
A high-performance RISC-V co-processor architecture for fast IP

processing

Xinjie Kong1, Weiliang He1, Jun Han1

1 State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, China

Email: junhan@fudan.edu.cn

Abstract

Longest Prefix Matching (LPM) plays an important role

in fast IP processing. In this paper, a hardware co-

processor architecture connected to high-performance

RISC-V processor is proposed to achieve faster LPM

search. By applying specific customized instructions to

achieve HW/SW co-processing, we can gain 111%

performance improvement for every search iteration. The

implementation results under TSMC 28nm technology

show that the proposed co-processor can work at 1GHz

and only require 0.1% extra area cost (5056 𝑢𝑚2)

compared to the whole system of the Xuantie processor.

1. Introduction

Higher throughput of Internet processing is demanded due

to the development of Internet applications. The critical

function of Internet routers is Longest Prefix Matching

[1][2]. It will search the routing table according to the

destination address of incoming package to find the

longest matching entry for the next hop of the routers.

There have been many algorithm-based optimized work

to accelerate LPM execution. Some of them [3] manage a

two-level direct index table to effectively reduce the

memory access frequency, but will occupy huge memory

space. Some of them [4] use hash algorithm to compress

the IP address to a smaller length for memory accessing,

the memory access frequency and memory space is

related to hash length. LPM algorithm in DPDK [5] (Data

Plane Development Kit) combined above two methods

and has been widely used in industry.

The algorithm is effectively optimized through the

previous work. However, the execution on CPU is lack of

efficiency. The operation like hash algorithm is lack of

parallelism due to the redundant control and data

dependency. This paper proposed a co-processor

architecture which connected to state-of-art open-source

RISC-V processor XuantieC910 [6] through the

customized co-processor interface to accelerate crucial

functions in LPM algorithm. CPU can deliver the

customized instructions to co-processor through

customized co-processor interface and transfer result to

the pipeline.

The rest of paper is organized as follows. Section2

describe the details of our work. Section3 show the

experimental results. Section4 make the summary.

2. Proposed Architecture

In this section, we will introduce the proposed

architecture in detail. First, we introduce the overall

system which run our application. Then, we will focus on

the detailed co-processor architecture to accelerate LPM

application functions. Finally, we describe the workflow

of whole application.

2.1 Overall system

The system consists of three parts: control processor,

customized co-processor interface and co-processor. The

control processor is based on the state-of-art OOO RISC-

V processor XuantieC910. In order to support the

execution of customized instruction, customized co-

processor interface is proposed to transport the

instructions to co-processor and communicate with

original pipeline.

IFU IDU EXU RTU

C
o
-p

r
o

c
e
sso

r
 in

te
r
fa

c
e

Co-processor

Processor Pipeline

Custom

Manage Unit

Val
Op

Val
Commit

Inst

info

Controller

Head

issue&dispatch commit&retire

Req/Resp

Figure 1. system structure

The whole structure is shown as Figure 1. The pipeline

part is based on the XuantieC910, we modify some logic

details from original pipeline to support the issue,

dispatch and retire behavior of customized instructions.

The customized interface contains the Custom Manage

Unit (CMU) and co-processor interface which connect to

co-processor. The CMU receive the instruction

information from IDU and maintain a queue table to

manage the behavior of customized instruction. When the

customized instruction is committed by processor, co-

processor interface will request co-processor for

execution. Then co-processor run the instructions and

response to interface with the write back result (if have),

978-1-6654-6906-7/22/$31.00 © 2022 IEEE

20
22

 IE
EE

 1
6t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
ol

id
-S

ta
te

 &
 In

te
gr

at
ed

 C
irc

ui
t T

ec
hn

ol
og

y
(I

C
SI

C
T)

 |
97

8-
1-

66
54

-6
90

6-
7/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
SI

C
T5

54
66

.2
02

2.
99

63
43

8

Authorized licensed use limited to: École normale supérieure Paris-Saclay. Downloaded on December 17,2022 at 00:49:27 UTC from IEEE Xplore. Restrictions apply.

CMU will transfer it to the retire unit (RTU) for

instruction retire.

