _Swap_bx_large_with_small(*_My_data, *_Right_data); } else { if (_Right_large) // swap small with large _Swap_bx_large_with_small(*_Right_data, *_My_data); else { enum _BUF_SIZE = _My_data._BUF_SIZE; T[_BUF_SIZE] _Temp_buf; _Temp_buf[0 .. _BUF_SIZE] = _My_data._Bx._Buf[0 .. _BUF_SIZE]; _My_data._Bx._Buf[0 .. _BUF_SIZE] = _Right_data._Bx._Buf[0 .. _BUF_SIZE]; _Right_data._Bx._Buf[0 .. _BUF_SIZE] = _Temp_buf[0 .. _BUF_SIZE]; } } swap(_My_data._Mysize, _Right_data._Mysize); swap(_My_data._Myres, _Right_data._Myres); } void _Swap_bx_large_with_small(ref _Scary_val _Starts_large, ref _Scary_val _Starts_small) { // exchange a string in large mode with one in small mode pointer _Ptr = _Starts_large._Bx._Ptr; _Starts_large._Bx._Buf[] = _Starts_small._Bx._Buf[]; _Starts_small._Bx._Ptr = _Ptr; } _String_alloc!(_String_base_types!(T, Alloc)) _Base; } else version (CppRuntime_Gcc) { version (_GLIBCXX_USE_CXX98_ABI) { //---------------------------------------------------------------------------------- // Old GCC/libstdc++ ref-counted implementation //---------------------------------------------------------------------------------- /// this(DefaultConstruct) { version (_GLIBCXX_FULLY_DYNAMIC_STRING) static_assert(false, "DO WE NEED THIS?"); else _M_data = _S_empty_rep()._M_refdata(); } /// this(const(T)[] str, ref const(allocator_type) al) { _M_assign_allocator(al); this(str); } /// this(const(T)[] str) { _M_data = _S_construct(str.ptr, str.ptr + str.length, _M_get_allocator); } /// this(const ref basic_string str) { import core.stdcpp.type_traits : is_empty; static if (!is_empty!allocator_type.value) _M_Alloc = str.get_allocator(); _M_data = str._M_rep()._M_grab(get_allocator(), str.get_allocator()); } /// ~this() { _M_rep()._M_dispose(get_allocator()); } /// ref inout(Alloc) get_allocator() inout { return _M_get_allocator(); } /// size_type max_size() const nothrow @safe { return _Rep._S_max_size; } /// size_type size() const nothrow @safe { return _M_rep()._M_length; } /// size_type capacity() const nothrow { return _M_rep()._M_capacity; } /// inout(T)* data() inout @safe { return _M_data; } /// inout(T)[] as_array() inout nothrow @trusted { return _M_data[0 .. _M_rep()._M_length]; } /// ref inout(T) at(size_type i) inout nothrow { return _M_data[0 .. _M_rep()._M_length][i]; } /// ref basic_string assign(const(T)[] str) { const(T)* __s = str.ptr; size_t __n = str.length; // __glibcxx_requires_string_len(__s, __n); _M_check_length(size(), __n, "basic_string::assign"); if (_M_disjunct(__s) || _M_rep()._M_is_shared()) return _M_replace_safe(size_type(0), this.size(), __s, __n); else { const size_type __pos = __s - _M_data; if (__pos >= __n) _S_copy(_M_data, __s, __n); else if (__pos) _S_move(_M_data, __s, __n); _M_rep()._M_set_length_and_sharable(__n); return this; } } /// ref basic_string assign(const ref basic_string str) { if (_M_rep() != str._M_rep()) { // XXX MT allocator_type __a = this.get_allocator(); T* __tmp = str._M_rep()._M_grab(__a, str.get_allocator()); _M_rep()._M_dispose(__a); _M_data = __tmp; } return this; } /// ref basic_string append(const(T)[] str) { const(T)* __s = str.ptr; size_t __n = str.length; // __glibcxx_requires_string_len(__s, __n); if (__n) { _M_check_length(size_type(0), __n, "basic_string::append"); const size_type __len = __n + size(); if (__len > capacity() || _M_rep()._M_is_shared()) { if (_M_disjunct(__s)) reserve(__len); else { const size_type __off = __s - _M_data; reserve(__len); __s = _M_data + __off; } } _S_copy(_M_data + size(), __s, __n); _M_rep()._M_set_length_and_sharable(__len); } return this; } /// ref basic_string append(size_type __n, T __c) { if (__n) { _M_check_length(size_type(0), __n, "basic_string::append"); const size_type __len = __n + size(); if (__len > capacity() || _M_rep()._M_is_shared()) reserve(__len); const __sz = size(); _M_data[__sz .. __sz + __n] = __c; _M_rep()._M_set_length_and_sharable(__len); } return this; } /// void reserve(size_type __res = 0) { if (__res != capacity() || _M_rep()._M_is_shared()) { // Make sure we don't shrink below the current size if (__res < size()) __res = size(); allocator_type __a = get_allocator(); T* __tmp = _M_rep()._M_clone(__a, __res - size()); _M_rep()._M_dispose(__a); _M_data = __tmp; } } /// void shrink_to_fit() nothrow { if (capacity() > size()) { try reserve(0); catch (Throwable) {} } } /// ref basic_string insert(size_type __pos, const(T)* __s, size_type __n) { // __glibcxx_requires_string_len(__s, __n); cast(void) _M_check(__pos, "basic_string::insert"); _M_check_length(size_type(0), __n, "basic_string::insert"); if (_M_disjunct(__s) || _M_rep()._M_is_shared()) return _M_replace_safe(__pos, size_type(0), __s, __n); else { // Work in-place. const size_type __off = __s - _M_data; _M_mutate(__pos, 0, __n); __s = _M_data + __off; T* __p = _M_data + __pos; if (__s + __n <= __p) __p[0 .. __n] = __s[0 .. __n]; else if (__s >= __p) __p[0 .. __n] = (__s + __n)[0 .. __n]; else { const size_type __nleft = __p - __s; __p[0 .. __nleft] = __s[0.. __nleft]; (__p + __nleft)[0 .. __n - __nleft] = (__p + __n)[0 .. __n - __nleft]; } return this; } } /// ref basic_string insert(size_type pos, size_type n, T c) { return _M_replace_aux(_M_check(pos, "basic_string::insert"), size_type(0), n, c); } /// ref basic_string replace(size_type __pos, size_type __n1, const(T)* __s, size_type __n2) { // __glibcxx_requires_string_len(__s, __n2); cast(void) _M_check(__pos, "basic_string::replace"); __n1 = _M_limit(__pos, __n1); _M_check_length(__n1, __n2, "basic_string::replace"); bool __left; if (_M_disjunct(__s) || _M_rep()._M_is_shared()) return _M_replace_safe(__pos, __n1, __s, __n2); else if ((__left = __s + __n2 <= _M_data + __pos) == true || _M_data + __pos + __n1 <= __s) { // Work in-place: non-overlapping case. size_type __off = __s - _M_data; __left ? __off : (__off += __n2 - __n1); _M_mutate(__pos, __n1, __n2); (_M_data + __pos)[0 .. __n2] = (_M_data + __off)[0 .. __n2]; return this; } else { // Todo: overlapping case. auto __tmp = basic_string(__s[0 .. __n2]); return _M_replace_safe(__pos, __n1, __tmp._M_data, __n2); } } /// ref basic_string replace(size_type pos, size_type n1, size_type n2, T c) { return _M_replace_aux(_M_check(pos, "basic_string::replace"), _M_limit(pos, n1), n2, c); } /// void swap(ref basic_string __s) { if (_M_rep()._M_is_leaked()) _M_rep()._M_set_sharable(); if (__s._M_rep()._M_is_leaked()) __s._M_rep()._M_set_sharable(); if (this.get_allocator() == __s.get_allocator()) { T* __tmp = _M_data; _M_data = __s._M_data; __s._M_data = __tmp; } // The code below can usually be optimized away. else { import core.lifetime : move; auto __tmp1 = basic_string(this[], __s.get_allocator()); auto __tmp2 = basic_string(__s[], this.get_allocator()); this = move(__tmp2); __s = move(__tmp1); } } private: import core.stdcpp.type_traits : is_empty; version (__GTHREADS) { import core.atomic; alias _Atomic_word = int; // should we use atomic!int? } else alias _Atomic_word = int; struct _Rep_base { size_type _M_length; size_type _M_capacity; _Atomic_word _M_refcount; } struct _Rep { _Rep_base base; alias base this; alias _Raw_bytes_alloc = Alloc.rebind!char; enum size_type _S_max_size = (((npos - _Rep_base.sizeof) / T.sizeof) - 1) / 4; enum T _S_terminal = T(0); __gshared size_type[(_Rep_base.sizeof + T.sizeof + size_type.sizeof - 1) / size_type.sizeof] _S_empty_rep_storage; static ref _Rep _S_empty_rep() nothrow @trusted { return *cast(_Rep*)_S_empty_rep_storage.ptr; } void _M_set_sharable() nothrow { _M_refcount = 0; } void _M_set_length_and_sharable(size_type __n) nothrow { if (&this != &_S_empty_rep()) { _M_set_sharable(); _M_length = __n; _M_refdata()[__n] = _S_terminal; } } bool _M_is_leaked() const nothrow { import core.atomic : atomicLoad; version (__GTHREADS) return atomicLoad!(MemoryOrder.raw)(this._M_refcount) < 0; else return _M_refcount < 0; } // bool _M_is_shared() const nothrow { import core.atomic : atomicLoad; version (__GTHREADS) return atomicLoad!(MemoryOrder.acq)(this._M_refcount) > 0; else return _M_refcount > 0; } T* _M_refdata() nothrow @trusted { return cast(T*)(&this + 1); } T* _M_grab(ref allocator_type __alloc1, const ref allocator_type __alloc2) { return (!_M_is_leaked() && __alloc1 == __alloc2) ? _M_refcopy() : _M_clone(__alloc1); } static _Rep* _S_create(size_type __capacity, size_type __old_capacity, ref Alloc __alloc) { assert(__capacity <= _S_max_size); // if (__capacity > _S_max_size) // __throw_length_error(__N("basic_string::_S_create")); enum __pagesize = 4096; enum __malloc_header_size = 4 * pointer.sizeof; if (__capacity > __old_capacity && __capacity < 2 * __old_capacity) __capacity = 2 * __old_capacity; size_type __size = (__capacity + 1) * T.sizeof + _Rep.sizeof; const size_type __adj_size = __size + __malloc_header_size; if (__adj_size > __pagesize && __capacity > __old_capacity) { const size_type __extra = __pagesize - __adj_size % __pagesize; __capacity += __extra / T.sizeof; if (__capacity > _S_max_size) __capacity = _S_max_size; __size = (__capacity + 1) * T.sizeof + _Rep.sizeof; } _Rep* __p = cast(_Rep*)_Raw_bytes_alloc(__alloc).allocate(__size); *__p = _Rep.init; __p._M_capacity = __capacity; __p._M_set_sharable(); return __p; } void _M_dispose(ref Alloc __a) { import core.stdcpp.xutility : __exchange_and_add_dispatch; if (&this != &_S_empty_rep()) { // Be race-detector-friendly. For more info see bits/c++config. // _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(&this._M_refcount); // Decrement of _M_refcount is acq_rel, because: // - all but last decrements need to release to synchronize with // the last decrement that will delete the object. // - the last decrement needs to acquire to synchronize with // all the previous decrements. // - last but one decrement needs to release to synchronize with // the acquire load in _M_is_shared that will conclude that // the object is not shared anymore. if (__exchange_and_add_dispatch(&this._M_refcount, -1) <= 0) { // _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(&this._M_refcount); _M_destroy(__a); } } } void _M_destroy(ref Alloc __a) { const size_type __size = _Rep_base.sizeof + (_M_capacity + 1) * T.sizeof; _Raw_bytes_alloc(__a).deallocate(cast(char*)&this, __size); } T* _M_refcopy() nothrow @trusted { import core.stdcpp.xutility : __atomic_add_dispatch; if (&this != &_S_empty_rep()) __atomic_add_dispatch(&this._M_refcount, 1); return _M_refdata(); // XXX MT } T* _M_clone(ref