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Abstract 

Longest Prefix Matching (LPM) plays an important role 

in fast IP processing. In this paper, a hardware co-

processor architecture connected to high-performance 

RISC-V processor is proposed to achieve faster LPM 

search. By applying specific customized instructions to 

achieve HW/SW co-processing, we can gain 111% 

performance improvement for every search iteration. The 

implementation results under TSMC 28nm technology 

show that the proposed co-processor can work at 1GHz 

and only require 0.1% extra area cost (5056  𝑢𝑚2 ) 

compared to the whole system of the Xuantie processor. 

 

1. Introduction  

Higher throughput of Internet processing is demanded due 

to the development of Internet applications. The critical 

function of Internet routers is Longest Prefix Matching 

[1][2]. It will search the routing table according to the 

destination address of incoming package to find the 

longest matching entry for the next hop of the routers.  

There have been many algorithm-based optimized work 

to accelerate LPM execution. Some of them [3] manage a 

two-level direct index table to effectively reduce the 

memory access frequency, but will occupy huge memory 

space. Some of them [4] use hash algorithm to compress 

the IP address to a smaller length for memory accessing, 

the memory access frequency and memory space is 

related to hash length. LPM algorithm in DPDK [5] (Data 

Plane Development Kit) combined above two methods 

and has been widely used in industry. 

The algorithm is effectively optimized through the 

previous work. However, the execution on CPU is lack of 

efficiency. The operation like hash algorithm is lack of 

parallelism due to the redundant control and data 

dependency. This paper proposed a co-processor 

architecture which connected to state-of-art open-source 

RISC-V processor XuantieC910 [6] through the 

customized co-processor interface to accelerate crucial 

functions in LPM algorithm. CPU can deliver the 

customized instructions to co-processor through 

customized co-processor interface and transfer result to 

the pipeline. 

The rest of paper is organized as follows. Section2 

describe the details of our work. Section3 show the 

experimental results. Section4 make the summary. 

 

2. Proposed Architecture 

In this section, we will introduce the proposed 

architecture in detail. First, we introduce the overall 

system which run our application. Then, we will focus on 

the detailed co-processor architecture to accelerate LPM 

application functions. Finally, we describe the workflow 

of whole application. 

2.1 Overall system 

The system consists of three parts: control processor, 

customized co-processor interface and co-processor. The 

control processor is based on the state-of-art OOO RISC-

V processor XuantieC910. In order to support the 

execution of customized instruction, customized co-

processor interface is proposed to transport the 

instructions to co-processor and communicate with 

original pipeline.  
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Figure 1. system structure 

 

The whole structure is shown as Figure 1. The pipeline 

part is based on the XuantieC910, we modify some logic 

details from original pipeline to support the issue, 

dispatch and retire behavior of customized instructions. 

The customized interface contains the Custom Manage 

Unit (CMU) and co-processor interface which connect to 

co-processor. The CMU receive the instruction 

information from IDU and maintain a queue table to 

manage the behavior of customized instruction. When the 

customized instruction is committed by processor, co-

processor interface will request co-processor for 

execution. Then co-processor run the instructions and 

response to interface with the write back result (if have), 
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CMU will transfer it to the retire unit (RTU) for 

instruction retire. 

In this way, co-processor can execute the customized 

instruction efficiently and communicate with the host 

processor timely. 

2.2 Co-Processor Architecture 

Figure 2 shows the proposed co-processor architecture. 

In order to accelerate LPM algorithm, we first 

embedded specific hash engine to perform the hash 

algorithm efficiently. Besides, we implemented 

Masked Prefix Generator and Prefix Length Searcher 

to perform prefix preprocessing rapidly. Moreover, we 

implemented some CSR registers as internal register 

for data reuse to eliminate duplicated memory access. 
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Figure 2. co-processor architecture 

 

We choose fnv-1a algorithm as the hash algorithm of 

our hash engine. Our engine will return a 32-bit result 

based on several iterations of multiply and exclusive-

or calculation. As the equation 1 shows, every iteration 

will perform an exclusive-or and a multiply operation. 

Hash refers to intermediate result, data refers to several 

bits of input data, and prime is a const value. 