In this way, co-processor can execute the customized

instruction efficiently and communicate with the host

processor timely.

2.2 Co-Processor Architecture

Figure 2 shows the proposed co-processor architecture.

In order to accelerate LPM algorithm, we first

embedded specific hash engine to perform the hash

algorithm efficiently. Besides, we implemented

Masked Prefix Generator and Prefix Length Searcher

to perform prefix preprocessing rapidly. Moreover, we

implemented some CSR registers as internal register

for data reuse to eliminate duplicated memory access.

Masked Prefix

Generator

Prefix Length

Searcher

Hash Engine

Controller

Request Interface

Decoder

Bitmask

Hash

Length

CSR

Register

Response Interface

Result
Instruction

Info

Src Data

Src Data

type

Figure 2. co-processor architecture

We choose fnv-1a algorithm as the hash algorithm of

our hash engine. Our engine will return a 32-bit result

based on several iterations of multiply and exclusive-

or calculation. As the equation 1 shows, every iteration

will perform an exclusive-or and a multiply operation.

Hash refers to intermediate result, data refers to several

bits of input data, and prime is a const value.

ℎ𝑎𝑠ℎ = (ℎ𝑎𝑠ℎ ⊕ 𝑑𝑎𝑡𝑎) ∗ 𝑝𝑟𝑖𝑚𝑒 (1)

As Figure 3 shows, we implemented shift registers and

logic gates to realize the calculation of exclusive-or.

Besides we change the multiplier to several shift

operations and adders to save resources. In addition, a

status engine is managed to control the calculation. At

the end of iteration, hash engine will mask the 32-bit

result based on the value of Hash Length register in

Figure 2. Then the final result will be transfer to

response interface.

Masked Prefix Generator perform the prefix mask

operation based on the given prefix length and IP

destination. Prefix Length Searcher calculate the prefix

length to be searched in the round based on the value

of Bitmask registers in Figure 2.

Moreover, a simple decoder and controller are

implemented for dispatching instructions to proper

engine and control the signals connected to customized

interface.

Xor

Xor

Xor

Xor

Src[0]
Hash[0]

Src[1]
Hash[1]

Src[2]
Hash[2]

Src[7]
Hash[7]

Shifter_1

Shifter_2

Shifter_3

Shifter_6

Adder

Tree

Hash[31:24]
24

8 32

32

32

32

32

32

32

32

32

HashReg[31:0]SrcReg[31:0]

Shift 8bit

shift set

m
u

x32

init

initValue

IterValue

32

clk

clk

clk

clk

Hash[31:0]Src[31:0]

Hash Logic

src_in

Control logic

32

32

3232

Figure 2. hash engine structure

2.3 Software and Hardware Workflow

Now we can turn to the execution procedure of LPM

algorithm. As Figure 4 shows, the LPM search contains a

group of comparations. We will calculate the prefix length

at the beginning of iteration according to bitmask whose

bits indicates the prefix length is used in table. Then, we

mask the destination IP and hash it to get the entry address

in memory. Then Comparation is performed at the end of

iteration.
Configuration of

IP rule table

Calculate the prefix

length in this search

round

Mask the destination IP

according to prefix

length

Do Hash algorithm to

the masked prefix

Get the table entry

address according to

hash result

Compare the entry

information with prefix

correct

Mask prefix

length bit

Get bitmask

information

No

Yes
Next hop

Figure 4. HW/SW workflow for LPM search

Workflows in Figure 4 in gray are performed in co-

processor, whereas the rest of workflows are executed by

the host processor.

In order to perform the workflow with co-processor, we

proposed some customized instructions according to the

Authorized licensed use limited to: École normale supérieure Paris-Saclay. Downloaded on December 17,2022 at 00:49:27 UTC from IEEE Xplore. Restrictions apply.

RISC-V Specifications [9]. The detailed information is

listed in Table1.

