)
SO
. I
_-. _.....__R.J‘:,

YA
__A..nv

1
O
. AR y
A --.... AN
) -.--.- s -.—--.-.. ‘
::::\--.::-
.

e . A
.\.......... 5 o5 (A
..-.\...ne. AN
-

()
AN AN
MY,
o

<A NVIDIA.

LAy
OO
/-.-...-Q.--. .

I E R R R RN

.
RN

'S ‘\\‘\\Q\
L

..\\~\‘\\\\‘\\t‘u‘\\\.\u\-‘\\s °

ST TSI LTy

e e
CE Attt p e s

en

WA}
.,.,-44«....
WAL Y
YAyt "
AR YA
VI
YVt
N

Jul

2012

on

© NVIDIA Corporat

Problem N>

NVIDIA

= |[nput: Array of ints a[0] ,a[1l], ...,a[n-1]
1afal2/86 821003 2/18/2/32812/3 4561123800021

= Qutput: The sum of the elements

int sum = O0;
for(int 1 =0 ; i < N ; ++1)
sum += a[i];

© NVIDIA Corporation 2012

Outline of the Algorithm >

NVIDIA

= 1St Step: Each thread computes its partial sum
= 2nd Step: Each block of threads computes its partial sum

= 3'd Step: One block computes the final sum

© NVIDIA Corporation 2012

Blocks and Threads .

NVIDIA

* |nthose slides we use 2 blocks and 4 threads per block

blockIdx.x == 1
threadldx.x == 0

blockIdx.x == 1
threadIldx.x == 1

blockIdx.x == 1
threadIdx.x == 2
threadIdx.x == 3

blockIdx.x == 0

threadIdx.x == 1

blockIdx.x == 0

threadldx.x == 2

blockIdx.x == 0
threadldx.x == 3

© NVIDIA Corporation 2012

=

NVIDIA.

15T STEP

15t Step: Threads Compute Their Partial Sums <3

NVIDIA

= Each thread initializes its partial sum to 0

Block O Block 1

int my sum = 0;
my sum: |0 0O 0O/ 0/0 O 00

= Each thread reads its element from a and update its sum

Block O Block 1

- -

© NVIDIA Corporation 2012

15t Step: Threads Compute Their Partial Sums <3

NVIDIA

= Each thread moves to its next element

» And updates its partial sum

Block O Block 1

EB BB

© NVIDIA Corporation 2012

15t Step: Threads Compute Their Partial Sums <3

NVIDIA
= And so on, until all threads have their partial sums

Block O Block 1

- -

© NVIDIA Corporation 2012

15t Step: Threads Compute Their Partial Sums <3

NVIDIA

= Each thread writes its partial sum to shared memory

smem:

11

13

Block O

11

Block 1

9 6 14 10 12

11

13

11

= Shared memory is shared by threads in the same block

* No synchronization: Threads do not know what others are doing

© NVIDIA Corporation 2012

Advanced note: Inside a block, threads of a same warp are implicitly synchronized. On current HW a warp contains 32 threads.

15t Step: Threads Compute Their Partial Sums <3

NVIDIA

= \We want smem to contain all the sums of the threads in the block

= We use _ syncthreads() to create a synchronization barrier

Block O Block O Block O Block O

‘11‘13‘11‘9| 9 ‘11‘13‘11‘9|

0, 2: complete their writes 0, 2: wait at the barrier 0, 2, 3: wait at the barrier Threads go through the barrier

3: completes its write 4: completes its write

—

© NVIDIA Corporation 2012 Note: __syncthreads synchronizes the threads of a same block. There is no instruction to synchronize threads of different blocks from a kernel.

15t Step: Threads Compute Their Partial Sums <3

NVIDIA

» Code summary

© NVIDIA Corporation 2012

<

NVIDIA.

PESTER

2"d Step: Blocks Compute Their Partial Sums <3

NVIDIA.

= With more threads and more blocks

© NVIDIA Corporation 2012

2"d Step: Blocks Compute Their Partial Sums <3

NVIDIA

» Half of the threads updates the sum in smem

Block O Block 1 Block O Block 1

ke
9

my sum: 13

my tmp: (11 9

my sum:

my tmp:

smem: smem:

© NVIDIA Corporation 2012

2"d Step: Blocks Compute Their Partial Sums

= \WWe want smem to contain all the sums: _ syncthreads()
= 1/4% of the threads updates the sum in smem

Block O Block 1 Block O Block 1

my sum: my sum:

my tmp: | my tmp: |

smem: smem:

>

NVIDIA

© NVIDIA Corporation 2012

2"d Step: Blocks Compute Their Partial Sums <3

NVIDIA

» We keep doing that until there is no more work to do

» Code summary

IA Corporation 2012

2"d Step: Blocks Compute Their Partial Sums <3

NVIDIA

» Block leaders stores the sum of the block in global memory

partial sums: |44 42

Block O Block 1

smeim:

© NVIDIA Corporation 2012

2"d Step: Blocks Compute Their Partial Sums <3

NVIDIA

= 1stand 2"d steps are implemented in one CUDA kernel

= \We launch the kernel

IA Corporation 2012

<

NVIDIA.

