1081 lines
41 KiB
C
1081 lines
41 KiB
C
|
/* MIPS Simulator definition.
|
||
|
Copyright (C) 1997-2022 Free Software Foundation, Inc.
|
||
|
Contributed by Cygnus Support.
|
||
|
|
||
|
This file is part of the MIPS sim.
|
||
|
|
||
|
This program is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 3 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
|
||
|
#ifndef SIM_MAIN_H
|
||
|
#define SIM_MAIN_H
|
||
|
|
||
|
#define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \
|
||
|
mips_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR))
|
||
|
|
||
|
#include "sim-basics.h"
|
||
|
#include "sim-base.h"
|
||
|
#include "bfd.h"
|
||
|
#include "elf-bfd.h"
|
||
|
#include "elf/mips.h"
|
||
|
|
||
|
/* Deprecated macros and types for manipulating 64bit values. Use
|
||
|
../common/sim-bits.h and ../common/sim-endian.h macros instead. */
|
||
|
|
||
|
typedef int64_t word64;
|
||
|
typedef uint64_t uword64;
|
||
|
|
||
|
#define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
|
||
|
#define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
|
||
|
#define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
|
||
|
#define SET64HI(t) (((uword64)(t))<<32)
|
||
|
#define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
|
||
|
#define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
|
||
|
|
||
|
/* Check if a value will fit within a halfword: */
|
||
|
#define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
|
||
|
|
||
|
|
||
|
typedef enum {
|
||
|
cp0_dmfc0,
|
||
|
cp0_dmtc0,
|
||
|
cp0_mfc0,
|
||
|
cp0_mtc0,
|
||
|
cp0_tlbr,
|
||
|
cp0_tlbwi,
|
||
|
cp0_tlbwr,
|
||
|
cp0_tlbp,
|
||
|
cp0_cache,
|
||
|
cp0_eret,
|
||
|
cp0_deret,
|
||
|
cp0_rfe
|
||
|
} CP0_operation;
|
||
|
|
||
|
/* Floating-point operations: */
|
||
|
|
||
|
#include "sim-fpu.h"
|
||
|
#include "cp1.h"
|
||
|
|
||
|
/* FPU registers must be one of the following types. All other values
|
||
|
are reserved (and undefined). */
|
||
|
typedef enum {
|
||
|
fmt_single = 0,
|
||
|
fmt_double = 1,
|
||
|
fmt_word = 4,
|
||
|
fmt_long = 5,
|
||
|
fmt_ps = 6,
|
||
|
/* The following is a special case for FP conditions where only
|
||
|
the lower 32bits are considered. This is a HACK. */
|
||
|
fmt_dc32 = 7,
|
||
|
/* The following are well outside the normal acceptable format
|
||
|
range, and are used in the register status vector. */
|
||
|
fmt_unknown = 0x10000000,
|
||
|
fmt_uninterpreted = 0x20000000,
|
||
|
fmt_uninterpreted_32 = 0x40000000,
|
||
|
fmt_uninterpreted_64 = 0x80000000U,
|
||
|
} FP_formats;
|
||
|
|
||
|
/* For paired word (pw) operations, the opcode representation is fmt_word,
|
||
|
but register transfers (StoreFPR, ValueFPR, etc.) are done as fmt_long. */
|
||
|
#define fmt_pw fmt_long
|
||
|
|
||
|
/* This should be the COC1 value at the start of the preceding
|
||
|
instruction: */
|
||
|
#define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
|
||
|
|
||
|
#ifdef TARGET_ENABLE_FR
|
||
|
/* FIXME: this should be enabled for all targets, but needs testing first. */
|
||
|
#define SizeFGR() (((WITH_TARGET_FLOATING_POINT_BITSIZE) == 64) \
|
||
|
? ((SR & status_FR) ? 64 : 32) \
|
||
|
: (WITH_TARGET_FLOATING_POINT_BITSIZE))
|
||
|
#else
|
||
|
#define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
|
||
|
#endif
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/* HI/LO register accesses */
|
||
|
|
||
|
/* For some MIPS targets, the HI/LO registers have certain timing
|
||
|
restrictions in that, for instance, a read of a HI register must be
|
||
|
separated by at least three instructions from a preceeding read.
|
||
|
|
||
|
The struct below is used to record the last access by each of A MT,
|
||
|
MF or other OP instruction to a HI/LO register. See mips.igen for
|
||
|
more details. */
|
||
|
|
||
|
typedef struct _hilo_access {
|
||
|
int64_t timestamp;
|
||
|
address_word cia;
|
||
|
} hilo_access;
|
||
|
|
||
|
typedef struct _hilo_history {
|
||
|
hilo_access mt;
|
||
|
hilo_access mf;
|
||
|
hilo_access op;
|
||
|
} hilo_history;
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/* Integer ALU operations: */
|
||
|
|
||
|
#include "sim-alu.h"
|
||
|
|
||
|
#define ALU32_END(ANS) \
|
||
|
if (ALU32_HAD_OVERFLOW) \
|
||
|
SignalExceptionIntegerOverflow (); \
|
||
|
(ANS) = (int32_t) ALU32_OVERFLOW_RESULT
|
||
|
|
||
|
|
||
|
#define ALU64_END(ANS) \
|
||
|
if (ALU64_HAD_OVERFLOW) \
|
||
|
SignalExceptionIntegerOverflow (); \
|
||
|
(ANS) = ALU64_OVERFLOW_RESULT;
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/* The following is probably not used for MIPS IV onwards: */
|
||
|
/* Slots for delayed register updates. For the moment we just have a
|
||
|
fixed number of slots (rather than a more generic, dynamic
|
||
|
system). This keeps the simulator fast. However, we only allow
|
||
|
for the register update to be delayed for a single instruction
|
||
|
cycle. */
|
||
|
#define PSLOTS (8) /* Maximum number of instruction cycles */
|
||
|
|
||
|
typedef struct _pending_write_queue {
|
||
|
int in;
|
||
|
int out;
|
||
|
int total;
|
||
|
int slot_delay[PSLOTS];
|
||
|
int slot_size[PSLOTS];
|
||
|
int slot_bit[PSLOTS];
|
||
|
void *slot_dest[PSLOTS];
|
||
|
uint64_t slot_value[PSLOTS];
|
||
|
} pending_write_queue;
|
||
|
|
||
|
#ifndef PENDING_TRACE
|
||
|
#define PENDING_TRACE 0
|
||
|
#endif
|
||
|
#define PENDING_IN ((CPU)->pending.in)
|
||
|
#define PENDING_OUT ((CPU)->pending.out)
|
||
|
#define PENDING_TOTAL ((CPU)->pending.total)
|
||
|
#define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
|
||
|
#define PENDING_SLOT_BIT ((CPU)->pending.slot_bit)
|
||
|
#define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
|
||
|
#define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
|
||
|
#define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
|
||
|
|
||
|
