
STREC - TD-IPET Énoncé

General Instructions

• You can download the source files for the exercise from:
https://strec.wp.mines-telecom.fr/

Today’s exercises will be based on the Otawa Worst-Case Execution Time1 analysis tool, the
Patmos processor2, and a simple flight control software (Heli). The following three sections
are intended to provide a brief introduction, the actual exercises then follow below.

Heli

Heli is a simple flight control software for a helicopter drone. Software and hardware were
initially developed in 2006 by Idan Beck and Rohit Gupta. Both were students at Cornell
University at that time. For details see their report.

The software was then adapted for the Worst-Case Execution Time Challenge 2014. More
information is available on the tool challenge’s website.

Patmos Processor

Patmos is a newly designed processor aiming at time-predictability, which means that several
aspects of the processor are designed specifically for the use in (hard) real-time systems. We
will not have the time to actually make use of most of its features in this class though.

For the following exercises it suffices to know that the processor is based on a 5-stage pipeline
that executes instruction in-order. Instructions are assumed to take a single cycle to execute,
memory accesses are assumed to be for free (we will cover aspects related to caches and
memory accesses next time). Patmos’ instruction set follows typical RISC (Reduced Instruc-
tion Set Computer) conventions: (i) almost all instructions operate on registers, while (ii) dedi-
cated load/store instructions allow to access memory. The processor offers 32 general-purpose
registers (32 bit each) as well as 8 predicate registers (1 bit each) and 16 special-purpose reg-
isters (32 bit each – but we won’t actually use them). A more detailed overview is provided in
the “Patmos Handbook”.

You will need to disassemble the machine code of the provided flight control software during
the exercises, this can be done using the tool patmos-llvm-objdump as follows:

1http://www.otawa.fr/
2http://patmos.compute.dtu.dk/

1

https://strec.wp.mines-telecom.fr/
http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2006/rg242/webpage/ece%20476.htm
https://www.irit.fr/wiki/doku.php?id=wtc:start
http://patmos.compute.dtu.dk/patmos_handbook.pdf
http://www.otawa.fr/
http://patmos.compute.dtu.dk/

brandner@kairon:~/> patmos-llvm-objdump -d -s heli | less
heli: file format ELF32-patmos

Disassembly of section .text:
.text:

20080: 00 00 00 90 li $r0 = 144

.LBB0_0:
_start:

20084: 87 c2 00 00 f0 00 00 00 li $r1 = -268435456
2008c: 02 82 10 80 lwl $r1 = [$r1]
20090: 00 40 00 00 nop

...

The output shows, for each address (left-most column), the disassembled instructions (right-
most column) as well as the binary representation of the instructions as hexadecimal num-
bers (middle).

Otawa

Otawa is an open-source WCET analysis tool that closely follows the analysis approach de-
scribed in the lecture. In particular, the tool performs (i) a pipeline analysis, before (ii) con-
structing an integer linear program (ILP). The ILP corresponds to the IPET approach covered
in the lecture. The IPET equations are finally solved using a generic ILP solver (lp_solve in
our case).

In order to perform an analysis three input files are required:

• Executable:
An executable file (ELF) containing the machine code of the program to analyze (heli
in our case).

• Flow facts:
Additional information, such as loop bounds, are provided in a separate flow-fact file
(heli.ff) based on the F4 file format.

• Platform configuration:
Finally, an XML-based platform configuration file (patmos_wcet.osx) is provided. It
describes the processor features, memory characteristics, and analysis steps that need
to be performed.

The Heli application, for instance, can be analyzed using the following command:
brandner@kairon:~/> owcet -s patmos_wcet.osx -f heli.ff heli
warning: reverting to default arch plugin
warning: reverting to default sys plugin
INFO: plugged tcrest/patmos (lib/otawa/proc/tcrest/patmos_wcet.so)
INFO: plugged otawa/display (lib/libodisplay.so),
WCET[main] = 1061372 cycles

The command specifies the platform configuration (-s patmos_wcet.osx), followed by the
flow-fact file (-f heli.ff), and the name of the executable (heli). The last line of the output
indicates the computed WCET of the program in processor execution cycles (1 061 372).