Table 1. customized instruction information

Instruction

 Name

Instruction

Coding
Remarks

Set_hashSize 0x2c5b00b
Set hashSize

CSR register

Set_bitmask 0x600000b
Set bitmask

CSR register

Bitmask_ffs 0x400450b
Find the next prefix

length

Hash_Calculate 0x0c5f50b

Preprocessing prefix

and calculate hash

value

3. Experimental Results and Discussion

The co-processor and customized interface we proposed

were implemented into XuantieC910, a high-performance

open-source RISC-V processor core developed by T-head.

Some modification was made in original pipeline to

support our interface.

The system was verified by using the open-source RTL

simulator Verilator. The testing program is mainly based

on an open-source LPM algorithm library [7]. As Figure5

shows, we gain 84% performance improvement for

bitmask processing operation, and 118% performance

improvement for prefix preprocessing and hash

operations. This is benefit from the good data reuse and

calculation parallelism in co-processor. And the overall

performance gain is 111% for every searching iteration.

Note the sum of separate part CPU cycles is larger than

the total cycle, which is due to the pipeline stall caused by

rdcycle instruction in RISC-V.

Figure 5. CPU cycles on different operation for SW

processing and HW/SW co-processing

Table 3 shows the synthesis result of our co-processor and

XuantieC910 core using Design Compiler under TSMC

28nm technology. The Co-Processor only cost 5056𝑢𝑚2

area and 3.92𝑚𝑊 power which occupy only around 0.1%

in the whole system.

Table 3. synthesis result

 C910 Core Co-Processor

Frequency (𝑀𝐻𝑧) 1000 1000

Cell Area (𝑢𝑚2) 5175206 5056

Power (𝑚𝑊) 4000 3.92

4. Summary

In this paper, co-processor architecture based on RISC-V

processor is proposed for accelerating the LPM algorithm.

By cooperating with customized interface and co-

processor, the HW/SW co-processing workflow can gain

111% performance improvement for every searching

iteration with only 5056 𝑢𝑚2 extra area being used. This

design explores the data reuse and calculation parallelism

in LPM algorithm, the experimental result indicates this

architecture can effectively accelerate the LPM execution.

Acknowledgments

This work was supported by the National Natural Science

Foundation of China under Grant 61934002.

References

[1] S. S. Ray, A. Chatterjee and S. Ghosh, "A hierarchical

high-throughput and low power architecture for longest

prefix matching for packet forwarding,", 2013 IEEE

International Conference on Computational Intelligence

and Computing Research, pp. 1-4 (2013)

[2] S. S. Ray, S. Ghosh and B. Sardar, "SRAM based

longest prefix matching approach for multigigabit IP

processing," 2015 IEEE International Conference on

Advanced Networks and Telecommuncations Systems

(ANTS), pp. 1-6 (2015)

[3] P. Gupta, S. Lin and N. McKeown, "Routing lookups

in hardware at memory access speeds," Seventeenth

Annual Joint Conference of the IEEE Computer and

Communications Societies, pp. 1240-1247 (1998)

[4] S. Ghosh and M. Baliyan, "A hash based architecture

of longest prefix matching for fast IP processing," 2016

IEEE Region 10 Conference (TENCON), pp. 228-231

(2016)

[5] “DPDK:Home”, https://www.dpdk.org (accessed

 June. 20th ,2022)

[6] “T-head-Semi/openc910”, Github, https://github.co

m/T-head-Semi/openc910(accessed June. 20th ,2022)

[7] “rmind/liblpm”, Github, https://github.com/rmind/li

blpm (accessed June. 20th, 2022)

[8] Y. Wang, Z. Qi, H. Dai, H. Wu, K. Lei and B.

Liu, "Statistical Optimal Hash-Based Longest Prefix

Match," 2017 ACM/IEEE Symposium on Architectur

es for Networking and Communications Systems (A

NCS), pp. 153-164 (2017)

[9] “riscv/riscv-isa-manual”, Github, https://github.co

m/riscv/riscv-isa-manual/releases/tag/draft-20220604-4a

01cbb (accessed June. 20th, 2022)

Authorized licensed use limited to: École normale supérieure Paris-Saclay. Downloaded on December 17,2022 at 00:49:27 UTC from IEEE Xplore. Restrictions apply.