/* Invalidate the pending write queue, all pending writes are
|
||
|
discarded. */
|
||
|
|
||
|
#define PENDING_INVALIDATE() \
|
||
|
memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
|
||
|
|
||
|
/* Schedule a write to DEST for N cycles time. For 64 bit
|
||
|
destinations, schedule two writes. For floating point registers,
|
||
|
the caller should schedule a write to both the dest register and
|
||
|
the FPR_STATE register. When BIT is non-negative, only BIT of DEST
|
||
|
is updated. */
|
||
|
|
||
|
#define PENDING_SCHED(DEST,VAL,DELAY,BIT) \
|
||
|
do { \
|
||
|
if (PENDING_SLOT_DEST[PENDING_IN] != NULL) \
|
||
|
sim_engine_abort (SD, CPU, cia, \
|
||
|
"PENDING_SCHED - buffer overflow\n"); \
|
||
|
if (PENDING_TRACE) \
|
||
|
sim_io_eprintf (SD, "PENDING_SCHED - 0x%lx - dest 0x%lx, val 0x%lx, bit %d, size %d, pending_in %d, pending_out %d, pending_total %d\n", \
|
||
|
(unsigned long) cia, (unsigned long) &(DEST), \
|
||
|
(unsigned long) (VAL), (BIT), (int) sizeof (DEST),\
|
||
|
PENDING_IN, PENDING_OUT, PENDING_TOTAL); \
|
||
|
PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1; \
|
||
|
PENDING_SLOT_DEST[PENDING_IN] = &(DEST); \
|
||
|
PENDING_SLOT_VALUE[PENDING_IN] = (VAL); \
|
||
|
PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST); \
|
||
|
PENDING_SLOT_BIT[PENDING_IN] = (BIT); \
|
||
|
PENDING_IN = (PENDING_IN + 1) % PSLOTS; \
|
||
|
PENDING_TOTAL += 1; \
|
||
|
} while (0)
|
||
|
|
||
|
#define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
|
||
|
#define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
|
||
|
|
||
|
#define PENDING_TICK() pending_tick (SD, CPU, cia)
|
||
|
|
||
|
#define PENDING_FLUSH() abort () /* think about this one */
|
||
|
#define PENDING_FP() abort () /* think about this one */
|
||
|
|
||
|
/* For backward compatibility */
|
||
|
#define PENDING_FILL(R,VAL) \
|
||
|
do { \
|
||
|
if ((R) >= FGR_BASE && (R) < FGR_BASE + NR_FGR) \
|
||
|
{ \
|
||
|
PENDING_SCHED(FGR[(R) - FGR_BASE], VAL, 1, -1); \
|
||
|
PENDING_SCHED(FPR_STATE[(R) - FGR_BASE], fmt_uninterpreted, 1, -1); \
|
||
|
} \
|
||
|
else \
|
||
|
PENDING_SCHED(GPR[(R)], VAL, 1, -1); \
|
||
|
} while (0)
|
||
|
|
||
|
|
||
|
enum float_operation
|
||
|
{
|
||
|
FLOP_ADD, FLOP_SUB, FLOP_MUL, FLOP_MADD,
|
||
|
FLOP_MSUB, FLOP_MAX=10, FLOP_MIN, FLOP_ABS,
|
||
|
FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23
|
||
|
};
|
||
|
|
||
|
|
||
|
/* The internal representation of an MDMX accumulator.
|
||
|
Note that 24 and 48 bit accumulator elements are represented in
|
||
|
32 or 64 bits. Since the accumulators are 2's complement with
|
||
|
overflow suppressed, high-order bits can be ignored in most contexts. */
|
||
|
|
||
|
typedef int32_t signed24;
|
||
|
typedef int64_t signed48;
|
||
|
|
||
|
typedef union {
|
||
|
signed24 ob[8];
|
||
|
signed48 qh[4];
|
||
|
} MDMX_accumulator;
|
||
|
|
||
|
|
||
|
/* Conventional system arguments. */
|
||
|
#define SIM_STATE sim_cpu *cpu, address_word cia
|
||
|
#define SIM_ARGS CPU, cia
|
||
|
|
||
|
struct _sim_cpu {
|
||
|
|
||
|
|
||
|
/* The following are internal simulator state variables: */
|
||
|
address_word dspc; /* delay-slot PC */
|
||
|
#define DSPC ((CPU)->dspc)
|
||
|
|
||
|
#define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET))
|
||
|
#define FORBIDDEN_SLOT() { NIA = forbiddenslot32 (SD_); }
|
||
|
#define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_)
|
||
|
|
||
|
|
||
|
/* State of the simulator */
|
||
|
unsigned int state;
|
||
|
unsigned int dsstate;
|
||
|
#define STATE ((CPU)->state)
|
||
|
#define DSSTATE ((CPU)->dsstate)
|
||
|
|
||
|
/* Flags in the "state" variable: */
|
||
|
#define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
|
||
|
#define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
|
||
|
#define simTRACE (1 << 8) /* 1 = trace address activity */
|
||
|
#define simPCOC0 (1 << 17) /* COC[1] from current */
|
||
|
#define simPCOC1 (1 << 18) /* COC[1] from previous */
|
||
|
#define simDELAYSLOT (1 << 24) /* 1 = delay slot entry exists */
|
||
|
#define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
|
||
|
#define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
|
||
|
#define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
|
||
|
#define simFORBIDDENSLOT (1 << 30) /* 1 = n forbidden slot */
|
||
|
|
||
|
#ifndef ENGINE_ISSUE_PREFIX_HOOK
|
||
|
#define ENGINE_ISSUE_PREFIX_HOOK() \
|
||
|
{ \
|
||
|
/* Perform any pending writes */ \
|
||
|
PENDING_TICK(); \
|
||
|
/* Set previous flag, depending on current: */ \
|
||
|
if (STATE & simPCOC0) \
|
||
|
STATE |= simPCOC1; \
|
||
|
else \
|
||
|
STATE &= ~simPCOC1; \
|
||
|
/* and update the current value: */ \
|
||
|
if (GETFCC(0)) \
|
||
|
STATE |= simPCOC0; \
|
||
|
else \
|
||
|
STATE &= ~simPCOC0; \
|
||
|
}
|
||
|
#endif /* ENGINE_ISSUE_PREFIX_HOOK */
|
||
|
|
||
|
|
||
|
/* This is nasty, since we have to rely on matching the register
|
||
|
numbers used by GDB. Unfortunately, depending on the MIPS target
|
||
|
GDB uses different register numbers. We cannot just include the
|
||
|
relevant "gdb/tm.h" link, since GDB may not be configured before
|
||
|
the sim world, and also the GDB header file requires too much other
|
||
|
state. */
|
||
|
|
||
|
#ifndef TM_MIPS_H
|
||
|
#define LAST_EMBED_REGNUM (96)
|
||
|
#define NUM_REGS (LAST_EMBED_REGNUM + 1)
|
||
|
|
||
|
#define FP0_REGNUM 38 /* Floating point register 0 (single float) */
|
||
|
#define FCRCS_REGNUM 70 /* FP control/status */
|
||
|
#define FCRIR_REGNUM 71 /* FP implementation/revision */
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/* To keep this default simulator simple, and fast, we use a direct
|
||
|
vector of registers. The internal simulator engine then uses
|
||
|
manifests to access the correct slot. */
|
||
|
|
||
|
