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Abstract—

The RISC-V ISA is becoming one of the leading instruction sets for 
the Internet-of-Things and System-on-Chip applications. Due to its 
strong security features and open-source nature, it is becoming a 
competitor to the popular ARM architecture. This paper describes 
the design of a light weight, open-source implementation of a RISC-
V processor using modern hardware design techniques, the
implementation of the design onto a Field Programmable Gate Array 
(FPGA), and its testing. We wanted to create a RISC-V processor 
that is easy for beginners to learn from and lightweight enough to be 
implemented on even small FPGAs. While there are existing
opensource implementations of RISC-V processors, none are
intuitive enough for a beginner to follow. For this reason, in this 
paper we have minimised the use of conventions and components in 
modern processors that are not strictly necessary for a barebones 
implementation. For example, the processor does not include 
pipelining and uses a simple Harvard architecture. The barebones 
nature of the design allows for a lot of potential for upgradability. 
The implementation of each component, and the corresponding test 
benches, are written in concise and conventional System Verilog.
The project produced a RISC-V processor with files for targeting 
Basys 3 Artix-7 FPGA. Performance was tested using the Dhyrstone 
benchmark and achieved a strong 2.276 DMIPs/MHz, even 
outperforming the ARM Cortex-A9, while maintaining very low 
resource utilization on the FPGA.
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I. INTRODUCTION

Instruction set architectures (ISA), are standards for how the 
hardware of a processor should function and interact with the 
ISA’s own assembly language. ISAs have all the information 
necessary to create a processor that will run machine code
correctly and consistently according to the standard [1]. This 

includes information about instructions, registers, memory 
access, arithmetic, data buses and so on. While every function 

of the processor is defined in the standard, how hardware and 
circuits are implemented is left up to the designer. Most ISAs 
will typically have many extensions and variations to suit the 
requirements of different designs. This could include 
extensions with support for multiplication, floating point 
numbers, or different data, address and instruction widths, or 
ISAs targeted for embedded systems, personal computers, 
super computers, etc.

Commercially successful ISAs have typically been 
proprietary and required licenses. With the specific designs 
and implementations being hidden behind patents and non-
disclosure agreements. The new RISC-V ISA [2] is 
promising for the hardware industry with it being the first 
open-source modern ISA. RISC-V is a combination of work 
by the University of California and companies such as AMD, 
Google, Microsoft, IBM and many more. Since the 
finalisation of the first variants of RISC-V, many open-source 
tools and designs have been created and published [3].

RISC-V is not only exciting because it is open source, but 
also an ISA that can compete with the other restricted 
commercial ISAs by Intel, AMD and ARM. While most 
academic designs are optimised for learning purposes, RISC-
V is intended for modern practical use.

The open-source aspect of RISC-V made it particularly well 
suited for this project as we could use it to create an open-
source CPU without having to use one of the "toy" or 
academic ISAs, and instead use something more realistic and 
practical. While there already exist opensource 
implementations of RISC-V processors, none is simple and
intuitive enough for a beginner to follow.
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In this paper, we have designed a light weight, open-source 
implementation of a RISC-V processor using modern 
hardware design techniques and implemented the design onto 
a Field Programmable Gate Array (FPGA), and to test it. We 
wanted to create a RISC-V processor that is simple enough to 
learn from and lightweight enough to be implemented on 
even small FPGAs that students could afford.

While there are already several open-source implementations 
of RISC-V processors, they are only intended for practical 
usage. The consequence of this is that they are often too 
complex for a student to learn from. The commonly used 
PicoRV32 by Claire Wolf [5] is considered to be a very 
compact CPU, but even this uses complex periphery such as 
XIP SIP Flash Controllers, UARTs, GPIO controllers, and the 
RV32IMC variable length instruction ISA. The Berkeley 
CPUs (Rocket, BOOM and Sodor [6, 7, 8]) have the difficult 
entry requirement of being designed using the unique and 
rarely used Chisel [9] hardware design language. SCR1 by 
Synthacore [10] is considered to be industry grade with the 
core including 2 to 4 stage pipelining, debug support, 
AXI4/AHB-Lite external interfaces, machine and many other 
powerful features. There are many instances of processors 
with this level of complexity, and so there has been a rising 
demand for RISC-V processors that can be used as a learning 
example.