S TER

3d Step: 15t Block Computes The Sum ,f,?zm

= We can call the same kernel with different arguments

reduce kernel<<<l, BLOCK SIZE, smem size>>>(grid size,
partial sums,

partial sums,
block ranges);

= Theresultisin partial sums[O0]

© NVIDIA Corporation 2012

e
A
. A
.--: .::--:--
s e Ry
s--. ' ..-: () »--. A ._. /
(3 X
A A

A A
etk A0
AN L
o
A

AN

<A NVIDIA.

(AL EER L) s I
SRR R R RN
~UREE LR E R R RN
OO O e
' " IR FEFEERREE RN

"
! I O O D e
4 » A As A2 R R T T
4 SRR IIIIIIIPIPIII PP R AP AR I i iy
OO
S P Y

st .)
A ARSI
ccertete { ¢ Ll r L PPy

| Scan

Paralle

2012

on

© NVIDIA Corporat

Problem N>

NVIDIA
= |[nput: Array of ints a[0] ,a[1l], ...,a[n-1]
DEEEEEENDEEEEEEEEIEEAEEDEEEEEEA

= Qutput: Thesumsb[i] = a[0] + .. + a[i-1]

int sum = 0;
for(int 1 =0 ; i < N ; ++1)
{

b[i] = sum;

sum += a[i];

}

© NVIDIA Corporation 2012

Outline of the Algorithm >

NVIDIA

= 1St Step: Each block computes its partial sum

= Same kernel as the 15t kernel of the reduction
= 2nd Step: One block scans the block sums (global scans)

= 3'd Step: Each block scans its elements and uses its global scan

© NVIDIA Corporation 2012

Scan Primitive: Parallel Scan in a Block <3

NVIDIA

= Each thread loads its item from GMEM

int my sum = in buffer[idx]; my sum: |2 1 3 14

= \We allocate a buffer in SMEM of size 2 x blockDim.x

smem:‘0‘0‘0‘0‘2‘3‘1‘4|

= Store 0s in the 1st half of smem and its items in the 2"d half

© NVIDIA Corporation 2012

Scan Primitive: Parallel Scan in a Block <3

NVIDIA.

= Parallel scan pattern

© NVIDIA Corporation 2012

Homework <3

NVIDIA

= How can you implement inclusive scan?

int sum = 0;
for(int 1 =0 ; i < N ; ++i)
{

b[i] = sum += a[i];

}

= How can you optimize your implementation?

© NVIDIA Corporation 2012

(A
O
GO
(I C.-
L {4

oo
Cetccnne
ceetseae

L)

3 X
-—-. Y Yrr)

et ‘
a.-.:«a.n..
-.-.-\.._--)
AN

—-
RS
cf..-*ﬁ-

L)

Cens
1

. ..-..a-..
A

AP A A AP D

(AL EER L)
L
~<UREEEEEE)
R i1y
i

s

A

RN

LR R

LR RN

X EER RN
R R R

.
R
BIDIIIIIIIPDIIIII IR A BN RN BRI BRI PR BB R h b s
PIDIIIIIRIPIIII NI RIA AR IR A A B IR B I R AN h b

<A NVIDIA.

2012

on

© NVIDIA Corporat

Outline of the Algorithm >

NVIDIA

Loop on the bits:

=]St Step: Each block computes its partial sums
= One sum for each combination of bits
= Almost the same kernel as the 15t kernel of the reduction

= 2nd Step: One block scans the block sums (global scans)

= 3'd Step: Each block scatters its elements

© NVIDIA Corporation 2012

Sort Primitive: Where to Store Counters <3

NVIDIA

= Each thread has one counter per bit combination

int my counters[NUM COUNTERS];

* Problem: It’s not possible to dynamically address registers

my counters|[(item & mask) >> i]++;

= Solution: Use SMEM to store counters

shared int s_counters[NUM COUNTERS] [BLOCK DIM] ;

s_counters|[(item & mask) >> i] [threadIdx.x]++;

© NVIDIA Corporation 2012