unsigned_word registers[LAST_EMBED_REGNUM + 1];
|
||
|
|
||
|
int register_widths[NUM_REGS];
|
||
|
#define REGISTERS ((CPU)->registers)
|
||
|
|
||
|
#define GPR (®ISTERS[0])
|
||
|
#define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
|
||
|
|
||
|
#define LO (REGISTERS[33])
|
||
|
#define HI (REGISTERS[34])
|
||
|
#define PCIDX 37
|
||
|
#define PC (REGISTERS[PCIDX])
|
||
|
#define CAUSE (REGISTERS[36])
|
||
|
#define SRIDX (32)
|
||
|
#define SR (REGISTERS[SRIDX]) /* CPU status register */
|
||
|
#define FCR0IDX (71)
|
||
|
#define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
|
||
|
#define FCR31IDX (70)
|
||
|
#define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
|
||
|
#define FCSR (FCR31)
|
||
|
#define Debug (REGISTERS[86])
|
||
|
#define DEPC (REGISTERS[87])
|
||
|
#define EPC (REGISTERS[88])
|
||
|
#define ACX (REGISTERS[89])
|
||
|
|
||
|
#define AC0LOIDX (33) /* Must be the same register as LO */
|
||
|
#define AC0HIIDX (34) /* Must be the same register as HI */
|
||
|
#define AC1LOIDX (90)
|
||
|
#define AC1HIIDX (91)
|
||
|
#define AC2LOIDX (92)
|
||
|
#define AC2HIIDX (93)
|
||
|
#define AC3LOIDX (94)
|
||
|
#define AC3HIIDX (95)
|
||
|
|
||
|
#define DSPLO(N) (REGISTERS[DSPLO_REGNUM[N]])
|
||
|
#define DSPHI(N) (REGISTERS[DSPHI_REGNUM[N]])
|
||
|
|
||
|
#define DSPCRIDX (96) /* DSP control register */
|
||
|
#define DSPCR (REGISTERS[DSPCRIDX])
|
||
|
|
||
|
#define DSPCR_POS_SHIFT (0)
|
||
|
#define DSPCR_POS_MASK (0x3f)
|
||
|
#define DSPCR_POS_SMASK (DSPCR_POS_MASK << DSPCR_POS_SHIFT)
|
||
|
|
||
|
#define DSPCR_SCOUNT_SHIFT (7)
|
||
|
#define DSPCR_SCOUNT_MASK (0x3f)
|
||
|
#define DSPCR_SCOUNT_SMASK (DSPCR_SCOUNT_MASK << DSPCR_SCOUNT_SHIFT)
|
||
|
|
||
|
#define DSPCR_CARRY_SHIFT (13)
|
||
|
#define DSPCR_CARRY_MASK (1)
|
||
|
#define DSPCR_CARRY_SMASK (DSPCR_CARRY_MASK << DSPCR_CARRY_SHIFT)
|
||
|
#define DSPCR_CARRY (1 << DSPCR_CARRY_SHIFT)
|
||
|
|
||
|
#define DSPCR_EFI_SHIFT (14)
|
||
|
#define DSPCR_EFI_MASK (1)
|
||
|
#define DSPCR_EFI_SMASK (DSPCR_EFI_MASK << DSPCR_EFI_SHIFT)
|
||
|
#define DSPCR_EFI (1 << DSPCR_EFI_MASK)
|
||
|
|
||
|
#define DSPCR_OUFLAG_SHIFT (16)
|
||
|
#define DSPCR_OUFLAG_MASK (0xff)
|
||
|
#define DSPCR_OUFLAG_SMASK (DSPCR_OUFLAG_MASK << DSPCR_OUFLAG_SHIFT)
|
||
|
#define DSPCR_OUFLAG4 (1 << (DSPCR_OUFLAG_SHIFT + 4))
|
||
|
#define DSPCR_OUFLAG5 (1 << (DSPCR_OUFLAG_SHIFT + 5))
|
||
|
#define DSPCR_OUFLAG6 (1 << (DSPCR_OUFLAG_SHIFT + 6))
|
||
|
#define DSPCR_OUFLAG7 (1 << (DSPCR_OUFLAG_SHIFT + 7))
|
||
|
|
||
|
#define DSPCR_CCOND_SHIFT (24)
|
||
|
#define DSPCR_CCOND_MASK (0xf)
|
||
|
#define DSPCR_CCOND_SMASK (DSPCR_CCOND_MASK << DSPCR_CCOND_SHIFT)
|
||
|
|
||
|
/* All internal state modified by signal_exception() that may need to be
|
||
|
rolled back for passing moment-of-exception image back to gdb. */
|
||
|
unsigned_word exc_trigger_registers[LAST_EMBED_REGNUM + 1];
|
||
|
unsigned_word exc_suspend_registers[LAST_EMBED_REGNUM + 1];
|
||
|
int exc_suspended;
|
||
|
|
||
|
#define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mips_cpu_exception_trigger(SD,CPU,CIA)
|
||
|
#define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mips_cpu_exception_suspend(SD,CPU,EXC)
|
||
|
#define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mips_cpu_exception_resume(SD,CPU,EXC)
|
||
|
|
||
|
unsigned_word c0_config_reg;
|
||
|
#define C0_CONFIG ((CPU)->c0_config_reg)
|
||
|
|
||
|
/* The following are pseudonyms for standard registers */
|
||
|
#define ZERO (REGISTERS[0])
|
||
|
#define V0 (REGISTERS[2])
|
||
|
#define A0 (REGISTERS[4])
|
||
|
#define A1 (REGISTERS[5])
|
||
|
#define A2 (REGISTERS[6])
|
||
|
#define A3 (REGISTERS[7])
|
||
|
#define T8IDX 24
|
||
|
#define T8 (REGISTERS[T8IDX])
|
||
|
#define SPIDX 29
|
||
|
#define SP (REGISTERS[SPIDX])
|
||
|
#define RAIDX 31
|
||
|
#define RA (REGISTERS[RAIDX])
|
||
|
|
||
|
/* While space is allocated in the main registers arrray for some of
|
||
|
the COP0 registers, that space isn't sufficient. Unknown COP0
|
||
|
registers overflow into the array below */
|
||
|
|
||
|
#define NR_COP0_GPR 32
|
||
|
unsigned_word cop0_gpr[NR_COP0_GPR];
|
||
|
#define COP0_GPR ((CPU)->cop0_gpr)
|
||
|
#define COP0_BADVADDR (COP0_GPR[8])
|
||
|
|
||
|
/* While space is allocated for the floating point registers in the
|
||
|
main registers array, they are stored separatly. This is because
|
||
|
their size may not necessarily match the size of either the
|
||
|
general-purpose or system specific registers. */
|
||
|
#define NR_FGR (32)
|
||
|
#define FGR_BASE FP0_REGNUM
|
||
|
fp_word fgr[NR_FGR];
|
||
|
#define FGR ((CPU)->fgr)
|
||
|
|
||
|
/* Keep the current format state for each register: */
|
||
|
FP_formats fpr_state[32];
|
||
|
#define FPR_STATE ((CPU)->fpr_state)
|
||
|
|
||
|
pending_write_queue pending;
|
||
|
|
||
|
/* The MDMX accumulator (used only for MDMX ASE). */
|
||
|
MDMX_accumulator acc;
|
||
|
#define ACC ((CPU)->acc)
|
||
|
|
||
|
/* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
|
||
|
read-write instructions. It is set when a linked load occurs. It
|
||
|
is tested and cleared by the conditional store. It is cleared
|
||
|
(during other CPU operations) when a store to the location would
|
||
|
no longer be atomic. In particular, it is cleared by exception
|
||
|
return instructions. */
|
||
|
int llbit;
|
||
|
#define LLBIT ((CPU)->llbit)
|
||
|
|
||
|
|
||
|
/* The HIHISTORY and LOHISTORY timestamps are used to ensure that
|
||
|
corruptions caused by using the HI or LO register too close to a
|
||
|
following operation is spotted. See mips.igen for more details. */
|
||
|
|
||
|
hilo_history hi_history;
|
||
|
#define HIHISTORY (&(CPU)->hi_history)
|
||
|
hilo_history lo_history;
|
||
|
#define LOHISTORY (&(CPU)->lo_history)
|
||
|
|
||
|
|
||
|
sim_cpu_base base;
|
||
|
};
|
||
|
