M2_SETI/D3/TP/test.ipynb
2022-11-28 11:40:47 +01:00

94 lines
2 KiB
Text

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import scipy.spatial"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"clusters = 3\n",
"mean = np.random.randint(5, size=clusters)\n",
"sd = [0.25, 0.25, 0.3]\n",
"dim = 2\n",
"nb = 50\n",
"K= clusters"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def gen_points(mean=1,sd=0.5, nb=100, dim=2, clusters=2):\n",
" size = []\n",
" # for i in range(0,dim):\n",
" size.append(nb)\n",
" size.append(dim)\n",
" points = np.random.normal(mean[0],sd[0],size=size)\n",
" for i in range(1,clusters):\n",
" points = np.concatenate((points,np.random.normal(mean[i],sd[i],size=size)),axis=0)\n",
" \n",
" return points"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"def distance(points,Pc): \n",
" return scipy.spatial.distance.cdist(points[:,:], Pc[:,:])"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"points = gen_points(mean,sd,nb,dim,clusters)\n",
"dist = distance(points,points)\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.10 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}