{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Cours D3\n", "\n", "## Cours Méthodes d'analyse non supervisées\n", "\n", "Exemple de clustering complete linkage :\n", "On prend 4 singletons avec leur matrice de dissimilarité." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[0. 0.3 0.4 0.8 ]\n", " [0.3 0. 0.5 0.8 ]\n", " [0.4 0.5 0. 0.45]\n", " [0.8 0.8 0.45 0. ]]\n" ] } ], "source": [ "D = np.array([[0, 0.3, 0.4, 0.7],[0, 0, 0.5, 0.8],[0, 0, 0, 0.45],[0, 0, 0, 0]])\n", "D += D.T\n", "print(D)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On link les 2 clusters les plus proches (a,b) donc on prend le max de différence entre (a,b) et c et d." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[0. 0.5 0.8 ]\n", " [0.5 0. 0.45]\n", " [0.8 0.45 0. ]]\n" ] } ], "source": [ "D2 = np.array([[0, 0.5, 0.8],[0.5, 0, 0.45],[0.8, 0.45, 0]])\n", "print(D2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On coupe au saut le plus important sur le dendrogramme (on continu jusqu'a avoir K-clusters)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[0. 0.8]\n", " [0.8 0. ]]\n" ] } ], "source": [ "# (a,b,c) et d\n", "D3 = np.array([[0, 0.8],[0.8,0]])\n", "print(D3)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.4 (tags/v3.9.4:1f2e308, Apr 6 2021, 13:40:21) [MSC v.1928 64 bit (AMD64)]" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "2ef431f6525756fa8a44688585fa332ef3b2e5fcfe8fe75df35bbf7028a8b511" } } }, "nbformat": 4, "nbformat_minor": 2 }