Alloc __alloc, size_type __res = 0) { const size_type __requested_cap = _M_length + __res; _Rep* __r = _S_create(__requested_cap, _M_capacity, __alloc); if (_M_length) _S_copy(__r._M_refdata(), _M_refdata(), _M_length); __r._M_set_length_and_sharable(_M_length); return __r._M_refdata(); } } static if (!is_empty!allocator_type.value) allocator_type _M_Alloc; T* _M_p; // The actual data. alias _M_data = _M_p; pragma (inline, true) { void eos(size_type offset) { _M_mutate(offset, size() - offset, size_type(0)); } ref inout(allocator_type) _M_get_allocator() inout { static if (!is_empty!allocator_type.value) return _M_Alloc; else return *cast(inout(allocator_type)*)&this; } _Rep* _M_rep() const nothrow @trusted { return &(cast(_Rep*)_M_data)[-1]; } size_type _M_limit(size_type __pos, size_type __off) const @safe nothrow @nogc pure { const bool __testoff = __off < size() - __pos; return __testoff ? __off : size() - __pos; } } size_type _M_check(size_type __pos, const char* __s) const { assert(__pos <= size()); // if (__pos > size()) // __throw_out_of_range_fmt(__N("%s: __pos (which is %zu) > " // "this->size() (which is %zu)"), // __s, __pos, this->size()); return __pos; } static ref _Rep _S_empty_rep() nothrow { return _Rep._S_empty_rep(); } static T* _S_construct(const(T)* __beg, const(T)* __end, ref Alloc __a) { version (_GLIBCXX_FULLY_DYNAMIC_STRING) {} else { if (__beg == __end && __a == Alloc()) return _S_empty_rep()._M_refdata(); } const size_type __dnew = __end - __beg; _Rep* __r = _Rep._S_create(__dnew, size_type(0), __a); _S_copy(__r._M_refdata(), __beg, __end - __beg); __r._M_set_length_and_sharable(__dnew); return __r._M_refdata(); } ref basic_string _M_replace_safe(size_type __pos1, size_type __n1, const(T)* __s, size_type __n2) { _M_mutate(__pos1, __n1, __n2); if (__n2) _S_copy(_M_data + __pos1, __s, __n2); return this; } ref basic_string _M_replace_aux(size_type __pos1, size_type __n1, size_type __n2, T __c) { _M_check_length(__n1, __n2, "basic_string::_M_replace_aux"); _M_mutate(__pos1, __n1, __n2); if (__n2) _M_data[__pos1 .. __pos1 + __n2] = __c; return this; } void _M_mutate(size_type __pos, size_type __len1, size_type __len2) { const size_type __old_size = size(); const size_type __new_size = __old_size + __len2 - __len1; const size_type __how_much = __old_size - __pos - __len1; if (__new_size > capacity() || _M_rep()._M_is_shared()) { allocator_type __a = get_allocator(); _Rep* __r = _Rep._S_create(__new_size, capacity(), __a); if (__pos) _S_copy(__r._M_refdata(), _M_data, __pos); if (__how_much) _S_copy(__r._M_refdata() + __pos + __len2, _M_data + __pos + __len1, __how_much); allocator_type* __al = cast() &__a; _M_rep()._M_dispose(*__al); _M_data = __r._M_refdata(); } else if (__how_much && __len1 != __len2) _S_move(_M_data + __pos + __len2, _M_data + __pos + __len1, __how_much); _M_rep()._M_set_length_and_sharable(__new_size); } } else { pragma(msg, "libstdc++ std::__cxx11::basic_string is not yet supported; the struct contains an interior pointer which breaks D move semantics!"); //---------------------------------------------------------------------------------- // GCC/libstdc++ modern implementation //---------------------------------------------------------------------------------- /// this(DefaultConstruct) { _M_p = _M_local_data(); _M_set_length(0); } /// this(const(T)[] str, ref const(allocator_type) al) { _M_assign_allocator(al); this(str); } /// this(const(T)[] str) { _M_p = _M_local_data(); _M_construct(str.ptr, str.length); } /// this(this) { assert(false); // TODO: how do I know if it was local before?! } /// ~this() { _M_dispose(); } /// ref inout(Alloc) get_allocator() inout { return _M_get_allocator(); } /// size_type max_size() const nothrow @safe { return ((size_t.max / T.sizeof) - 1) / 2; } /// size_type size() const nothrow @safe { return _M_string_length; } /// size_type capacity() const nothrow { return _M_is_local ? _S_local_capacity : _M_allocated_capacity; } /// inout(T)* data() inout @safe { return _M_data; } /// inout(T)[] as_array() inout nothrow @trusted { return _M_data[0 .. _M_string_length]; } /// ref inout(T) at(size_type i) inout nothrow { return _M_data[0 .. _M_string_length][i]; } /// ref basic_string assign(const(T)[] str) { // __glibcxx_requires_string_len(str.ptr, str.length); return _M_replace(size_type(0), size(), str.ptr, str.length); } /// ref basic_string assign(const ref basic_string str) { if (&this != &str) assign(str.as_array); return this; } /// ref basic_string append(const(T)[] str) { // __glibcxx_requires_string_len(str.ptr, str.length); _M_check_length(size_type(0), str.length, "basic_string::append"); return _M_append(str.ptr, str.length); } /// ref basic_string append(size_type n, T c) { return _M_replace_aux(size(), size_type(0), n, c); } /// void reserve(size_type __res = 0) { // Make sure we don't shrink below the current size. if (__res < length()) __res = length(); const size_type __capacity = capacity(); if (__res != __capacity) { if (__res > __capacity || __res > size_type(_S_local_capacity)) { pointer __tmp = _M_create(__res, __capacity); _S_copy(__tmp, _M_data, length() + 1); _M_dispose(); _M_data = __tmp; _M_capacity = __res; } else if (!