|
||
|
extern void mips_sim_close (SIM_DESC sd, int quitting);
|
||
|
#define SIM_CLOSE_HOOK(...) mips_sim_close (__VA_ARGS__)
|
||
|
|
||
|
/* FIXME: At present much of the simulator is still static */
|
||
|
struct mips_sim_state {
|
||
|
/* microMIPS ISA mode. */
|
||
|
int isa_mode;
|
||
|
};
|
||
|
#define MIPS_SIM_STATE(sd) ((struct mips_sim_state *) STATE_ARCH_DATA (sd))
|
||
|
|
||
|
|
||
|
/* Status information: */
|
||
|
|
||
|
/* TODO : these should be the bitmasks for these bits within the
|
||
|
status register. At the moment the following are VR4300
|
||
|
bit-positions: */
|
||
|
#define status_KSU_mask (0x18) /* mask for KSU bits */
|
||
|
#define status_KSU_shift (3) /* shift for field */
|
||
|
#define ksu_kernel (0x0)
|
||
|
#define ksu_supervisor (0x1)
|
||
|
#define ksu_user (0x2)
|
||
|
#define ksu_unknown (0x3)
|
||
|
|
||
|
#define SR_KSU ((SR & status_KSU_mask) >> status_KSU_shift)
|
||
|
|
||
|
#define status_IE (1 << 0) /* Interrupt enable */
|
||
|
#define status_EIE (1 << 16) /* Enable Interrupt Enable */
|
||
|
#define status_EXL (1 << 1) /* Exception level */
|
||
|
#define status_RE (1 << 25) /* Reverse Endian in user mode */
|
||
|
#define status_FR (1 << 26) /* enables MIPS III additional FP registers */
|
||
|
#define status_SR (1 << 20) /* soft reset or NMI */
|
||
|
#define status_BEV (1 << 22) /* Location of general exception vectors */
|
||
|
#define status_TS (1 << 21) /* TLB shutdown has occurred */
|
||
|
#define status_ERL (1 << 2) /* Error level */
|
||
|
#define status_IM7 (1 << 15) /* Timer Interrupt Mask */
|
||
|
#define status_RP (1 << 27) /* Reduced Power mode */
|
||
|
|
||
|
/* Specializations for TX39 family */
|
||
|
#define status_IEc (1 << 0) /* Interrupt enable (current) */
|
||
|
#define status_KUc (1 << 1) /* Kernel/User mode */
|
||
|
#define status_IEp (1 << 2) /* Interrupt enable (previous) */
|
||
|
#define status_KUp (1 << 3) /* Kernel/User mode */
|
||
|
#define status_IEo (1 << 4) /* Interrupt enable (old) */
|
||
|
#define status_KUo (1 << 5) /* Kernel/User mode */
|
||
|
#define status_IM_mask (0xff) /* Interrupt mask */
|
||
|
#define status_IM_shift (8)
|
||
|
#define status_NMI (1 << 20) /* NMI */
|
||
|
#define status_NMI (1 << 20) /* NMI */
|
||
|
|
||
|
/* Status bits used by MIPS32/MIPS64. */
|
||
|
#define status_UX (1 << 5) /* 64-bit user addrs */
|
||
|
#define status_SX (1 << 6) /* 64-bit supervisor addrs */
|
||
|
#define status_KX (1 << 7) /* 64-bit kernel addrs */
|
||
|
#define status_TS (1 << 21) /* TLB shutdown has occurred */
|
||
|
#define status_PX (1 << 23) /* Enable 64 bit operations */
|
||
|
#define status_MX (1 << 24) /* Enable MDMX resources */
|
||
|
#define status_CU0 (1 << 28) /* Coprocessor 0 usable */
|
||
|
#define status_CU1 (1 << 29) /* Coprocessor 1 usable */
|
||
|
#define status_CU2 (1 << 30) /* Coprocessor 2 usable */
|
||
|
#define status_CU3 (1 << 31) /* Coprocessor 3 usable */
|
||
|
/* Bits reserved for implementations: */
|
||
|
#define status_SBX (1 << 16) /* Enable SiByte SB-1 extensions. */
|
||
|
|
||
|
/* From R6 onwards, some instructions (e.g. ADDIUPC) change behaviour based
|
||
|
* on the Status.UX bits to either sign extend, or act as full 64 bit. */
|
||
|
#define status_optional_EXTEND32(x) ((SR & status_UX) ? x : EXTEND32(x))
|
||
|
|
||
|
#define cause_BD ((unsigned)1 << 31) /* L1 Exception in branch delay slot */
|
||
|
#define cause_BD2 (1 << 30) /* L2 Exception in branch delay slot */
|
||
|
#define cause_CE_mask 0x30000000 /* Coprocessor exception */
|
||
|
#define cause_CE_shift 28
|
||
|
#define cause_EXC2_mask 0x00070000
|
||
|
#define cause_EXC2_shift 16
|
||
|
#define cause_IP7 (1 << 15) /* Interrupt pending */
|
||
|
#define cause_SIOP (1 << 12) /* SIO pending */
|
||
|
#define cause_IP3 (1 << 11) /* Int 0 pending */
|
||
|
#define cause_IP2 (1 << 10) /* Int 1 pending */
|
||
|
|
||
|
#define cause_EXC_mask (0x1c) /* Exception code */
|
||
|
#define cause_EXC_shift (2)
|
||
|
|
||
|
#define cause_SW0 (1 << 8) /* Software interrupt 0 */
|
||
|
#define cause_SW1 (1 << 9) /* Software interrupt 1 */
|
||
|
#define cause_IP_mask (0x3f) /* Interrupt pending field */
|
||
|
#define cause_IP_shift (10)
|
||
|
|
||
|
#define cause_set_EXC(x) CAUSE = (CAUSE & ~cause_EXC_mask) | ((x << cause_EXC_shift) & cause_EXC_mask)
|
||
|
#define cause_set_EXC2(x) CAUSE = (CAUSE & ~cause_EXC2_mask) | ((x << cause_EXC2_shift) & cause_EXC2_mask)
|
||
|
|
||
|
|
||
|
/* NOTE: We keep the following status flags as bit values (1 for true,
|
||
|
0 for false). This allows them to be used in binary boolean
|
||
|
operations without worrying about what exactly the non-zero true
|
||
|
value is. */
|
||
|
|
||
|
/* UserMode */
|
||
|
#ifdef SUBTARGET_R3900
|
||
|
#define UserMode ((SR & status_KUc) ? 1 : 0)
|
||
|
#else
|
||
|
#define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
|
||
|
#endif /* SUBTARGET_R3900 */
|
||
|
|
||
|
/* BigEndianMem */
|
||
|
/* Hardware configuration. Affects endianness of LoadMemory and
|
||
|
StoreMemory and the endianness of Kernel and Supervisor mode
|
||
|
execution. The value is 0 for little-endian; 1 for big-endian. */
|
||
|
#define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
|
/*(state & simBE) ? 1 : 0)*/
|
||
|
|
||
|
/* ReverseEndian */
|
||
|
/* This mode is selected if in User mode with the RE bit being set in
|
||
|
SR (Status Register). It reverses the endianness of load and store
|
||
|
instructions. */
|
||
|
#define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
|
||
|
|
||
|
/* BigEndianCPU */
|
||
|
/* The endianness for load and store instructions (0=little;1=big). In
|
||
|
User mode this endianness may be switched by setting the state_RE
|
||
|
bit in the SR register. Thus, BigEndianCPU may be computed as
|
||
|
(BigEndianMem EOR ReverseEndian). */
