{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import scipy.spatial" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "clusters = 3\n", "mean = np.random.randint(5, size=clusters)\n", "sd = [0.25, 0.25, 0.3]\n", "dim = 2\n", "nb = 50\n", "K= clusters" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def gen_points(mean=1,sd=0.5, nb=100, dim=2, clusters=2):\n", " size = []\n", " # for i in range(0,dim):\n", " size.append(nb)\n", " size.append(dim)\n", " points = np.random.normal(mean[0],sd[0],size=size)\n", " for i in range(1,clusters):\n", " points = np.concatenate((points,np.random.normal(mean[i],sd[i],size=size)),axis=0)\n", " \n", " return points" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "def distance(points,Pc): \n", " return scipy.spatial.distance.cdist(points[:,:], Pc[:,:])" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "def kmeans(points = [0,0], K = 1, nb=1, dim=2):\n", " # Initialisation K prototypes\n", " Pc_index = []\n", " Pc_save = np.zeros([K,dim])\n", " clusters = []\n", " iter = 0\n", " eps = 0.1\n", "\n", " for i in range(0,K):\n", " Pc_index.append(np.random.randint(0,nb))\n", " Pc = points[Pc_index,:]\n", "\n", " # print(Pc.shape)\n", " # print(points.shape)\n", "\n", " while (np.mean(distance(Pc,Pc_save)) > eps and iter < 10):\n", " iter += 1\n", " Pc_save = Pc\n", " # print(Pc.shape[1])\n", " # toto = points[:,:Pc.shape[0]]\n", " # print(toto.shape)\n", " dist = distance(points=points[:,:Pc.shape[1]],Pc=Pc)\n", " clust = np.argmin(dist, axis=1)\n", " clust = np.expand_dims(clust, axis=0)\n", " points = np.append(points[:,:Pc.shape[1]], clust.T, axis=1)\n", " # print(points)\n", " Pc = np.zeros([K,dim])\n", " index = np.array([])\n", "\n", " for n in range(0,2*nb):\n", " for k in range(0,K):\n", " index = np.append(index, (clust==k).sum())\n", " if points[n,-1] == k:\n", " # print(points)\n", " # print(Pc)\n", " Pc[k,:] = np.add(Pc[k,:], points[n,:-1])\n", "\n", " for k in range(0,K):\n", " Pc[k,:] = np.divide(Pc[k,:],index[k])\n", "\n", " # print(Pc)\n", " return Pc, points\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "points = gen_points(mean,sd,nb,dim,clusters)\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "Pc, clusters = kmeans(points,K=K,nb=nb,dim=dim)\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "def img_2_mat(my_img):\n", " mat = my_img.reshape(my_img.shape[0]*my_img.shape[1],my_img.shape[2])\n", " return mat\n", "\n", "def mat_2_img(mat,my_img):\n", " img_seg = mat.reshape(my_img.shape[0], my_img.shape[1], my_img.shape[2])\n", " return img_seg\n" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(103230, 3)\n" ] } ], "source": [ "from skimage import io\n", "\n", "path_image = \"fruits.jpg\"\n", "my_img = io.imread(path_image)\n", "Mat = img_2_mat(my_img)\n", "print(Mat.shape)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[[0. 1. 2.]\n", " [0. 1. 2.]\n", " [0. 1. 2.]]\n", "\n", " [[0. 1. 2.]\n", " [0. 1. 2.]\n", " [0. 1. 2.]]]\n", "[[0. 1. 2.]\n", " [0. 1. 2.]\n", " [0. 1. 2.]\n", " [0. 1. 2.]\n", " [0. 1. 2.]\n", " [0. 1. 2.]]\n", "[[[0. 1. 2.]\n", " [0. 1. 2.]\n", " [0. 1. 2.]]\n", "\n", " [[0. 1. 2.]\n", " [0. 1. 2.]\n", " [0. 1. 2.]]]\n" ] } ], "source": [ "A = np.zeros((2,3,3))\n", "for i in range(3):\n", " A[:,:,i] = i\n", "\n", "print(A)\n", "\n", "B = img_2_mat(A)\n", "\n", "print(B)\n", "B[0,:] = np.array([0,0,0])\n", "A = mat_2_img(B,A)\n", "\n", "print(A)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.9.4 64-bit", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.4" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "2ef431f6525756fa8a44688585fa332ef3b2e5fcfe8fe75df35bbf7028a8b511" } } }, "nbformat": 4, "nbformat_minor": 2 }