_M_is_local()) { _S_copy(_M_local_data(), _M_data, length() + 1); _M_destroy(__capacity); _M_data = _M_local_data(); } } } /// void shrink_to_fit() nothrow { if (capacity() > size()) { try reserve(0); catch (Throwable) {} } } /// ref basic_string insert(size_type pos, const(T)* s, size_type n) { return replace(pos, size_type(0), s, n); } /// ref basic_string insert(size_type pos, size_type n, T c) { return _M_replace_aux(_M_check(pos, "basic_string::insert"), size_type(0), n, c); } /// ref basic_string replace(size_type pos, size_type n1, const(T)* s, size_type n2) { // __glibcxx_requires_string_len(s, n2); return _M_replace(_M_check(pos, "basic_string::replace"), _M_limit(pos, n1), s, n2); } /// ref basic_string replace(size_type pos, size_type n1, size_type n2, T c) { return _M_replace_aux(_M_check(pos, "basic_string::replace"), _M_limit(pos, n1), n2, c); } /// void swap(ref basic_string __s) { if (&this == &__s) return; __alloc_on_swap(__s._M_get_allocator()); if (_M_is_local()) { if (__s._M_is_local()) { if (length() && __s.length()) { T[_S_local_capacity + 1] __tmp_data; __tmp_data[] = __s._M_local_buf[]; __s._M_local_buf[] = _M_local_buf[]; _M_local_buf[] = __tmp_data[]; } else if (__s.length()) { _M_local_buf[] = __s._M_local_buf[]; _M_length = __s.length(); __s._M_set_length(0); return; } else if (length()) { __s._M_local_buf[] = _M_local_buf[]; __s._M_length = length(); _M_set_length(0); return; } } else { const size_type __tmp_capacity = __s._M_allocated_capacity; __s._M_local_buf[] = _M_local_buf[]; _M_data = __s._M_data; __s._M_data = __s._M_local_buf.ptr; _M_capacity = __tmp_capacity; } } else { const size_type __tmp_capacity = _M_allocated_capacity; if (__s._M_is_local()) { _M_local_buf[] = __s._M_local_buf[]; __s._M_data = _M_data; _M_data = _M_local_buf.ptr; } else { pointer __tmp_ptr = _M_data; _M_data = __s._M_data; __s._M_data = __tmp_ptr; _M_capacity = __s._M_allocated_capacity; } __s._M_capacity = __tmp_capacity; } const size_type __tmp_length = length(); _M_length = __s.length(); __s._M_length = __tmp_length; } private: // import core.exception : RangeError; import core.stdcpp.type_traits : is_empty; static if (!is_empty!allocator_type.value) allocator_type _M_Alloc; pointer _M_p; // The actual data. size_type _M_string_length; enum size_type _S_local_capacity = 15 / T.sizeof; union { T[_S_local_capacity + 1] _M_local_buf; size_type _M_allocated_capacity; } alias _M_length = _M_string_length; alias _M_capacity = _M_allocated_capacity; alias _M_data = _M_p; pragma (inline, true) { void eos(size_type offset) nothrow { _M_set_length(offset); } inout(pointer) _M_local_data() inout { return _M_local_buf.ptr; } bool _M_is_local() const { return _M_data == _M_local_data; } ref inout(allocator_type) _M_get_allocator() inout { static if (!is_empty!allocator_type.value) return _M_Alloc; else return *cast(inout(allocator_type)*)&this; } void _M_set_length(size_type __n) { _M_length = __n; _M_data[__n] = T(0); } size_type _M_check(size_type __pos, const char* __s) const { assert(__pos <= size()); // if (__pos > size()) // __throw_out_of_range_fmt(__N("%s: __pos (which is %zu) > " // "this->size() (which is %zu)"), // __s, __pos, this->size()); return __pos; } // NB: _M_limit doesn't check for a bad __pos value. size_type _M_limit(size_type __pos, size_type __off) const nothrow pure @nogc @safe { const bool __testoff = __off < size() - __pos; return __testoff ? __off : size() - __pos; } void __alloc_on_swap()(ref allocator_type __a) if (!is_empty!allocator_type.value) { import core.internal.lifetime : swap; static if (allocator_traits!allocator_type.propagate_on_container_swap) swap(_M_get_allocator(), __a); } void __alloc_on_swap()(ref allocator_type __a) if (is_empty!allocator_type.value) { import core.internal.lifetime : swap; import core.lifetime : move; static if (allocator_traits!allocator_type.propagate_on_container_swap) { static if (is(typeof(_M_get_allocator().opAssign(move(__a))))) swap(_M_get_allocator(), __a); } } } void _M_construct(const(T)* __beg, size_type __dnew) { if (__dnew > _S_local_capacity) { _M_data = _M_create(__dnew, size_type(0)); _M_capacity = __dnew; } _M_data[0 .. __dnew] = __beg[0 .. __dnew]; _M_set_length(__dnew); } pointer _M_create(ref size_type __capacity, size_type __old_capacity) { assert(__capacity <= max_size()); // if (__capacity > max_size()) // throw new RangeError("Length exceeds `max_size()`"); // std::__throw_length_error(__N("basic_string::_M_create")); if (__capacity > __old_capacity && __capacity < 2 * __old_capacity) { __capacity = 2 * __old_capacity; if (__capacity > max_size()) __capacity = max_size(); } return _M_get_allocator().allocate(__capacity + 1); } ref basic_string _M_replace(size_type __pos, size_type __len1, const(T)* __s, const size_type __len2) { _M_check_length(__len1, __len2, "basic_string::_M_replace"); const size_type __old_size = size(); const size_type __new_size = __old_size + __len2 - __len1; if (__new_size <= capacity()) { pointer __p = _M_data + __pos; const size_type __how_much = __old_size - __pos - __len1; if (_M_disjunct(__s)) { if (__how_much && __len1 != __len2) _S_move(__p + __len2, __p + __len1, __how_much); if (__len2) _S_copy(__p, __s, __len2); } else { // Work in-place. if (__len2 && __len2 <= __len1) _S_move(__p, __s, __len2); if (__how_much && __len1 != __len2) _S_move(__p + __len2, __p + __len1, __how_much); if (__len2 > __len1) { if (__s + __len2 <= __p + __len1) _S_move(__p, __s, __len2); else if (__s >= __p + __len1) _S_copy(__p, __s + __len2 - __len1, __len2); else { const size_type __nleft = (__p + __len1) - __s; _S_move(__p, __s, __nleft); _S_copy(__p + __nleft, __p + __len2, __len2 - __nleft); } } } } else _M_mutate(__pos, __len1, __s, __len2); _M_set_length(__new_size); return this; } ref basic_string _M_replace_aux(size_type __pos1, size_type __n1, size_type __n2, T __c) { _M_check_length(__n1, __n2, "basic_string::_M_replace_aux"); const size_type __old_size = size(); const size_type __new_size = __old_size + __n2 - __n1; if (__new_size <= capacity()) { pointer __p = _M_data + __pos1; const size_type __how_much = __old_size - __pos1 - __n1; if (__how_much && __n1 != __n2) _S_move(__p + __n2, __p + __n1, __how_much); } else _M_mutate(__pos1, __n1, null, __n2); if (__n2) _M_data[__pos1 .. __pos1 + __n2] = __c; _M_set_length(__new_size); return this; } ref basic_string _M_append(const(T)* __s, size_type __n) { const size_type __len = __n + size(); if (__len <= capacity()) { if (__n) _S_copy(_M_data + size(), __s, __n); } else _M_mutate(size(), size_type(0), __s, __n); _M_set_length(__len); return this; } void _M_mutate(size_type __pos, size_type __len1, const(T)* __s, size_type __len2) { const size_type __how_much = length() - __pos - __len1; size_type __new_capacity = length() + __len2 - __len1; pointer __r = _M_create(__new_capacity, capacity()); if (__pos) _S_copy(__r, _M_data, __pos); if (__s && __len2) _S_copy(__r + __pos, __s, __len2); if (__how_much) _S_copy(__r + __pos + __len2, _M_data + __pos + __len1, __how_much); _M_dispose(); _M_data = __r; _M_capacity = __new_capacity; } void _M_dispose() { if (!_M_is_local) _M_destroy(_M_allocated_capacity); } void _M_destroy(size_type __size) { _M_get_allocator().deallocate(_M_data, __size + 1); } } // common GCC/stdlibc++ code void _M_check_length(size_type __n1, size_type __n2, const char* __s) const { assert (!(max_size() - (size() - __n1) < __n2)); // if (max_size() - (size() - __n1) < __n2) // __throw_length_error(__N(__s)); } void _M_assign_allocator(ref const(allocator_type) al) nothrow { static if (!is_empty!allocator_type.value) _M_Alloc = al; } bool _M_disjunct(const(T)* __s) const nothrow { return __s < _M_data || _M_data + size() < __s; } static void _S_move(T* __d, const(T)* __s, size_type __n) { if (__d == __s) return; if (__d < __s) { for (size_t i = 0; i < __n; ++i) __d[i] = __s[i]; } else { for (ptrdiff_t i = __n - 1; i >= 0; --i) __d[i] = __s[i]; } } static void _S_copy(T* __d, const(T)* __s, size_type __n) { __d[0 .. __n] = __s[0 .. __n]; } } else version (CppRuntime_Clang) { //---------------------------------------------------------------------------------- // Clang/libc++ implementation //---------------------------------------------------------------------------------- /// this(DefaultConstruct) { __zero(); } /// this(const(T)[] str, ref const(allocator_type) al) { __assign_allocator(al); this(str); } /// this(const(T)[] str) { __init(str.ptr, str.length); } /// this(this) { if (__is_long()) __init(__get_long_pointer(), __get_long_size()); } /// ~this() { // __get_db()->__erase_c(this); // TODO: support `_LIBCPP_DEBUG_LEVEL >= 2` ?? if (__is_long()) __alloc().deallocate(__get_long_pointer(), __get_long_cap()); } /// ref inout(Alloc) get_allocator() inout { return __alloc(); } /// size_type max_size() const nothrow @safe { size_type __m = size_t.max; // TODO: __alloc_traits::max_size(__alloc()); version (BigEndian) return (__m <= ~__long_mask ? __m : __m/2) - __alignment; else return __m - __alignment; } /// size_type size() const nothrow { return __is_long() ? __get_long_size() : __get_short_size(); } /// size_type capacity() const nothrow { return (__is_long() ? __get_long_cap() : __min_cap) - 1; } /// inout(T)* data() inout @safe { return __get_pointer(); } /// inout(T)[] as_array() scope return inout nothrow @trusted { return __get_pointer()[0 .. size()]; } /// ref inout(T) at(size_type i) inout nothrow @trusted { return __get_pointer()[0 .. size()][i]; } /// ref basic_string assign(const(T)[] str) { const(value_type)* __s = str.ptr; size_type __n = str.length; size_type __cap = capacity(); if (__cap >= __n) { value_type* __p = __get_pointer(); __p[0 .. __n] = __s[0 .. __n]; // TODO: is memmove? __p[__n] = value_type(0); __set_size(__n); // __invalidate_iterators_past(__n); // TODO: support `_LIBCPP_DEBUG_LEVEL >= 2` ?? } else { size_type __sz = size(); __grow_by_and_replace(__cap, __n - __cap, __sz, 0, __sz, __n, __s); } return this; } /// ref basic_string assign(const ref basic_string str) { if (&this != &str) assign(str.as_array); return this; } /// ref basic_string append(const(T)[] str) { const(value_type)* __s = str.ptr; size_type __n = str.length; size_type __cap = capacity(); size_type __sz = size(); if (__cap - __sz >= __n) { if (__n) { value_type* __p = __get_pointer(); (__p + __sz)[0 .. __n] = __s[0 .. __n]; __sz += __n; __set_size(__sz); __p[__sz] = value_type(0); } } else __grow_by_and_replace(__cap, __sz + __n - __cap, __sz, __sz, 0, __n, __s); return this; } /// ref basic_string append(size_type __n, value_type __c) { if (__n) { size_type __cap = capacity(); size_type __sz = size(); if (__cap - __sz < __n) __grow_by(__cap, __sz + __n - __cap, __sz, __sz, 0); pointer __p = __get_pointer(); __p[__sz .. __sz + __n] = __c; __sz += __n; __set_size(__sz); __p[__sz] = value_type(0); } return this; } /// void reserve(size_type __res_arg = 0) { assert(__res_arg <= max_size()); // if (__res_arg > max_size()) // __throw_length_error(); size_type __cap = capacity(); size_type __sz = size(); __res_arg = max(__res_arg, __sz); __res_arg = __recommend(__res_arg); if (__res_arg != __cap) { pointer __new_data, __p; bool __was_long, __now_long; if (__res_arg == __min_cap - 1) { __was_long = true; __now_long = false; __new_data = __get_short_pointer(); __p = __get_long_pointer(); } else { if (__res_arg > __cap) __new_data = __alloc().allocate(__res_arg+1); else { try __new_data = __alloc().allocate(__res_arg+1); catch (Throwable) return; } __now_long = true; __was_long = __is_long(); __p = __get_pointer(); } __new_data[0 .. size()+1] = __p[0 .. size()+1]; if (__was_long) __alloc().deallocate(__p, __cap+1); if (__now_long) { __set_long_cap(__res_arg+1); __set_long_size(__sz); __set_long_pointer(__new_data); } else __set_short_size(__sz); // __invalidate_all_iterators(); // TODO: } } /// void shrink_to_fit() { reserve(); } /// ref basic_string insert(size_type __pos, const(value_type)* __s, size_type __n) { assert(__n == 0 || __s != null, "string::insert received null"); size_type __sz = size(); assert(__pos <= __sz); // if (__pos > __sz) // this->__throw_out_of_range(); size_type __cap = capacity(); if (__cap - __sz >= __n) { if (__n) { value_type* __p = __get_pointer(); size_type __n_move = __sz - __pos; if (__n_move != 0) { if (__p + __pos <= __s && __s < __p + __sz) __s += __n; traits_type.move(__p + __pos + __n, __p + __pos, __n_move); } traits_type.move(__p + __pos, __s, __n); __sz += __n; __set_size(__sz); __p[__sz] = value_type(0); } } else __grow_by_and_replace(__cap, __sz + __n - __cap, __sz, __pos, 0, __n, __s); return this; } /// ref basic_string insert(size_type pos, size_type n, value_type c) { alias __pos = pos; alias __n = n; alias __c = c; size_type __sz = size(); assert(__pos <= __sz); // if (__pos > __sz) // __throw_out_of_range(); if (__n) { size_type __cap = capacity(); value_type* __p; if (__cap - __sz >= __n) { __p = __get_pointer(); size_type __n_move = __sz - __pos; if (__n_move != 0) traits_type.move(__p + __pos + __n, __p + __pos, __n_move); } else { __grow_by(__cap, __sz + __n - __cap, __sz, __pos, 0, __n); __p = __get_long_pointer(); } __p[__pos .. __pos + __n] = __c; __sz += __n; __set_size(__sz); __p[__sz] = value_type(0); } return this; } /// ref basic_string replace(size_type __pos, size_type __n1, const(T)* __s, size_type __n2) { assert(__n2 == 0 || __s != null, "string::replace received null"); size_type __sz = size(); assert(__pos <= __sz); // if (__pos > __sz) // __throw_out_of_range(); __n1 = min(__n1, __sz - __pos); size_type __cap = capacity(); if (__cap - __sz + __n1 >= __n2) { value_type* __p = __get_pointer(); if (__n1 != __n2) { size_type __n_move = __sz - __pos - __n1; if (__n_move != 0) { if (__n1 > __n2) { traits_type.move(__p + __pos, __s, __n2); traits_type.move(__p + __pos + __n2, __p + __pos + __n1, __n_move); goto __finish; } if (__p + __pos < __s && __s < __p + __sz) { if (__p + __pos + __n1 <= __s) __s += __n2 - __n1; else // __p + __pos < __s < __p + __pos + __n1 { traits_type.move(__p + __pos, __s, __n1); __pos += __n1; __s += __n2; __n2 -= __n1; __n1 = 0; } } traits_type.move(__p + __pos + __n2, __p + __pos + __n1, __n_move); } } traits_type.move(__p + __pos, __s, __n2); __finish: // __sz += __n2 - __n1; in this and the below function below can cause unsigned integer overflow, // but this is a safe operation, so we disable the check. __sz += __n2 - __n1; __set_size(__sz); // __invalidate_iterators_past(__sz); // TODO __p[__sz] = value_type(0); } else __grow_by_and_replace(__cap, __sz - __n1 + __n2 - __cap, __sz, __pos, __n1, __n2, __s); return this; } /// ref basic_string replace(size_type __pos, size_type __n1, size_type __n2, value_type __c) { size_type __sz = size(); assert(__pos <= __sz); // if (__pos > __sz) // __throw_out_of_range(); __n1 = min(__n1, __sz - __pos); size_type __cap = capacity(); value_type* __p; if (__cap - __sz + __n1 >= __n2) { __p = __get_pointer(); if (__n1 != __n2) { size_type __n_move = __sz - __pos - __n1; if (__n_move != 0) traits_type.move(__p + __pos + __n2, __p + __pos + __n1, __n_move); } } else { __grow_by(__cap, __sz - __n1 + __n2 - __cap, __sz, __pos, __n1, __n2); __p = __get_long_pointer(); } __p[__pos .. __pos + __n2] = __c; __sz += __n2 - __n1; __set_size(__sz); // __invalidate_iterators_past(__sz); // TODO __p[__sz] = value_type(0); return this; } /// void swap(ref basic_string __str) { import core.internal.lifetime : swap; // static if (_LIBCPP_DEBUG_LEVEL >= 2) // { // if (!__is_long()) // __get_db().__invalidate_all(&this); // if (!__str.__is_long()) // __get_db().