2

1 Control-Flow Reconstruction (20 minutes)

Aims: Understand the reconstruction of the program’s control-flow from machine code.

Download the archive TD-IPET-STREC.tar.gz for today’s exercises from the course website
as indicated above. After decompressing the archive you will find several files:

./heli

./heli.ff

./Makefile

./patmos_wcet

./patmos_wcet/caches.xml

./patmos_wcet/memory.xml

./patmos_wcet/pipeline.xml

./patmos_wcet.osx

./src/heli.c

./src/io.h

• Invoke make in order to trigger a first WCET analysis run.

• Check the output of the analysis tool.

What is the WCET reported by the tool for the function main?

• Along with the output on the console, the analysis also generated plenty of intermediate
files (see the directory ./out/). Open the file ./out/fixFilter.dot using xdot.
This should display the control-flow graph of the fixFilter function. At the same time
open the source code ./src/heli.c, search for the function, and try to match the
control-flow graph with the C source code.

Which basic blocks correspond to the for loop? .

• Open the flow fact file (heli.ff). Try to find out what the first line (multibranch) does,
e.g., by removing on of the entries after the keyword to.

Hint: Use the xdot too to visualize the control-flow graph, search for the basic block
corresponding to the address indicated before the to keyword and then check if the
control-flow graph in ./out/processSensorData.dot changes when you modify the
flow fact file.

What is the purpose of the multibranch statement? Why is Otawa not able to find
this information on its own? Compare this with the handling of normal branches
(e.g., at the end of basic block 1)? Which C statements correspond to this instruc-
tion?

3

2 Loop Bounds (30 minutes)

Aims: Understand loop bound specifications and calling contexts.

Attention: Do not forget to undo any modifications to the flow fact file that you may have done
during the previous exercise.

• Again open the source code of Heli (./src/heli.c) and have a closer look at the
for loop in the function fixFilter. Find the loop statement in the flow fact file corre-
sponding to the loop.

Hint: Check all the locations where the function is called in the source code.

Which loop bound is currently indicated in the flow fact file? Determine an im-
proved, but still safe, loop bound for this loop?

• Modify the flow fact file according to your findings from above and rerun the analysis
(make).

What is the new WCET bound computed by Otawa?

• The current bound is obviously pessimistic, since it is easy to determine the precise
loop bound depending on the calling context, i.e., whenever fixFilter is called from
calibrateGyro the loop bound is known to be 25 = 32 instead of 256. We thus would
like to activate calling contexts during the analysis.

This can be done by modifying the platform configuration file. Open the configura-
tion file (./patmos_wcet.osx) and uncomment the line following the marker TODO
(l. 17). Then rerun the analysis and visualize the control-flow graph of the function main
(./out/main.dot). The control-flow graph appears much larger?!?

Hint: Search for the name fixFilter in the control flow graph. You can use the input
field in the toolbar for this – xdot highlights all matching nodes in red.

Explain the difference between the small original graph for main and the large new
graph?

• Now replace the pessimistic loop bound by precise loop bounds for each call site of
fixFilter that you can find in the control-flow graph.

Figure 1, for instance, illustrates such a call site. Note the instruction li $r4 = 5 before
the actual call instruction. Register r4 is used to pass the value 5 to the function’s size

Figure 1: Call to the function fixFilter in the control-flow graph exported by Otawa.

4

parameter. Thus the number of loop iterations for the particular call site shown in the
figure can be bounded by 32.

It remains to provide this information to Otawa in the form of a new loop statement using
the following format:

loop <loop address> <loop bound> in @<call address>;

The loop address remains unchanged (you can copy it from the existing loop statement,
whereas the loop bound can easily be derived from the li that you will find before each
call site. The address of the call, finally, is specified by an at sign (@) followed by the
address of the call instruction (0x20bbc in Figure 1).

Hint: Do not forget to remove the original loop statement in the flow fact file.