|
||
|
#define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
|
||
|
|
||
|
|
||
|
|
||
|
/* Exceptions: */
|
||
|
|
||
|
/* NOTE: These numbers depend on the processor architecture being
|
||
|
simulated: */
|
||
|
enum ExceptionCause {
|
||
|
Interrupt = 0,
|
||
|
TLBModification = 1,
|
||
|
TLBLoad = 2,
|
||
|
TLBStore = 3,
|
||
|
AddressLoad = 4,
|
||
|
AddressStore = 5,
|
||
|
InstructionFetch = 6,
|
||
|
DataReference = 7,
|
||
|
SystemCall = 8,
|
||
|
BreakPoint = 9,
|
||
|
ReservedInstruction = 10,
|
||
|
CoProcessorUnusable = 11,
|
||
|
IntegerOverflow = 12, /* Arithmetic overflow (IDT monitor raises SIGFPE) */
|
||
|
Trap = 13,
|
||
|
FPE = 15,
|
||
|
DebugBreakPoint = 16, /* Impl. dep. in MIPS32/MIPS64. */
|
||
|
MDMX = 22,
|
||
|
Watch = 23,
|
||
|
MCheck = 24,
|
||
|
CacheErr = 30,
|
||
|
NMIReset = 31, /* Reserved in MIPS32/MIPS64. */
|
||
|
|
||
|
|
||
|
/* The following exception code is actually private to the simulator
|
||
|
world. It is *NOT* a processor feature, and is used to signal
|
||
|
run-time errors in the simulator. */
|
||
|
SimulatorFault = 0xFFFFFFFF
|
||
|
};
|
||
|
|
||
|
#define TLB_REFILL (0)
|
||
|
#define TLB_INVALID (1)
|
||
|
|
||
|
|
||
|
/* The following break instructions are reserved for use by the
|
||
|
simulator. The first is used to halt the simulation. The second
|
||
|
is used by gdb for break-points. NOTE: Care must be taken, since
|
||
|
this value may be used in later revisions of the MIPS ISA. */
|
||
|
#define HALT_INSTRUCTION_MASK (0x03FFFFC0)
|
||
|
|
||
|
#define HALT_INSTRUCTION (0x03ff000d)
|
||
|
#define HALT_INSTRUCTION2 (0x0000ffcd)
|
||
|
|
||
|
|
||
|
#define BREAKPOINT_INSTRUCTION (0x0005000d)
|
||
|
#define BREAKPOINT_INSTRUCTION2 (0x0000014d)
|
||
|
|
||
|
|
||
|
|
||
|
void interrupt_event (SIM_DESC sd, void *data);
|
||
|
|
||
|
void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
|
||
|
#define SignalException(exc,instruction) signal_exception (SD, CPU, cia, (exc), (instruction))
|
||
|
#define SignalExceptionInterrupt(level) signal_exception (SD, CPU, cia, Interrupt, level)
|
||
|
#define SignalExceptionInstructionFetch() signal_exception (SD, CPU, cia, InstructionFetch)
|
||
|
#define SignalExceptionAddressStore() signal_exception (SD, CPU, cia, AddressStore)
|
||
|
#define SignalExceptionAddressLoad() signal_exception (SD, CPU, cia, AddressLoad)
|
||
|
#define SignalExceptionDataReference() signal_exception (SD, CPU, cia, DataReference)
|
||
|
#define SignalExceptionSimulatorFault(buf) signal_exception (SD, CPU, cia, SimulatorFault, buf)
|
||
|
#define SignalExceptionFPE() signal_exception (SD, CPU, cia, FPE)
|
||
|
#define SignalExceptionIntegerOverflow() signal_exception (SD, CPU, cia, IntegerOverflow)
|
||
|
#define SignalExceptionCoProcessorUnusable(cop) signal_exception (SD, CPU, cia, CoProcessorUnusable)
|
||
|
#define SignalExceptionNMIReset() signal_exception (SD, CPU, cia, NMIReset)
|
||
|
#define SignalExceptionTLBRefillStore() signal_exception (SD, CPU, cia, TLBStore, TLB_REFILL)
|
||
|
#define SignalExceptionTLBRefillLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_REFILL)
|
||
|
#define SignalExceptionTLBInvalidStore() signal_exception (SD, CPU, cia, TLBStore, TLB_INVALID)
|
||
|
#define SignalExceptionTLBInvalidLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_INVALID)
|
||
|
#define SignalExceptionTLBModification() signal_exception (SD, CPU, cia, TLBModification)
|
||
|
#define SignalExceptionMDMX() signal_exception (SD, CPU, cia, MDMX)
|
||
|
#define SignalExceptionWatch() signal_exception (SD, CPU, cia, Watch)
|
||
|
#define SignalExceptionMCheck() signal_exception (SD, CPU, cia, MCheck)
|
||
|
#define SignalExceptionCacheErr() signal_exception (SD, CPU, cia, CacheErr)
|
||
|
|
||
|
/* Co-processor accesses */
|
||
|
|
||
|
/* XXX FIXME: For now, assume that FPU (cp1) is always usable. */
|
||
|
#define COP_Usable(coproc_num) (coproc_num == 1)
|
||
|
|
||
|
void cop_lw (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword);
|
||
|
void cop_ld (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword);
|
||
|
unsigned int cop_sw (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg);
|
||
|
uword64 cop_sd (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg);
|
||
|
|
||
|
#define COP_LW(coproc_num,coproc_reg,memword) \
|
||
|
cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
|
||
|
#define COP_LD(coproc_num,coproc_reg,memword) \
|
||
|
cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
|
||
|
#define COP_SW(coproc_num,coproc_reg) \
|
||
|
cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
|
||
|
#define COP_SD(coproc_num,coproc_reg) \
|
||
|
cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
|
||
|
|
||
|
|
||
|
void decode_coproc (SIM_DESC sd, sim_cpu *cpu, address_word cia,
|
||
|
unsigned int instruction, int coprocnum, CP0_operation op,
|
||
|
int rt, int rd, int sel);
|
||
|
#define DecodeCoproc(instruction,coprocnum,op,rt,rd,sel) \
|
||
|
decode_coproc (SD, CPU, cia, (instruction), (coprocnum), (op), \
|
||
|
(rt), (rd), (sel))
|
||
|
|
||
|
int sim_monitor (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int arg);
|
||
|
|
||
|
|
||
|
/* FPR access. */
|
||
|
uint64_t value_fpr (SIM_STATE, int fpr, FP_formats);
|
||
|
#define ValueFPR(FPR,FMT) value_fpr (SIM_ARGS, (FPR), (FMT))
|
||
|
void store_fpr (SIM_STATE, int fpr, FP_formats fmt, uint64_t value);
|
||
|
#define StoreFPR(FPR,FMT,VALUE) store_fpr (SIM_ARGS, (FPR), (FMT), (VALUE))
|
||
|
uint64_t ps_lower (SIM_STATE, uint64_t op);
|
||
|
#define PSLower(op) ps_lower (SIM_ARGS, op)
|
||
|
uint64_t ps_upper (SIM_STATE, uint64_t op);
|
||
|
#define PSUpper(op) ps_upper (SIM_ARGS, op)
|
||
|
uint64_t pack_ps (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats from);
|
||
|