__invalidate_all(&__str); // __get_db().swap(&this, &__str); // } assert( __alloc_traits.propagate_on_container_swap || __alloc_traits.is_always_equal || __alloc() == __str.__alloc(), "swapping non-equal allocators"); swap(__r_.first(), __str.__r_.first()); __swap_allocator(__alloc(), __str.__alloc()); } private: // import core.exception : RangeError; import core.stdcpp.xutility : __compressed_pair; alias __alloc_traits = allocator_traits!allocator_type; enum __alignment = 16; version (_LIBCPP_ABI_ALTERNATE_STRING_LAYOUT) { struct __long { pointer __data_; size_type __size_; size_type __cap_; } version (BigEndian) { enum size_type __short_mask = 0x01; enum size_type __long_mask = 0x1; } else { enum size_type __short_mask = 0x80; enum size_type __long_mask = ~(size_type(~0) >> 1); } enum size_type __min_cap = (__long.sizeof - 1)/value_type.sizeof > 2 ? (__long.sizeof - 1)/value_type.sizeof : 2; struct __short { value_type[__min_cap] __data_; struct { static if (value_type.sizeof > 1) ubyte[value_type.sizeof-1] __xx; // __padding ubyte __size_; } } } else { struct __long { size_type __cap_; size_type __size_; pointer __data_; } version (BigEndian) { enum size_type __short_mask = 0x80; enum size_type __long_mask = ~(size_type(~0) >> 1); } else { enum size_type __short_mask = 0x01; enum size_type __long_mask = 0x1; } enum size_type __min_cap = (__long.sizeof - 1)/value_type.sizeof > 2 ? (__long.sizeof - 1)/value_type.sizeof : 2; struct __short { union { ubyte __size_; value_type __lx; } value_type[__min_cap] __data_; } } union __ulx { __long __lx; __short __lxx; } enum __n_words = __ulx.sizeof / size_type.sizeof; struct __raw { size_type[__n_words] __words; } struct __rep { union { __long __l; __short __s; __raw __r; } } __compressed_pair!(__rep, allocator_type) __r_; pragma (inline, true) { void eos(size_type offset) nothrow { __set_size(offset); // __invalidate_iterators_past(__sz); // TODO: support `_LIBCPP_DEBUG_LEVEL >= 2` ?? __get_pointer()[offset] = value_type(0); } version (_LIBCPP_ABI_ALTERNATE_STRING_LAYOUT) { version (BigEndian) { void __set_short_size(size_type __s) nothrow @safe { __r_.first().__s.__size_ = cast(ubyte)(__s << 1); } size_type __get_short_size() const nothrow @safe { return __r_.first().__s.__size_ >> 1; } } else { void __set_short_size(size_type __s) nothrow @safe { __r_.first().__s.__size_ = cast(ubyte)(__s);} size_type __get_short_size() const nothrow @safe { return __r_.first().__s.__size_;} } } else { version (BigEndian) { void __set_short_size(size_type __s) nothrow @safe { __r_.first().__s.__size_ = cast(ubyte)(__s); } size_type __get_short_size() const nothrow @safe { return __r_.first().__s.__size_; } } else { void __set_short_size(size_type __s) nothrow @safe { __r_.first().__s.__size_ = cast(ubyte)(__s << 1); } size_type __get_short_size() const nothrow @safe { return __r_.first().__s.__size_ >> 1; } } } void __set_long_size(size_type __s) nothrow { __r_.first().__l.__size_ = __s; } size_type __get_long_size() const nothrow { return __r_.first().__l.__size_; } void __set_size(size_type __s) nothrow { if (__is_long()) __set_long_size(__s); else __set_short_size(__s); } void __set_long_cap(size_type __s) nothrow { __r_.first().__l.__cap_ = __long_mask | __s; } size_type __get_long_cap() const nothrow { return __r_.first().__l.__cap_ & size_type(~__long_mask); } void __set_long_pointer(pointer __p) nothrow { __r_.first().__l.__data_ = __p; } inout(T)* __get_long_pointer() inout nothrow { return __r_.first().__l.__data_; } inout(T)* __get_short_pointer() inout nothrow @safe { return &__r_.first().__s.__data_[0]; } inout(T)* __get_pointer() inout nothrow { return __is_long() ? __get_long_pointer() : __get_short_pointer(); } bool __is_long() const nothrow @safe { return (__r_.first().__s.__size_ & __short_mask) != 0; } void __zero() nothrow @safe { __r_.first().__r.__words[] = 0; } ref inout(allocator_type) __alloc() inout nothrow @safe { return __r_.second(); } void __init(const(value_type)* __s, size_type __sz) { return __init(__s, __sz, __sz); } } void __assign_allocator(ref const(allocator_type) al) nothrow { static if (!__r_.Ty2Empty) __alloc() = al; } void __init(const(value_type)* __s, size_type __sz, size_type __reserve) { assert(__reserve <= max_size()); // if (__reserve > max_size()) // throw new RangeError("Length exceeds `max_size()`"); // this->__throw_length_error(); pointer __p; if (__reserve < __min_cap) { __set_short_size(__sz); __p = __get_short_pointer(); } else { size_type __cap = __recommend(__reserve); __p = __alloc().allocate(__cap+1, null); __set_long_pointer(__p); __set_long_cap(__cap+1); __set_long_size(__sz); } __p[0 .. __sz] = __s[0 .. __sz]; __p[__sz] = value_type(0); } static size_type __recommend(size_type __s) nothrow @safe { static size_type __align_it(size_type __a)(size_type __s) nothrow @safe { return (__s + (__a-1)) & ~(__a-1); } if (__s < __min_cap) return __min_cap - 1; size_type __guess = __align_it!