To make the design accessible, in our CPU we neglected all 
those conventions and components in modern processors that 
are not strictly necessary for a barebones implementation. For 
instance, the processor does not include pipelining and uses a 
simple Harvard architecture which reduces complexity. Also, 
the implementation of each component, and the corresponding 
test benches, are written in concise and conventional System 
Verilog [4].

II. METHODOLOGY

A. The Instruction Set Architecture

The ISA used in this project is a reduced version of the 
RV64I extension. RV64I only supports 64-bit integers and 
the instructions included are based on the minimal 
instruction set from “Computer Organization and Design 
RISC-V Edition: The Hardware Software Interface.” [11]
The exact seven instructions are presented in 

Table 1.

Table 1 Instruction set

Instruction Description

ld Load double integer

sd Store double integer

add Addition

sub Subtraction

and Bitwise AND operation

or Bitwise OR operation

beq Branch if equal

ld and sd are two memory related instructions. ld takes a 
double (64-bit value) from a given memory address and puts 
it into a register. While sd does the opposite and takes a double 
from a register and stores it at an address in memory.

add and sub are two arithmetic instructions. add takes the 
contents of two source registers, adds them together using 
signed addition, and stores the results in a destination register. 
sub subtracts the contents of the two source registers instead. 
If the result of an arithmetic operation overflows (i.e., the 
result cannot fit in a double integer), then the result will wrap 
around back through the negative numbers. As all arithmetic 
is signed, the negative numbers are represented in two’s 
complement.

and and or are the two logical instructions in the instruction 
set. and takes the contents of two source registers, performs 
a bitwise AND operation, and stores the results in a 
destination register. or does the same but performs a bitwise 
OR operation on the source registers instead.

beq is the only control instruction (a conditional instruction). 
beq stands for “branch if equal”. It takes the contents of two 
source registers and verifies if they are equal by checking if 
their difference by subtraction is zero. If they are equal, then 
the program will jump to a new instruction, based on a signed 
offset provided by the beq instruction. Normally the program 
counter register will increment through each instruction one 
at a time with each new clock cycle. However, when beq is 
used, the program counter can be incremented or 
decremented by a specified amount, jumping the program 
forwards or backwards by some number of instructions.

Figure 1 Processor Architecture
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B. System design
The top level of the processor is based on the theory from 

“Computer Organization and Design RISC-V Edition: The 
Hardware Software Interface.” [11]. Each component is 
implemented as a System Verilog module with a focus on the 
code being conventional and highly readable. Each 
component includes a simple test bench written in System 
Verilog so that the behavior of the module can be tested in 
simulation. The entire system is designed so that each 
instruction is executed in one clock cycle (no pipelining). The 
main components can be seen in Figure 1 (the control unit is 
not included for simplicity as it connects to every other main 
component with control signals).

The instruction memory is a read-only memory (ROM) that 
is flashed with the program instructions when the design is 
uploaded onto the FPGA. The size of the memory is 
parameterizable within the System Verilog code of the 
instruction memory. The width of each memory location is 
32 bits so that they can each contain exactly one 32-bit RISC-
V instruction. The instruction memory can be flashed by 
providing the compiler with a “.mem” file; a space separated
value file.

The register file contains the 32 general-purpose registers, 
with each register being 64-bit wide. For the sake of 
simplicity, this deviates slightly from the RV64I ISA 
standard as usually certain registers are dedicated to holding 
specifics values (stack pointers, frame pointers, etc). It has 
two read address inputs and two corresponding asynchronous 
read data outputs. This is useful so that two registers can be 
read from in the same clock cycle, like in the case of adding 
two registers together. It has a single write address input and 
a synchronous write data input; this means that any register 
that is written to will only be updated with the new values on 
the next clock cycle. Writing is enabled with a control signal 
from the control unit. Register #31 is tied to the output pins 
so that it can be used as a debug register output for better 
observability.

The ALU performs four different operations on its inputs and 
output the result. It can perform addition, subtraction, logical 
AND and logical OR. Which operation is performed is
determined by the control signal coming from the control 
unit, which in turn is determined by the instruction type. 
Naturally, the ALU is used by the add, sub, and, or
instructions. However, also the ld, sd and beq instructions 
also require a calculation to be performed (such as the 
calculation of memory addresses). The ALU also has a “zero 
flag” output, which is a single-bit output that goes high when 
the result of an operation is zero. This is used during the beq
instruction execution to decide whether to branch or not.

