237 lines
5.5 KiB
Text
237 lines
5.5 KiB
Text
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import numpy as np\n",
|
|
"import scipy.spatial"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"clusters = 3\n",
|
|
"mean = np.random.randint(5, size=clusters)\n",
|
|
"sd = [0.25, 0.25, 0.3]\n",
|
|
"dim = 2\n",
|
|
"nb = 50\n",
|
|
"K= clusters"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def gen_points(mean=1,sd=0.5, nb=100, dim=2, clusters=2):\n",
|
|
" size = []\n",
|
|
" # for i in range(0,dim):\n",
|
|
" size.append(nb)\n",
|
|
" size.append(dim)\n",
|
|
" points = np.random.normal(mean[0],sd[0],size=size)\n",
|
|
" for i in range(1,clusters):\n",
|
|
" points = np.concatenate((points,np.random.normal(mean[i],sd[i],size=size)),axis=0)\n",
|
|
" \n",
|
|
" return points"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def distance(points,Pc): \n",
|
|
" return scipy.spatial.distance.cdist(points[:,:], Pc[:,:])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def kmeans(points = [0,0], K = 1, nb=1, dim=2):\n",
|
|
" # Initialisation K prototypes\n",
|
|
" Pc_index = []\n",
|
|
" Pc_save = np.zeros([K,dim])\n",
|
|
" clusters = []\n",
|
|
" iter = 0\n",
|
|
" eps = 0.1\n",
|
|
"\n",
|
|
" for i in range(0,K):\n",
|
|
" Pc_index.append(np.random.randint(0,nb))\n",
|
|
" Pc = points[Pc_index,:]\n",
|
|
"\n",
|
|
" # print(Pc.shape)\n",
|
|
" # print(points.shape)\n",
|
|
"\n",
|
|
" while (np.mean(distance(Pc,Pc_save)) > eps and iter < 10):\n",
|
|
" iter += 1\n",
|
|
" Pc_save = Pc\n",
|
|
" # print(Pc.shape[1])\n",
|
|
" # toto = points[:,:Pc.shape[0]]\n",
|
|
" # print(toto.shape)\n",
|
|
" dist = distance(points=points[:,:Pc.shape[1]],Pc=Pc)\n",
|
|
" clust = np.argmin(dist, axis=1)\n",
|
|
" clust = np.expand_dims(clust, axis=0)\n",
|
|
" points = np.append(points[:,:Pc.shape[1]], clust.T, axis=1)\n",
|
|
" # print(points)\n",
|
|
" Pc = np.zeros([K,dim])\n",
|
|
" index = np.array([])\n",
|
|
"\n",
|
|
" for n in range(0,2*nb):\n",
|
|
" for k in range(0,K):\n",
|
|
" index = np.append(index, (clust==k).sum())\n",
|
|
" if points[n,-1] == k:\n",
|
|
" # print(points)\n",
|
|
" # print(Pc)\n",
|
|
" Pc[k,:] = np.add(Pc[k,:], points[n,:-1])\n",
|
|
"\n",
|
|
" for k in range(0,K):\n",
|
|
" Pc[k,:] = np.divide(Pc[k,:],index[k])\n",
|
|
"\n",
|
|
" # print(Pc)\n",
|
|
" return Pc, points\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"points = gen_points(mean,sd,nb,dim,clusters)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"Pc, clusters = kmeans(points,K=K,nb=nb,dim=dim)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def img_2_mat(my_img):\n",
|
|
" mat = my_img.reshape(my_img.shape[0]*my_img.shape[1],my_img.shape[2])\n",
|
|
" return mat\n",
|
|
"\n",
|
|
"def mat_2_img(mat,my_img):\n",
|
|
" img_seg = mat.reshape(my_img.shape[0], my_img.shape[1], my_img.shape[2])\n",
|
|
" return img_seg\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"(103230, 3)\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"from skimage import io\n",
|
|
"\n",
|
|
"path_image = \"fruits.jpg\"\n",
|
|
"my_img = io.imread(path_image)\n",
|
|
"Mat = img_2_mat(my_img)\n",
|
|
"print(Mat.shape)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[[[0. 1. 2.]\n",
|
|
" [0. 1. 2.]\n",
|
|
" [0. 1. 2.]]\n",
|
|
"\n",
|
|
" [[0. 1. 2.]\n",
|
|
" [0. 1. 2.]\n",
|
|
" [0. 1. 2.]]]\n",
|
|
"[[0. 1. 2.]\n",
|
|
" [0. 1. 2.]\n",
|
|
" [0. 1. 2.]\n",
|
|
" [0. 1. 2.]\n",
|
|
" [0. 1. 2.]\n",
|
|
" [0. 1. 2.]]\n",
|
|
"[[[0. 1. 2.]\n",
|
|
" [0. 1. 2.]\n",
|
|
" [0. 1. 2.]]\n",
|
|
"\n",
|
|
" [[0. 1. 2.]\n",
|
|
" [0. 1. 2.]\n",
|
|
" [0. 1. 2.]]]\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"A = np.zeros((2,3,3))\n",
|
|
"for i in range(3):\n",
|
|
" A[:,:,i] = i\n",
|
|
"\n",
|
|
"print(A)\n",
|
|
"\n",
|
|
"B = img_2_mat(A)\n",
|
|
"\n",
|
|
"print(B)\n",
|
|
"B[0,:] = np.array([0,0,0])\n",
|
|
"A = mat_2_img(B,A)\n",
|
|
"\n",
|
|
"print(A)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3.9.4 64-bit",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.4"
|
|
},
|
|
"orig_nbformat": 4,
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "2ef431f6525756fa8a44688585fa332ef3b2e5fcfe8fe75df35bbf7028a8b511"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|