(value_type.sizeof < __alignment ? __alignment/value_type.sizeof : 1)(__s+1) - 1; if (__guess == __min_cap) ++__guess; return __guess; } void __grow_by_and_replace(size_type __old_cap, size_type __delta_cap, size_type __old_sz, size_type __n_copy, size_type __n_del, size_type __n_add, const(value_type)* __p_new_stuff) { size_type __ms = max_size(); assert(__delta_cap <= __ms - __old_cap - 1); // if (__delta_cap > __ms - __old_cap - 1) // throw new RangeError("Length exceeds `max_size()`"); // this->__throw_length_error(); pointer __old_p = __get_pointer(); size_type __cap = __old_cap < __ms / 2 - __alignment ? __recommend(max(__old_cap + __delta_cap, 2 * __old_cap)) : __ms - 1; pointer __p = __alloc().allocate(__cap+1); // __invalidate_all_iterators(); // TODO: support `_LIBCPP_DEBUG_LEVEL >= 2` ?? if (__n_copy != 0) __p[0 .. __n_copy] = __old_p[0 .. __n_copy]; if (__n_add != 0) (__p + __n_copy)[0 .. __n_add] = __p_new_stuff[0 .. __n_add]; size_type __sec_cp_sz = __old_sz - __n_del - __n_copy; if (__sec_cp_sz != 0) (__p + __n_copy + __n_add)[0 .. __sec_cp_sz] = (__old_p + __n_copy + __n_del)[0 .. __sec_cp_sz]; if (__old_cap+1 != __min_cap) __alloc().deallocate(__old_p, __old_cap+1); __set_long_pointer(__p); __set_long_cap(__cap+1); __old_sz = __n_copy + __n_add + __sec_cp_sz; __set_long_size(__old_sz); __p[__old_sz] = value_type(0); } void __grow_by(size_type __old_cap, size_type __delta_cap, size_type __old_sz, size_type __n_copy, size_type __n_del, size_type __n_add = 0) { size_type __ms = max_size(); assert(__delta_cap <= __ms - __old_cap); // if (__delta_cap > __ms - __old_cap) // __throw_length_error(); pointer __old_p = __get_pointer(); size_type __cap = __old_cap < __ms / 2 - __alignment ? __recommend(max(__old_cap + __delta_cap, 2 * __old_cap)) : __ms - 1; pointer __p = __alloc().allocate(__cap+1); // __invalidate_all_iterators(); // TODO: if (__n_copy != 0) __p[0 .. __n_copy] = __old_p[0 .. __n_copy]; size_type __sec_cp_sz = __old_sz - __n_del - __n_copy; if (__sec_cp_sz != 0) (__p + __n_copy + __n_add)[0 .. __sec_cp_sz] = (__old_p + __n_copy + __n_del)[0 .. __sec_cp_sz]; if (__old_cap+1 != __min_cap) __alloc().deallocate(__old_p, __old_cap+1); __set_long_pointer(__p); __set_long_cap(__cap+1); } } else { static assert(false, "C++ runtime not supported"); } } // platform detail private: version (CppRuntime_Microsoft) { import core.stdcpp.xutility : _ITERATOR_DEBUG_LEVEL; extern(C++, (StdNamespace)): extern (C++) struct _String_base_types(_Elem, _Alloc) { alias Ty = _Elem; alias Alloc = _Alloc; } extern (C++, class) struct _String_alloc(_Alloc_types) { import core.stdcpp.xutility : _Compressed_pair; alias Ty = _Alloc_types.Ty; alias Alloc = _Alloc_types.Alloc; alias ValTy = _String_val!Ty; extern(D) @safe @nogc: pragma(inline, true) { ref inout(Alloc) _Getal() return inout pure nothrow { return _Mypair._Myval1; } ref inout(ValTy) _Get_data() return inout pure nothrow { return _Mypair._Myval2; } } void _Orphan_all() nothrow { _Get_data._Base._Orphan_all(); } static if (_ITERATOR_DEBUG_LEVEL > 0) { import core.stdcpp.xutility : _Container_proxy; ~this() { _Free_proxy(); } pragma(inline, true) ref inout(_Container_proxy*) _Myproxy() inout pure nothrow { return _Get_data._Base._Myproxy; } void _Alloc_proxy() nothrow @trusted { import core.lifetime : emplace; alias _Alproxy = Alloc.rebind!_Container_proxy; try // TODO: or should we make allocator::allocate() `nothrow`? _Myproxy() = _Alproxy(_Getal()).allocate(1); catch (Throwable) assert(false, "Failed to allocate iterator debug container proxy"); emplace!_Container_proxy(_Myproxy()); _Myproxy()._Mycont = &_Get_data()._Base; } void _Free_proxy() nothrow @trusted { alias _Alproxy = Alloc.rebind!_Container_proxy; _Orphan_all(); destroy!false(*_Myproxy()); try // TODO: or should we make allocator::deallocate() `nothrow`? _Alproxy(_Getal()).deallocate(_Myproxy(), 1); catch (Throwable) assert(false, "Failed to deallocate iterator debug container proxy"); _Myproxy() = null; } } _Compressed_pair!(Alloc, ValTy) _Mypair; } extern (C++, class) struct _String_val(T) { import core.stdcpp.xutility : _Container_base; import core.stdcpp.type_traits : is_empty; enum _BUF_SIZE = 16 / T.sizeof < 1 ? 1 : 16 / T.sizeof; enum _ALLOC_MASK = T.sizeof <= 1 ? 15 : T.sizeof <= 2 ? 7 : T.sizeof <= 4 ? 3 : T.sizeof <= 8 ? 1 : 0; static if (!is_empty!_Container_base.value) _Container_base _Base; else ref inout(_Container_base) _Base() inout { return *cast(inout(_Container_base)*)&this; } union _Bxty { T[_BUF_SIZE] _Buf; T* _Ptr; } _Bxty _Bx; size_t _Mysize = 0; // current length of string size_t _Myres = _BUF_SIZE - 1; // current storage reserved for string pragma (inline, true): extern (D): pure nothrow @nogc: bool _IsAllocated() const @safe { return _BUF_SIZE <= _Myres; } alias _Large_string_engaged = _IsAllocated; @property inout(T)* _Myptr() inout @trusted { return _BUF_SIZE <= _Myres ? _Bx._Ptr : _Bx._Buf.ptr; } @property inout(T)[] _Mystr() inout @trusted { return _BUF_SIZE <= _Myres ? _Bx._Ptr[0 .. _Mysize] : _Bx._Buf[0 .. _Mysize]; } auto _Clamp_suffix_size(T)(const T _Off, const T _Size) const { // trims _Size to the longest it can be assuming a string at/after _Off return min(_Size, _Mysize - _Off); } } template _Size_after_ebco_v(_Ty) { import core.stdcpp.type_traits : is_empty; enum size_t _Size_after_ebco_v = is_empty!_Ty.value ? 0 : _Ty.sizeof; // get _Ty's size after being EBCO'd } } auto ref T max(T)(auto ref T a, auto ref T b) { return b > a ? b : a; } auto ref T min(T)(auto ref T a, auto ref T b) { return b < a ? b : a; }