The data memory is an asynchronous read, synchronous write 
memory used for storing data generated by the program or 
data flashed during power up. It has a single address input 
shared during read and write operations. There is a write data 
input and a read data output. There are also control signals for 
enabling write and enabling read separately. The write data 
input is provided by the contents of one of the read register 
outputs of the register file. The read data output goes to the 
register file’s write data input. The address input is provided 
by the ALU output since the address for reading and writing 
needs to be calculated by adding a register from an 
instruction’s source register field to the offset field. 
Additionally, a small region of the data memory is read only 
and flashable on start-up which is useful for a programmer 
since the small instruction set doesn't provide any immediate 
instructions. This can be flashed with the same method as 
instruction memory by using a “.mem” file.

The control unit is the most important component as it sends 
control signals to all the other components so they can 
coordinate with each other. It takes the opcode field of an 
instruction (see Figure 2) as the input and uses a lookup table 
to send the corresponding signals to the components. We
chose to use a purely combinational control unit, rather than 
a microprocessor with microcode, since the instruction set is 
small and does not require the additional layer of abstraction 
provided by microcode.

Figure 2 Instruction format
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A fundamental design principle of the processor is that each 
instruction would be executed in one clock cycle. This is
because it makes many aspects of the design simpler (e.g., no 
pipeline registers are required) and because getting high clock 
speeds is not a priority for the project. A design consequence 
of this is that any logical path in the design can only have one 
clocked process. In the design there are only 3 clocked 
processes: the program counter incrementing, the 
synchronous write of the register file and the synchronous 
write of the data memory. Even though the latter two 
processes are on the same logical path, they cannot happen at 
the same time due to the control unit never asserting both 
write enables high in the same clock cycle.

C. Turing Completeness

While the instruction set of our CPU is much reduced, it 
is possible to prove that it is Turing complete. An instruction 
set/language is Turing complete if it can implement a Turing 
Machine or if it can implement the instructions of a language 
that has already been proven to be Turing Complete.

We use the second method to show Turning Completeness.
In particular, we want to show that our assembly code can 
implement the instructions of the 8 simple instructions of the 
Brainfuck language [14], which is Turing Complete. The 
instructions are shown in Table 2 Instructions in the 
Brainfuck language and their C equivalent. with their 
equivalent C programming language implementation.

Table 2 Instructions in the Brainfuck language and their C 
equivalent.

brainfuck 
command C equivalent

(Program 
Start) 

char array[30000] = {0}; char *ptr = &array[0];  

>  ++ptr;  

<  --ptr;  

+  ++*ptr;  

-  --*ptr;  

.  putchar(*ptr);  

,  scanf(" %c",ptr);  

[  while (*ptr) {  

]  }  

For each of the C equivalent statements one can create an 
equivalent with our CPU assembly language:

(Program Start) We make sure we have RAM 
(>30K) memory preallocated. We devote a register 
(let us call it P) to act as ptr. The CPU already 
initialises all registers to 0.
‘<’ We can use add to increment P
‘>’ As above but for sub

‘+’ We use ld to load the data stored 
where P points, then add to increment and 
finally sd to store the result back
‘-‘ same as above but using sub
‘.’ We reserve part of the RAM (e.g., above address 
30000) to write output. We use another 
register, O (for output), to point to that area. We
use ld to load the data stored where P points, 
then sd to store the result where O points, and 
finally we use add to increment O (so future output 
is not overwritten)
‘,’ We reserve part of the ROM to get inputs from. 
We use another register, I (for input), to point to that 
area. We use ld to load the data stored 
where I points, then sd to store the result 
where P points, and finally we use add to 
increment I (so it points to the next input data, for 
future input operations)
‘[’ and ‘]’ We implement the while loop by simply 
devoting a register, Z (for zero), to containing the 
constant 0, then adding a few instructions before and 
after the body of the loop. At the beginning we use 
one ld to load the data stored where P points, 
then beq to compare such data with Z and jump 
forward to the end of the loop if the condition is met. 
At the end of the body, we do beq Z Z: because you 
are comparing two things that are identical, the 
instruction will always cause a jump. So, we can 
jump back to the conditional instructions just before 
the body of the loop.