 
ℎ𝑎𝑠ℎ = (ℎ𝑎𝑠ℎ ⊕ 𝑑𝑎𝑡𝑎) ∗ 𝑝𝑟𝑖𝑚𝑒       (1) 

 

As Figure 3 shows, we implemented shift registers and 

logic gates to realize the calculation of exclusive-or. 

Besides we change the multiplier to several shift 

operations and adders to save resources. In addition, a 

status engine is managed to control the calculation. At 

the end of iteration, hash engine will mask the 32-bit 

result based on the value of Hash Length register in 

Figure 2. Then the final result will be transfer to 

response interface. 

Masked Prefix Generator perform the prefix mask 

operation based on the given prefix length and IP 

destination. Prefix Length Searcher calculate the prefix 

length to be searched in the round based on the value 

of Bitmask registers in Figure 2. 

Moreover, a simple decoder and controller are 

implemented for dispatching instructions to proper 

engine and control the signals connected to customized 

interface. 
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Figure 2. hash engine structure 

2.3 Software and Hardware Workflow 

Now we can turn to the execution procedure of LPM 

algorithm. As Figure 4 shows, the LPM search contains a 

group of comparations. We will calculate the prefix length 

at the beginning of iteration according to bitmask whose 

bits indicates the prefix length is used in table. Then, we 

mask the destination IP and hash it to get the entry address 

in memory. Then Comparation is performed at the end of 

iteration. 
Configuration of 

IP rule table

Calculate the prefix 

length in this search 

round 
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length

Do Hash algorithm to 

the masked prefix

Get the table entry 

address according to 

hash result

Compare the entry 

information with prefix

correct

Mask prefix 

length bit

Get bitmask 

information

No

Yes
Next hop

 
Figure 4. HW/SW workflow for LPM search 

 

Workflows in Figure 4 in gray are performed in co-

processor, whereas the rest of workflows are executed by 

the host processor.  

In order to perform the workflow with co-processor, we 

proposed some customized instructions according to the 
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RISC-V Specifications [9]. The detailed information is 

listed in Table1.  

Table 1. customized instruction information 

Instruction 

 Name 

Instruction 

Coding 
Remarks 

Set_hashSize 0x2c5b00b 
Set hashSize  

CSR register 

Set_bitmask 0x600000b 
Set bitmask  

CSR register 

Bitmask_ffs 0x400450b 
Find the next prefix 

length 

Hash_Calculate 0x0c5f50b 

Preprocessing prefix 

and calculate hash 

value 

 

3. Experimental Results and Discussion 

The co-processor and customized interface we proposed 

were implemented into XuantieC910, a high-performance 

open-source RISC-V processor core developed by T-head. 

Some modification was made in original pipeline to 

support our interface.  

The system was verified by using the open-source RTL 

simulator Verilator. The testing program is mainly based 

on an open-source LPM algorithm library [7]. As Figure5 

shows, we gain 84% performance improvement for 

bitmask processing operation, and 118% performance 

improvement for prefix preprocessing and hash 

operations. This is benefit from the good data reuse and 

calculation parallelism in co-processor. And the overall 

performance gain is 111% for every searching iteration. 

Note the sum of separate part CPU cycles is larger than 

the total cycle, which is due to the pipeline stall caused by 

rdcycle instruction in RISC-V. 

 
Figure 5. CPU cycles on different operation for SW 

processing and HW/SW co-processing 

 

Table 3 shows the synthesis result of our co-processor and 

XuantieC910 core using Design Compiler under TSMC 

28nm technology. The Co-Processor only cost 5056𝑢𝑚2 

area and 3.92𝑚𝑊 power which occupy only around 0.1% 

in the whole system. 

Table 3. synthesis result 

 C910 Core Co-Processor 

Frequency (𝑀𝐻𝑧) 1000 1000 

Cell Area (𝑢𝑚2) 5175206 5056 

Power (𝑚𝑊) 4000 3.92 

 

4. Summary 

In this paper, co-processor architecture based on RISC-V 

processor is proposed for accelerating the LPM algorithm. 

By cooperating with customized interface and co-

processor, the HW/SW co-processing workflow can gain 

111% performance improvement for every searching 

iteration with only 5056 𝑢𝑚2 extra area being used. This 

design explores the data reuse and calculation parallelism 

in LPM algorithm, the experimental result indicates this 

architecture can effectively accelerate the LPM execution. 
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