#define PackPS(op1,op2) pack_ps (SIM_ARGS, op1, op2, fmt_single)
|
||
|
|
||
|
|
||
|
/* FCR access. */
|
||
|
unsigned_word value_fcr (SIM_STATE, int fcr);
|
||
|
#define ValueFCR(FCR) value_fcr (SIM_ARGS, (FCR))
|
||
|
void store_fcr (SIM_STATE, int fcr, unsigned_word value);
|
||
|
#define StoreFCR(FCR,VALUE) store_fcr (SIM_ARGS, (FCR), (VALUE))
|
||
|
void test_fcsr (SIM_STATE);
|
||
|
#define TestFCSR() test_fcsr (SIM_ARGS)
|
||
|
|
||
|
|
||
|
/* FPU operations. */
|
||
|
/* Non-signalling */
|
||
|
#define FP_R6CMP_AF 0x0
|
||
|
#define FP_R6CMP_EQ 0x2
|
||
|
#define FP_R6CMP_LE 0x6
|
||
|
#define FP_R6CMP_LT 0x4
|
||
|
#define FP_R6CMP_NE 0x13
|
||
|
#define FP_R6CMP_OR 0x11
|
||
|
#define FP_R6CMP_UEQ 0x3
|
||
|
#define FP_R6CMP_ULE 0x7
|
||
|
#define FP_R6CMP_ULT 0x5
|
||
|
#define FP_R6CMP_UN 0x1
|
||
|
#define FP_R6CMP_UNE 0x12
|
||
|
|
||
|
/* Signalling */
|
||
|
#define FP_R6CMP_SAF 0x8
|
||
|
#define FP_R6CMP_SEQ 0xa
|
||
|
#define FP_R6CMP_SLE 0xe
|
||
|
#define FP_R6CMP_SLT 0xc
|
||
|
#define FP_R6CMP_SNE 0x1b
|
||
|
#define FP_R6CMP_SOR 0x19
|
||
|
#define FP_R6CMP_SUEQ 0xb
|
||
|
#define FP_R6CMP_SULE 0xf
|
||
|
#define FP_R6CMP_SULT 0xd
|
||
|
#define FP_R6CMP_SUN 0x9
|
||
|
#define FP_R6CMP_SUNE 0x1a
|
||
|
|
||
|
/* FPU Class */
|
||
|
#define FP_R6CLASS_SNAN (1<<0)
|
||
|
#define FP_R6CLASS_QNAN (1<<1)
|
||
|
#define FP_R6CLASS_NEGINF (1<<2)
|
||
|
#define FP_R6CLASS_NEGNORM (1<<3)
|
||
|
#define FP_R6CLASS_NEGSUB (1<<4)
|
||
|
#define FP_R6CLASS_NEGZERO (1<<5)
|
||
|
#define FP_R6CLASS_POSINF (1<<6)
|
||
|
#define FP_R6CLASS_POSNORM (1<<7)
|
||
|
#define FP_R6CLASS_POSSUB (1<<8)
|
||
|
#define FP_R6CLASS_POSZERO (1<<9)
|
||
|
|
||
|
void fp_cmp (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt,
|
||
|
int abs, int cond, int cc);
|
||
|
#define Compare(op1,op2,fmt,cond,cc) \
|
||
|
fp_cmp(SIM_ARGS, op1, op2, fmt, 0, cond, cc)
|
||
|
uint64_t fp_r6_cmp (SIM_STATE, uint64_t op1, uint64_t op2,
|
||
|
FP_formats fmt, int cond);
|
||
|
#define R6Compare(op1,op2,fmt,cond) fp_r6_cmp(SIM_ARGS, op1, op2, fmt, cond)
|
||
|
uint64_t fp_classify(SIM_STATE, uint64_t op, FP_formats fmt);
|
||
|
#define Classify(op, fmt) fp_classify(SIM_ARGS, op, fmt)
|
||
|
int fp_rint(SIM_STATE, uint64_t op, uint64_t *ans, FP_formats fmt);
|
||
|
#define RoundToIntegralExact(op, ans, fmt) fp_rint(SIM_ARGS, op, ans, fmt)
|
||
|
uint64_t fp_abs (SIM_STATE, uint64_t op, FP_formats fmt);
|
||
|
#define AbsoluteValue(op,fmt) fp_abs(SIM_ARGS, op, fmt)
|
||
|
uint64_t fp_neg (SIM_STATE, uint64_t op, FP_formats fmt);
|
||
|
#define Negate(op,fmt) fp_neg(SIM_ARGS, op, fmt)
|
||
|
uint64_t fp_add (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
|
||
|
#define Add(op1,op2,fmt) fp_add(SIM_ARGS, op1, op2, fmt)
|
||
|
uint64_t fp_sub (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
|
||
|
#define Sub(op1,op2,fmt) fp_sub(SIM_ARGS, op1, op2, fmt)
|
||
|
uint64_t fp_mul (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
|
||
|
#define Multiply(op1,op2,fmt) fp_mul(SIM_ARGS, op1, op2, fmt)
|
||
|
uint64_t fp_div (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
|
||
|
#define Divide(op1,op2,fmt) fp_div(SIM_ARGS, op1, op2, fmt)
|
||
|
uint64_t fp_min (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
|
||
|
#define Min(op1,op2,fmt) fp_min(SIM_ARGS, op1, op2, fmt)
|
||
|
uint64_t fp_max (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
|
||
|
#define Max(op1,op2,fmt) fp_max(SIM_ARGS, op1, op2, fmt)
|
||
|
uint64_t fp_mina (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
|
||
|
#define MinA(op1,op2,fmt) fp_mina(SIM_ARGS, op1, op2, fmt)
|
||
|
uint64_t fp_maxa (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
|
||
|
#define MaxA(op1,op2,fmt) fp_maxa(SIM_ARGS, op1, op2, fmt)
|
||
|
uint64_t fp_recip (SIM_STATE, uint64_t op, FP_formats fmt);
|
||
|
#define Recip(op,fmt) fp_recip(SIM_ARGS, op, fmt)
|
||
|
uint64_t fp_sqrt (SIM_STATE, uint64_t op, FP_formats fmt);
|
||
|
#define SquareRoot(op,fmt) fp_sqrt(SIM_ARGS, op, fmt)
|
||
|
uint64_t fp_rsqrt (SIM_STATE, uint64_t op, FP_formats fmt);
|
||
|
#define RSquareRoot(op,fmt) fp_rsqrt(SIM_ARGS, op, fmt)
|
||
|
uint64_t fp_madd (SIM_STATE, uint64_t op1, uint64_t op2,
|
||
|
uint64_t op3, FP_formats fmt);
|
||
|
#define FusedMultiplyAdd(op1,op2,op3,fmt) fp_fmadd(SIM_ARGS, op1, op2, op3, fmt)
|
||
|
uint64_t fp_fmadd (SIM_STATE, uint64_t op1, uint64_t op2,
|
||
|
uint64_t op3, FP_formats fmt);
|
||
|
#define FusedMultiplySub(op1,op2,op3,fmt) fp_fmsub(SIM_ARGS, op1, op2, op3, fmt)
|
||
|
uint64_t fp_fmsub (SIM_STATE, uint64_t op1, uint64_t op2,
|
||
|
uint64_t op3, FP_formats fmt);
|
||
|
#define MultiplyAdd(op1,op2,op3,fmt) fp_madd(SIM_ARGS, op1, op2, op3, fmt)
|
||
|
uint64_t fp_msub (SIM_STATE, uint64_t op1, uint64_t op2,
|
||
|
uint64_t op3, FP_formats fmt);
|
||
|
#define MultiplySub(op1,op2,op3,fmt) fp_msub(SIM_ARGS, op1, op2, op3, fmt)
|
||
|
uint64_t fp_nmadd (SIM_STATE, uint64_t op1, uint64_t op2,
|
||
|
uint64_t op3, FP_formats fmt);
|
||
|
#define NegMultiplyAdd(op1,op2,op3,fmt) fp_nmadd(SIM_ARGS, op1, op2, op3, fmt)
|
||
|
uint64_t fp_nmsub (SIM_STATE, uint64_t op1, uint64_t op2,
|
||
|
uint64_t op3, FP_formats fmt);
|
||
|
#define NegMultiplySub(op1,op2,op3,fmt) fp_nmsub(SIM_ARGS, op1, op2, op3, fmt)
|
||
|
uint64_t convert (SIM_STATE, int rm, uint64_t op, FP_formats from, FP_formats to);
|
||
|
#define Convert(rm,op,from,to) convert (SIM_ARGS, rm, op, from, to)
|
||
|
uint64_t convert_ps (SIM_STATE, int rm, uint64_t op, FP_formats from,
|
||
|
FP_formats to);
|
||
|
#define ConvertPS(rm,op,from,to) convert_ps (SIM_ARGS, rm, op, from, to)
|
||
|
|
||
|
|
||
|
/* MIPS-3D ASE operations. */
|
||
|
#define CompareAbs(op1,op2,fmt,cond,cc) \
|
||
|
fp_cmp(SIM_ARGS, op1, op2, fmt, 1, cond, cc)
|
||
|
uint64_t fp_add_r (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