D. Physical Implementation

Synthesizable designs can either be sent to a manufacturer to 
be printed onto an Application-specific Integrated Circuit 
(ASIC) or it can be programmed onto a Field Programmable 
Gate Array (FPGA), the latter being what was used in this 
project. FPGAs are programmable digital circuits that can 
have their logic reconfigured to match the HDL code [5]. The 
main appeal of FPGAs, compared to traditional circuit 
printing methods, is that digital circuits can be prototyped and 
changed quickly, easily and with no added cost. A processor 
put onto an FPGA, rather than an ASIC, is known as a soft 
processor. 

The board we used is the Basys 3 Artix-7 FPGA Trainer 
Board [12]. This a board suited for educational purposes as it 
offers lots of I/O (switches, buttons, LEDs, displays, etc.) and 
examples to use online. The main drawback of this board is 
that high performance and high clock speeds are difficult to 
achieve, which is an acceptable compromise given the aims 
of this project. The design tool that was used in this project is 
the Vivado Design Suite [13], which handles design
synthesis, implementation and programming the FPGA.

III. RESULTS
Once the CPU was fully designed in System Verilog and 

tested successfully in simulation, two tests were run on the 
FPGA implementation described in II. Methodology D. 
Physical Implementation. The first involved running a very 
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small program to test the FPGA utilization of the processor 
(how “light weight” it is). The program simply calculates the 
Fibonacci Sequence and stores the sequence in the debug 
register using six assembly instructions, with one instruction 
being executed per clock cycle:

ld r0, 33, r1 

add r1, r2, r31 

add r2, r0, r1 

add r31, r0, r2 

add r31, r0, r2 

beq r0, r0, -2 

The instruction memory ROM, data memory ROM and data 
memory RAM were parameterized to be 256 bits each in 
depth. Using these parameters, the implementation was able 
to be optimized to achieve very low utilization as show in table 
Table 3.

Table 3 FPGA Utilization Metrics

Resource Utilization Utilization %

Look-up tables 322 1.55

Flip-Flops 229 0.55

IO 18 16.98

The second test was to run a standard benchmark on the 
processor. The benchmark we used is the industry standard 
Dhyrstone benchmark by Reinhold P. Weicker [15]
Dhyrstone is a synthetic benchmark that measures the non-
floating-point performance of a CPU using a realistic set of 
operations. The program itself is written in simple C and the 
main program loop is small which makes it well suited for 
small processors. Dhyrstone performance is measured in 
DMIPs and is usually normalized for the clock speed using 
DMIPs/MHz. Using a clock speed of 100 MHz, our processor 
performs very well against other common CPU as seen in 
Figure 3.

Figure 3 Dhyrstone Benchmark Performance

One of the reasons our processor performed so well might be 
due to the small instruction set, and hence the small amount of 
logic, means that it can be optimized more significantly by the 
compiler. It could also be the fact that the memory of our chip 
is completely on-chip and doesn’t require slower memory 
interfaces to do memory accesses. The small amount of FPGA 

utilization as shown Table 3 might also allow the compiler to 
optimize instruction memory ROM into combinational logic
which could potentially increase the performance 
significantly.

IV. CONCLUSIONS

This paper presented the design methodology,
lightweight, and open-source RISC-V processor. By sticking 
to only implementing what we considered to be the essential
theory, we were able to create a system design we believe to 
be simple and intuitive for students to learn from. Due to the 
minimalistic instruction set, the logic required is small and so 
the utilization on hardware is very efficient, which achieves 
the objective of being lightweight. In addition to this, the 
Dhyrstone performance could allow for potential practical 
and industry uses even if the processor was not originally 
intended for this application.

Due to our RISC-V instruction set being so minimal, it is not 
currently supported by common RISC-V toolchains. So, a 
natural progression to this project would be providing support 
for assemblers and compilers. The design hardware also has 
a lot of intentional room for upgrades with the possibility of 
variants being created with pipelining and support for 
additional instruction sets such as RV64IM.

A. Source
The System Verilog design files and source can be found at 
https://github.com/Ludini1/minimal-risc-v-cpu.
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