Provide precise loop bounds, following the above example, for all 8 call sites of the
function fixFilter. What is the WCET that you obtain after this improvement?

5

3 Implicit Path Enumeration (40 minutes)

Aims: Understand the relationship between the control-flow graph, loop bounds, and pipeline
analysis as well as the equations of the Implicit Path Enumeration Technique (IPET).

The previously constructed control-flow graph (see Exercise 1) is annotated with the user-
provided flow facts and loop bounds (Exercise 2) as well as the local execution times of basic
blocks (Exercise 3). The final step of WCET analysis is then to construct linear equations
according to the Implicit Path Enumeration Technique (see the lecture).

You can have a look at the constructed equations by opening the LP-file generated by Otawa
(./out/ipet.lp). The variable names in the equations represent the basic blocks and the
edges of the control-flow graph. The name of a variable representing a basic block u is given
by x<u>_main. For instance, a variable x21_main is introduced for basic block 21. The
naming of edges follows a similar scheme: for an edge (u, v) in the control-flow graph a variable
e<u>_<v>_main is introduced. For instance, the variable e21_21_main is introduced for the
loop-edge of basic block 21 that leads to the block itself. The variables are used to encode to
structural (flow) constraints, as well as the objective function. Note that the weight of an edge
(u, v) corresponds to the local execution time of the destination block v.

• Open the LP-file generated from an analysis run. Try to find all variables related to basic
block 21 (corresponding to the loop in the first invocation of the function fixFilter).

Determine the weights associated with the corresponding edges in the objective
function. Then, find all equations related to loop bounds. Finally, find all equations
representing structural constraints (Kirchhoff’s law).

• Now verify that the solution to the equations in the LP-file actually corresponds to the
expected value 33 886 (from Exercise 2). Supply the generated LP-file as input to the tool
lp_solve and examine its output.

Hint: Invoke lp_solve with the option -S1 in order to reduce the amount of output
generated.

• The solution computed by lp_solve is actually back-annotated to the control-flow graph.
Reexamine the generated graph using xdot. Search for the string otawa::ipet::COUNT.
It indicates the value of the flow variable (given by otawa::ipet::VAR) computed by
lp_solve.

Have a close look at the control-flow graph for the function runFlightPlan (starting at
basic block 50) as well as the corresponding C code. You will quickly notice that the if
statements in the C code are mutually exclusive.

Hint: Check basic blocks 50, 51, 53, 55, 58, and 61.

Verify the flow variables (otawa::ipet::COUNT) associated with the function’s
control-flow graph. Did the tool succeed to exploit the fact that the if statements
are mutually exclusive? Justify your answer.

• For this exercise, we will directly modify the LP-file in order to describe the mutually
exclusive if statements.

Hint: lp_solve only accepts linear equations where the right hand side is a constant.
Furthermore the operators in the equations are limited to <, <=, and =. You thus may
have to adapt your equations to respect these limitations.

6

Propose an equation that allows to express the mutual exclusivity of the if state-
ments. Add the equation to the LP-file and recompute a new solution with lp_solve.
The obtained WCET should be 33 534 cycles.

• Next have a closer look at the switch statement in function processSensorData.
You will again quickly notice that the variable currentChannel represents a sort of
a state machine that repeatedly cycles through the following states: GYRO_CHANNEL,
AROMX_CHANNEL, AROMY_CHANNEL, and AROMZ_CHANNEL. Note that the state machine
wraps around when the last state is reached.

Hint: The case statements representing the states GYRO_CHANNEL, AROMX_CHANNEL,
AROMY_CHANNEL, and AROMZ_CHANNEL correspond to basic blocks 68, 69, 70, and 71
respectively.

Propose a set of equations that captures the behavior of the state machine. Again,
add these equations to the LP-file and recompute a solution using lp_solve. The
obtained WCET should now be reduced to 22 545 cycles.

7

	Control-Flow Reconstruction (20 minutes)
	Loop Bounds (30 minutes)
	Implicit Path Enumeration (40 minutes)