|
||
|
#define AddR(op1,op2,fmt) fp_add_r(SIM_ARGS, op1, op2, fmt)
|
||
|
uint64_t fp_mul_r (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
|
||
|
#define MultiplyR(op1,op2,fmt) fp_mul_r(SIM_ARGS, op1, op2, fmt)
|
||
|
uint64_t fp_recip1 (SIM_STATE, uint64_t op, FP_formats fmt);
|
||
|
#define Recip1(op,fmt) fp_recip1(SIM_ARGS, op, fmt)
|
||
|
uint64_t fp_recip2 (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
|
||
|
#define Recip2(op1,op2,fmt) fp_recip2(SIM_ARGS, op1, op2, fmt)
|
||
|
uint64_t fp_rsqrt1 (SIM_STATE, uint64_t op, FP_formats fmt);
|
||
|
#define RSquareRoot1(op,fmt) fp_rsqrt1(SIM_ARGS, op, fmt)
|
||
|
uint64_t fp_rsqrt2 (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
|
||
|
#define RSquareRoot2(op1,op2,fmt) fp_rsqrt2(SIM_ARGS, op1, op2, fmt)
|
||
|
|
||
|
|
||
|
/* MDMX access. */
|
||
|
|
||
|
typedef unsigned int MX_fmtsel; /* MDMX format select field (5 bits). */
|
||
|
#define ob_fmtsel(sel) (((sel)<<1)|0x0)
|
||
|
#define qh_fmtsel(sel) (((sel)<<2)|0x1)
|
||
|
|
||
|
#define fmt_mdmx fmt_uninterpreted
|
||
|
|
||
|
#define MX_VECT_AND (0)
|
||
|
#define MX_VECT_NOR (1)
|
||
|
#define MX_VECT_OR (2)
|
||
|
#define MX_VECT_XOR (3)
|
||
|
#define MX_VECT_SLL (4)
|
||
|
#define MX_VECT_SRL (5)
|
||
|
#define MX_VECT_ADD (6)
|
||
|
#define MX_VECT_SUB (7)
|
||
|
#define MX_VECT_MIN (8)
|
||
|
#define MX_VECT_MAX (9)
|
||
|
#define MX_VECT_MUL (10)
|
||
|
#define MX_VECT_MSGN (11)
|
||
|
#define MX_VECT_SRA (12)
|
||
|
#define MX_VECT_ABSD (13) /* SB-1 only. */
|
||
|
#define MX_VECT_AVG (14) /* SB-1 only. */
|
||
|
|
||
|
uint64_t mdmx_cpr_op (SIM_STATE, int op, uint64_t op1, int vt, MX_fmtsel fmtsel);
|
||
|
#define MX_Add(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ADD, op1, vt, fmtsel)
|
||
|
#define MX_And(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AND, op1, vt, fmtsel)
|
||
|
#define MX_Max(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MAX, op1, vt, fmtsel)
|
||
|
#define MX_Min(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MIN, op1, vt, fmtsel)
|
||
|
#define MX_Msgn(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MSGN, op1, vt, fmtsel)
|
||
|
#define MX_Mul(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MUL, op1, vt, fmtsel)
|
||
|
#define MX_Nor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_NOR, op1, vt, fmtsel)
|
||
|
#define MX_Or(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_OR, op1, vt, fmtsel)
|
||
|
#define MX_ShiftLeftLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SLL, op1, vt, fmtsel)
|
||
|
#define MX_ShiftRightArith(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRA, op1, vt, fmtsel)
|
||
|
#define MX_ShiftRightLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRL, op1, vt, fmtsel)
|
||
|
#define MX_Sub(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SUB, op1, vt, fmtsel)
|
||
|
#define MX_Xor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_XOR, op1, vt, fmtsel)
|
||
|
#define MX_AbsDiff(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ABSD, op1, vt, fmtsel)
|
||
|
#define MX_Avg(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AVG, op1, vt, fmtsel)
|
||
|
|
||
|
#define MX_C_EQ 0x1
|
||
|
#define MX_C_LT 0x4
|
||
|
|
||
|
void mdmx_cc_op (SIM_STATE, int cond, uint64_t op1, int vt, MX_fmtsel fmtsel);
|
||
|
#define MX_Comp(op1,cond,vt,fmtsel) mdmx_cc_op(SIM_ARGS, cond, op1, vt, fmtsel)
|
||
|
|
||
|
uint64_t mdmx_pick_op (SIM_STATE, int tf, uint64_t op1, int vt, MX_fmtsel fmtsel);
|
||
|
#define MX_Pick(tf,op1,vt,fmtsel) mdmx_pick_op(SIM_ARGS, tf, op1, vt, fmtsel)
|
||
|
|
||
|
#define MX_VECT_ADDA (0)
|
||
|
#define MX_VECT_ADDL (1)
|
||
|
#define MX_VECT_MULA (2)
|
||
|
#define MX_VECT_MULL (3)
|
||
|
#define MX_VECT_MULS (4)
|
||
|
#define MX_VECT_MULSL (5)
|
||
|
#define MX_VECT_SUBA (6)
|
||
|
#define MX_VECT_SUBL (7)
|
||
|
#define MX_VECT_ABSDA (8) /* SB-1 only. */
|
||
|
|
||
|
void mdmx_acc_op (SIM_STATE, int op, uint64_t op1, int vt, MX_fmtsel fmtsel);
|
||
|
#define MX_AddA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDA, op1, vt, fmtsel)
|
||
|
#define MX_AddL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDL, op1, vt, fmtsel)
|
||
|
#define MX_MulA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULA, op1, vt, fmtsel)
|
||
|
#define MX_MulL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULL, op1, vt, fmtsel)
|
||
|
#define MX_MulS(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULS, op1, vt, fmtsel)
|
||
|
#define MX_MulSL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULSL, op1, vt, fmtsel)
|
||
|
#define MX_SubA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBA, op1, vt, fmtsel)
|
||
|
#define MX_SubL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBL, op1, vt, fmtsel)
|
||
|
#define MX_AbsDiffC(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ABSDA, op1, vt, fmtsel)
|
||
|
|
||
|
#define MX_FMT_OB (0)
|
||
|
#define MX_FMT_QH (1)
|
||
|
|
||
|
/* The following codes chosen to indicate the units of shift. */
|
||
|
#define MX_RAC_L (0)
|
||
|
#define MX_RAC_M (1)
|
||
|
#define MX_RAC_H (2)
|
||
|
|
||
|
uint64_t mdmx_rac_op (SIM_STATE, int, int);
|
||
|
#define MX_RAC(op,fmt) mdmx_rac_op(SIM_ARGS, op, fmt)
|
||
|
|
||
|
void mdmx_wacl (SIM_STATE, int, uint64_t, uint64_t);
|
||
|
#define MX_WACL(fmt,vs,vt) mdmx_wacl(SIM_ARGS, fmt, vs, vt)
|
||
|
void mdmx_wach (SIM_STATE, int, uint64_t);
|
||
|
#define MX_WACH(fmt,vs) mdmx_wach(SIM_ARGS, fmt, vs)
|
||
|
|
||
|
#define MX_RND_AS (0)
|
||
|
#define MX_RND_AU (1)
|
||
|
#define MX_RND_ES (2)
|
||
|
#define MX_RND_EU (3)
|
||
|
#define MX_RND_ZS (4)
|
||
|
#define MX_RND_ZU (5)
|
||
|
|
||
|
uint64_t mdmx_round_op (SIM_STATE, int, int, MX_fmtsel);
|
||
|
#define MX_RNAS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AS, vt, fmt)
|
||
|
#define MX_RNAU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AU, vt, fmt)
|
||
|
#define MX_RNES(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ES, vt, fmt)
|
||
|
#define MX_RNEU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_EU, vt, fmt)
|
||
|
#define MX_RZS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZS, vt, fmt)
|
||
|
#define MX_RZU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZU, vt, fmt)
|
||
|
|
||
|
uint64_t mdmx_shuffle (SIM_STATE, int, uint64_t, uint64_t);
|
||
|
#define MX_SHFL(shop,op1,op2) mdmx_shuffle(SIM_ARGS, shop, op1, op2)
|
||
|
|
||
|
|
||
|
|
||
|
/* Memory accesses */
|
||
|
|
||
|
/* The following are generic to all versions of the MIPS architecture
|
||
|
to date: */
|
||
|
|
||
|
#define isINSTRUCTION (1 == 0) /* FALSE */
|
||
|
#define isDATA (1 == 1) /* TRUE */
|
||
|
#define isLOAD (1 == 0) /* FALSE */
|
||
|
#define isSTORE (1 == 1) /* TRUE */
|
||
|
#define isREAL (1 == 0) /* FALSE */
|
||
|
#define isRAW (1 == 1) /* TRUE */
|
||
|
/* The parameter HOST (isTARGET / isHOST) is ignored */
|
||
|
#define isTARGET (1 == 0) /* FALSE */
|
||
|
/* #define isHOST (1 == 1) TRUE */
|
||
|
|
||
|
/* The "AccessLength" specifications for Loads and Stores. NOTE: This
|
||
|
is the number of bytes minus 1. */
|
||
|
#define AccessLength_BYTE (0)
|
||
|
#define AccessLength_HALFWORD (1)
|
||
|
#define AccessLength_TRIPLEBYTE (2)
|
||
|
#define AccessLength_WORD (3)
|
||
|
#define AccessLength_QUINTIBYTE (4)
|
||
|
#define AccessLength_SEXTIBYTE (5)
|
||
|
#define AccessLength_SEPTIBYTE (6)
|
||
|
#define AccessLength_DOUBLEWORD (7)
|
||
|
#define AccessLength_QUADWORD (15)
|
||
|
|
||
|
#define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
|
||
|
? AccessLength_DOUBLEWORD /*7*/ \
|
||
|
: AccessLength_WORD /*3*/)
|
||
|
|
||
|
INLINE_SIM_MAIN (void) load_memory (SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD);
|
||
|
#define LoadMemory(memvalp,memval1p,AccessLength,pAddr,vAddr,IorD,raw) \
|
||
|
load_memory (SD, CPU, cia, memvalp, memval1p, 0, AccessLength, pAddr, vAddr, IorD)
|
||
|
|
||
|
INLINE_SIM_MAIN (void) store_memory (SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr);
|
||
|
#define StoreMemory(AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
|
||
|
store_memory (SD, CPU, cia, 0, AccessLength, MemElem, MemElem1, pAddr, vAddr)
|
||
|
|
||
|
INLINE_SIM_MAIN (void) cache_op (SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction);
|
||
|
#define CacheOp(op,pAddr,vAddr,instruction) \
|
||
|
cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
|
||
|
|
||
|
INLINE_SIM_MAIN (void) sync_operation (SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype);
|
||
|
#define SyncOperation(stype) \
|
||
|
sync_operation (SD, CPU, cia, (stype))
|
||
|
|
||
|
void unpredictable_action (sim_cpu *cpu, address_word cia);
|
||
|
#define NotWordValue(val) not_word_value (SD_, (val))
|
||
|
#define Unpredictable() unpredictable (SD_)
|
||
|
#define UnpredictableResult() /* For now, do nothing. */
|
||
|
|
||
|
INLINE_SIM_MAIN (uint32_t) ifetch32 (SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr);
|
||
|
#define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
|
||
|
INLINE_SIM_MAIN (uint16_t) ifetch16 (SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr);
|
||
|
#define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
|
||
|
#define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
|
||
|
#define IMEM32_MICROMIPS(CIA) \
|
||
|
(ifetch16 (SD, CPU, (CIA), (CIA)) << 16 | ifetch16 (SD, CPU, (CIA + 2), \
|
||
|
(CIA + 2)))
|
||
|
#define IMEM16_MICROMIPS(CIA) ifetch16 (SD, CPU, (CIA), ((CIA)))
|
||
|
|
||
|
#define MICROMIPS_MINOR_OPCODE(INSN) ((INSN & 0x1C00) >> 10)
|
||
|
|
||
|
#define MICROMIPS_DELAYSLOT_SIZE_ANY 0
|
||
|
#define MICROMIPS_DELAYSLOT_SIZE_16 2
|
||
|
#define MICROMIPS_DELAYSLOT_SIZE_32 4
|
||
|
|
||
|
extern int isa_mode;
|
||
|
|
||
|
#define ISA_MODE_MIPS32 0
|
||
|
#define ISA_MODE_MICROMIPS 1
|
||
|
|
||
|
address_word micromips_instruction_decode (SIM_DESC sd, sim_cpu * cpu,
|
||
|
address_word cia,
|
||
|
int instruction_size);
|
||
|
|
||
|
#if WITH_TRACE_ANY_P
|
||
|
void dotrace (SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, const char *comment, ...) ATTRIBUTE_PRINTF (7, 8);
|
||
|
extern FILE *tracefh;
|
||
|
#else
|
||
|
#define dotrace(sd, cpu, tracefh, type, address, width, comment, ...)
|
||
|
#endif
|
||
|
|
||
|
extern int DSPLO_REGNUM[4];
|
||
|
extern int DSPHI_REGNUM[4];
|
||
|
|
||
|
INLINE_SIM_MAIN (void) pending_tick (SIM_DESC sd, sim_cpu *cpu, address_word cia);
|
||
|
extern SIM_CORE_SIGNAL_FN mips_core_signal;
|
||
|
|
||
|
char* pr_addr (SIM_ADDR addr);
|
||
|
char* pr_uword64 (uword64 addr);
|
||
|
|
||
|
|
||
|
#define GPR_CLEAR(N) do { GPR_SET((N),0); } while (0)
|
||
|
|
||
|
void mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word pc);
|
||
|
void mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception);
|
||
|
void mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception);
|
||
|
|
||
|
#ifdef MIPS_MACH_MULTI
|
||
|
extern int mips_mach_multi(SIM_DESC sd);
|
||
|
#define MIPS_MACH(SD) mips_mach_multi(SD)
|
||
|
#else
|
||
|
#define MIPS_MACH(SD) MIPS_MACH_DEFAULT
|
||
|
#endif
|
||
|
|
||
|
/* Macros for determining whether a MIPS IV or MIPS V part is subject
|
||
|
to the hi/lo restrictions described in mips.igen. */
|
||
|
|
||
|
#define MIPS_MACH_HAS_MT_HILO_HAZARD(SD) \
|
||
|
(MIPS_MACH (SD) != bfd_mach_mips5500)
|
||
|
|
||
|
#define MIPS_MACH_HAS_MULT_HILO_HAZARD(SD) \
|
||
|
(MIPS_MACH (SD) != bfd_mach_mips5500)
|
||
|
|
||
|
#define MIPS_MACH_HAS_DIV_HILO_HAZARD(SD) \
|
||
|
(MIPS_MACH (SD) != bfd_mach_mips5500)
|
||
|
|
||
|
#if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
|
||
|
#include "sim-main.c"
|
||
|
#endif
|
||
|
|
||
|
#endif
|